ON-SITE WASTEWATER SYSTEM Selection Guide • Treatment Efficiency • Installation • Maintenance Summary | | | | | | | SY | STEM | TYPE | AND | TRE | ATM | ENT L | EVE | L | | | | | |---|--------------------|---------------------------|-------------------------|---------------------------|------------------------------|-----------------------------|-------------|------------------------------|------|-------------------|------------|----------------------|------------|-------------------|-------------------|----------------|------------------|--------------| | SENSITIVE
RESOURCES
AND SITE
CONSTRAINTS | Single pass | Puraflo
Peat Biofilter | Ultra Violet
C Light | Recirculating Sand Filter | Advantex
Z Textile Filter | Nitrex
T2N ¹⁵ | Z RUCK (MA) | Composting X dosed greywater | FAST | Septitech D | N Bioclere | N. Singulair
Z DN | Cromaglass | Waterloo | Amphidrome | N. Singulair / | S12 White Knight | Conventional | | Pathogen | 120 | 120 | 120 | I ZIN | I ZIN | I ZIV | IZN | | | | | I ZIN | 1214 | IZN | I ZIN | 113.2 | 113 | TIP | | Pathogen
Sensitive Drinking | | Suitability Rating** | | | | | | | | | | | | | | | | | | water reservoirs *, wellheads, shellfishing zones and swimming areas. | H+ ¹⁰ | H+ ¹⁰ | H+ | H ^{1,10} | H ^{1,10} | P 15 | н | H¹ | M | H ^{1,10} | M | М | М | H ^{1,10} | H ^{1,10} | Р | P | P | | Nitrogen Sensitive | Wellheads, poorly
flushed coastal waters,
shellfish areas and
sensitive habitat. | M¹ | M¹ | n/a | H+ ^{1,10} | H ^{1,10} | H+ ¹⁵ | н | H¹ | н | H ^{1,10} | н | н | н | H ^{1,10} | H ^{1,10} | P | P | P | | Slowly Permeable | Soils | H+10 | H+10 | n/a | H+ ¹⁰ | H+ ¹⁰ | Н | Н | H ¹ | M | H+10 | M | M ¹ | Н | H+10 | H+10 | M | M | Р | | Shallow Depth to groundwater, bedrock, or other limiting layer. | H+ ^{9,10} | H ¹⁰ | H+ ¹³ | H ^{9,10} | H ¹⁰ | H | н | H¹ | M | H ¹⁰ | М | M¹ | н | H ¹⁰ | H ¹⁰ | М | M | Р | | Rapidly Permeable Soils | H+ ¹⁰ | H+ ¹⁰ | H+ ¹³ | H+ ¹⁰ | H+ ¹⁰ | Н | н | H¹ | М | H+ ¹⁰ | М | M¹ | н | H+ ¹⁰ | H+ ¹⁰ | М | М | Р | | Size Restricted Lots. Drainfield Size | Reduction Permitted | H ^{1,9} | H ¹ | H+13 | H ^{1,9} | H ^{1,10} | Н | Н | Н | Н | H ^{1,10} | M | Н | Н | M ^{1,10} | M ^{1,10} | Н | Н | Р | Suitability Rating: H = Highly suitable, M = Moderately suitable, P = Poorly suitable Treatment Standards: T1P = Primary treatment, T1S = Secondary treatment, T2 = advanced treatment for Nitrogen or Coliform bacteria ### **ON-SITE WASTEWATER SYSTEM** | SYSTEM TYPE AND TREATMENT LEVEL |--|----------------------------|---------------------------|---|------------------------------|----------------------------|---------------------|-----------|-------------------------------------|--------------------|--------------------|----------|--------------------|------------|----------|------------|-----------------------|--------------|--------------------| | INSTALLATION | Single pass
sand filter | Puraflo
Peat Biofilter | Ultra Violet
Light | Recirculating
Sand Filter | Advantex
Textile Filter | Nitrex | RUCK (MA) | Composting
w/ dosed
greywater | FAST | Septitech D | Bioclere | N. Singulair DN | Cromaglass | Waterloo | Amphidrome | N. Singulair /
JET | White Knight | Conventional | | | T2C | T2C | T2C | T2N | T2N | T2N15 | T2N T1S | T1S | T1P | | A. Estimated Costs ² 1 = \$6 - 11,000 2 = \$10 - 14,000 3 = \$14 - 18,000 4 = \$18 - 25,000+ | 3 | 3 | <
\$1,000 | 3 | 3-4 | 3-4 ¹⁶ | 4 | 3-4 | 3 | 3 | 3-4 | 2 | 3-4 | 3-4 | 3-4 | 2 | 1 | 1 - 4 | | B. Ease of Retrofit 1 = straightforward 2 = more complicated 3 = impractical | 1 | 1 | 2 | 2 | 1 | 1-2 | 1 | 3 ³ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1-2 | | | | | | | | OPER/ | ATION 8 | & MAIN | ΓENAN | CE | | | | | | | | | | A. Estimated Annual
Costs (RI)
(electric @ \$.15 kwb) | \$48 | \$48 | \$35 | \$70 | \$70 | -0- ¹⁷ | \$48 | \$120 | \$325 | \$420 | \$180 | \$250 | - | \$70 | - | \$250 | \$35 | - O- ⁵ | | B. Estimated Yearly
Inspection and
Maintenance costs (RI)
(includes an assumed
pumpout every three years) ⁶ | \$250 | \$200 | \$100
(lamp
replacemen
t every 2
years) | \$275 | \$400 | \$200 ¹⁸ | \$410 | \$375 | \$425 ⁷ | \$370 ⁷ | \$375 | \$200 ⁷ | | \$320 | | \$200 ⁷ | \$150 | \$125 ⁷ | | C. Maintenance
Frequency
(times /year) ⁸ | 1 | 1 | 1-314 | 2 | 1 | 1 | 4 | 3 | 2 | 1 | 2 | 2 | - | 1- 2 | 2 | 2 | 1 | 1 | # ON-SITE WASTEWATER SYSTEM ## Selection Guide • Treatment Efficiency • Installation • Maintenance Summary | | DRAINFIELD TYPE AND TREATMENT LEVEL | | | | | | | | | | | | | |---|-------------------------------------|--|---------|---------------------|-------------------|---------------------------------|------------------------|----------------|----------------|---------------------------|-----------------|-------------------|--| | SENSITIVE RESOURCES
AND SITE CONSTRAINTS | Trenches | Flow
Diffusers | Galleys | Eljen In-
Drains | Shallow
Narrow | PIP pipe/
Poly drain
pipe | Inflitrator
Quick 4 | Geomat
1200 | Geomat
3900 | Bottomless
Sand Filter | Geoflow
Drip | Perc-Rite
Drip | | | | Conv | Conventional Options Alternative Options | | | | | | | | | | | | | Pathogen Sensitive | Suitability Rating** | | | | | | | | | | | | | | Drinking water reservoirs *, wellheads, shellfishing zones and swimming areas. | M | М | Р | М | H+ | H+ | H+ | H+ | H+ | Н | H+ | H+ | | | Nitrogen Sensitive Wellheads, poorly flushed coastal waters, shellfish areas and sensitive habitat. | Р | Р | Р | Р | H+ | H+ | H+ | H+ | H+ | M | H+ | H+ | | | Slowly Permeable | М | Р | Р | М | Н | Н | Н | Н | Н | Н | Н | Н | | | Soils | | | | | | | | | | | | | | | Shallow Depth to groundwater, bedrock, or other limiting layer. | Р | Р | Р | Р | M | M | M | Н | Н | Н | H | M | | | Rapidly Permeable Soils | Р | Р | Р | М | Н | Н | Н | Н | Н | Н | Н | Н | | | Size Restricted Lots Drainfield Size Reduction Permitted | Р | М | M | M | Н | Н | Н | Н | H+ | H+ | P | Р | | | Maintenance Frequency (times / year) | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | | #### **Notes on Summary Table** - * Drinking water supply reservoirs and other freshwater bodies are also considered phosphorus-sensitive. - ** Actual selection of advanced treatment technology should be based on site-suitability and location. In critical areas consider resource protection priority and existing water quality conditions, vulnerability to impact, existing pollution risks, and future threats. - + Denotes that the system is particularly well suited for the application. NOTE: Estimates based upon a three bedroom home design. - ¹ The use of a shallow narrow (12" wide X ≤ 12" deep) pressurized, time dosed trench in native soil is expected to enhance removal of nitrogen, phosphorus, and pathogens. This may improve the suitability of these systems and result in a higher suitability category. Shallow narrow <u>drainfields</u> further reduce <u>drainfield</u> size and increase <u>siting</u> flexibility. - ² Construction costs are estimates that include everything from the building sewer to the <u>drainfield</u>. Engineering costs are not included. The actual cost will vary according to specific site conditions. Cost estimates do not include <u>siting</u>, permitting, design and construction inspection services. - 3 These systems require the home plumbing to be segregated into gray and black water waste streams. This may not be economically feasible with existing homes. - ⁴ Approximately 75% of RI RUCK installations use pumps but these systems may be designed as gravity flow systems where natural topography or fill allows gravity flow. If a pump is not used, then there would be no yearly electric cost. - ⁶ A conventional system with a pressure dosed <u>drainfield</u> would have an approximate electrical cost of \$20- \$50 per year. - ⁶ The cost of septage pumpout is estimated at \$150. Pumping frequency should be based on inspection and actual need for pumping. Pumping frequencies can vary considerably, depending upon tank size, number of occupants, and life style. - ⁷ These costs would be \$50 125 more if a pressure dosed (pumped) <u>drainfield</u> is used. - ⁸ After a startup period of the first six months the system should be looked at according to the frequency given. During initial system startup, 1 to 4 visits may be needed to adjust the system to the specific home. Those initial visits are normally part of the initial cost of the system. - 9 Single Pass and recirculating sand filters receive a 1-foot reduction in separation distance to groundwater in RI. - ¹⁰System is time dosed using a programmable timer. These systems store peak flows and meter wastewater out over a longer time period. This maximizes treatment potential. - 11T1P = primary treatment in a conventional system septic tank. Additional treatment will occur in a conventional system drainfield that would reduce effluent levels to or exceeding T1S levels. - ¹²T1S = secondary treatment. - 13 In pathogen sensitive areas ultraviolet light disinfection should be used with category 2 technologies discharging to conventional drainfield. - 14 Wiping UV crystal needed 1 time / year with Category 1 and 2-3 times / year with Category 2 technologies. - 15 This system requires another technology system immediately before it that effectively nitrifies the wastewater (converts ammonium-N to nitrate-N). Pathogen removal may be done in treatment components placed before the Nitrex unit. - 16 The cost is for the Nitrex component only; it does not include any other component in the treatment train additional cost needs to be added for nitrification component. - 17 A gravity flow design, and no electricity is needed for this component. Other components in the treatment train may require electricity. - 18 Quarterly sampling and monitoring of treatment performance required in Massachusetts this would add to annual operation cost.