WATER QUALITY - BLACKSTONE RIVER

Final Report 1: Existing Data Volume I: Data Summary

Submitted to: Rhode Island Department of **Environmental Management**

January 2004

Submitted by:

The Louis Berger Group, Inc.

in association with

Applied Science Associates, Inc.

University of Rhode Island University of Massachusetts - School of Marine Science and Technology

Rhode Island Department of Environmental Management

WATER QUALITY - BLACKSTONE RIVER

FINAL REPORT 1: EXISTING DATA Volume I: Data Summary

Submitted to:

Rhode Island Department of Environmental Management

Office of Water Resources

235 Promenade Street
Providence, Rhode Island 02908

Submitted by: **The Louis Berger Group, Inc.** 295 Promenade Street Providence, RI 02908

in association with:

Applied Science Associates, Inc.

University of Rhode Island
University of Massachusetts - School of Marine Science and Technology

Table of Content Volume I: Data Summary

1.0	INTRO	DDUCTION	1-1
	1.1	Project Overview	1-1
	1.2	Project Tasks	1-1
2.0	BLAC	KSTONE RIVER WATERSHED	2-1
	2.1	Introduction	2-1
	2.2	Geology	2-2
	2.3	Climate	2-7
	2.4	Surface Water Hydrology	2-7
	2.5	Groundwater Hydrology	2-23
	2.6	Land Use	2-25
	2.7	Natural Resources and Protected Areas	2-28
	2.8	Aquatic Ecosystems	2-33
	2.9	Pollutant Sources	2-36
3.0	EXIST	TING WATER QUALITY DATA FOR BLACKSTONE RIVER WATERSHED	3-1
	3.1	University of Rhode Island - Wet Weather Study	3-4
	3.2	Systemwide Modeling for Providence Area Combined Sewer System	3-7
	3.3	Blackstone River 1990 - Pollutant Discharges and Water Quality Review	3-9
	3.4	Blackstone River Water Quality Study, 1991	3-12
	3.5	Providence - Seekonk River Total Maximum Daily Load Project	3-15
	3.6	River Rescue Project, Water Quality in Rhode Island's Urban Waters, 1990-1995	3-16
	3.7	URI Watershed Watch, Lakes Monitoring Data, 1993-2000	3-18
	3.8	State of the State's Waters- Rhode Island, 2000 Section 305(b) Report (Section III)):
		Stream Sampling Sites for 1991-2000, Chemical Monitoring	3-20
	3.9	Multiple Station Analyses: Water Resources of the Blackstone River Basin	3-22
	3.10	Water Quality Sampling of Tributaries, 1998 to present	3-24
	3.11	The Blackstone River, Fish Toxics Monitoring - MADEP	3-26
	3.12	Rapid Bioassessment Screening of RI Freshwater Benthic Macro-invertebrates	3-29
	3.13	Dr. John King, URI: Sediment Core Data, 1988	3-34
	3.14	RIPDES-Permitted Discharges: Effluent Data, 1997 – 2001	3-36
	3.15	Blackstone River Initiative: Water Quality Analysis of the Blackstone River	
		Under Wet and Dry Weather Conditions	3-37
4.0	WAT	ER QUALITY DATA SYNTHESIS	4-1
	4.0	Introduction	4-1
	4.1	Methodology	4-1
	4.2	Fecal Coliform	4-3
	4.3	Copper	4-7
	4.4	Lead	4-11
	4.5	Nutrients and Related Parameters (for Valley Falls Pond)	4-16
	4.6	Total Suspended Solids	4-19
	4.7	Flow	4-20
	4.8	Biodiversity Impacts	4-20

5.0	DATA	A GAPS - INITIAL RECOMMENDATIONS	5-1
	5.1	Fecal Coliform, Copper and Lead	5-2
	5.2	Fish Tissues	5-3
	5.3	Biodiversity Impacts	5-4
	5.4	Valley Falls Pond	5-5

REFERENCES

List of Figures and Tables

SECTION 1: INTRODUCTION

Table 1-1	Project waterbodies and impairments identified in Group 1 - 2000 303(d) list	1-1
SECTION 2: B	LACKSTONE RIVER WATERSHED	
Figure 2-1	Blackstone River watershed	2-2
Figure 2-2	Valley Falls Pond and surrounding	2-3
Figure 2-3	General soils classification	2-6
Figure 2-4	Air temperature	2-9
Figure 2-5	Annual precipitation trends	2-9
Figure 2-6	Blackstone River flow	2-10
Figure 2-7	Branch River flow	2-10
Figure 2-8	Blackstone River flow schematic	2-12
Figure 2-9	Blackstone River water quality classification	2-20
Figure 2-10	Groundwater resources	2-24
Figure 2-11A	Land use/land cover	2-29
Figure 2-11B	Land use/land cover (closeup)	2-30
Figure 2-12	Natural resources	2-32
Figure 2-13A	Population density	2-37
Figure 2-13B	Population density (closeup)	2-38
Figure 2-14	CERCLA sites, waste disposal sites, and NPL sites	2-47
Table 2-1	Summary of available precipitation records	2-7
Table 2-2	Climatological summary, T.F. Green Airport	2-8
Table 2-3	Flow data for Blackstone River	2-11
Table 2-4	Flow data for Branch River	2-11
Table 2-5	Dams and impoundments in the Blackstone River watershed	2-14
Table 2-6	State of Rhode Island 2000 303(d) list, Blackstone River	2-19
Table 2-7	State of Massachusetts 1998 303(d) list, Blackstone River	2-21
Table 2-8	Population and housing density	2-26
Table 2-9	Population and housing growth	2-27
Table 2-10	Summary of land use	2-28
Table 2-11	Summary of forest coverage data	2-33
Table 2-12	Life supporting conditions for American shad, alewife, and blue herrings	2-34
Table 2-13	Areas of significant waterfowl habitat	2-35
Table 2-14	Summary of minor RIPDES permits	2-39
Table 2-15	Summary of Massachusetts facilities – treatment plants	2-41
Table 2-16	Design storm model results for CSOs on Blackstone River	2-42
Table 2-17	Design storm model results for CSOs on Blackstone River	2-43
Table 2-18	Summary of RIPDES Permits	2-44
Table 2-19	State CERCLA sites in the Blackstone River watershed (RI section)	2-45
Table 2-20	Summary of NPI sites	2-46

		_	_	_		
CECTION 2.	EXISTING WA	PED OTIATIES	Z DATA EOD	RIACECTONE	DIVID	W ATEDCHED
ORGINON J.	TAXISTING YVA	IEK QUALIT	DAIATON	DLACIOLORIU	IXI A IVI	AMUSTINA

Figure 3-1	URI wet weather study, 1991 – sampling locations	3-6
Figure 3-2	URI wet weather study, 1992 – sampling locations	3-8
Figure 3-3	ASA study - sampling locations	3-14
Figure 3-4	River Rescue – sampling locations	3-17
Figure 3-5	URI Watershed Watch – sampling locations	3-19
Figure 3-6	RIDEM chemical monitoring – sampling locations	3-21
Figure 3-7	USGS – sampling locations	3-23
Figure 3-8	NBC – sampling locations	3-25
Figure 3-9	URI sediment sampling (Dr. King)	3-35
Figure 3-10	Blackstone River Initiative - sampling stations	3-38
Table 3-1	Summary of water quality data sources in the Blackstone River watershed	3-2
Table 3-2	Storm characteristics (Wright et al., 1991a)	3-4
Table 3-3	Storm characteristics (URI, 1992)	3-7
Table 3-4	Major RIPDES permits in Blackstone River	3-9
Table 3-5	Summary of violations for MA and RI dischargers	3-10
Table 3-6	Water quality sampling locations (ASA, 1992b)	3-12
Table 3-7	1993 Blackstone River fish toxics monitoring survey - sampling locations	3-26
Table 3-8	Metals concentration in fish tissue	3-27
Table 3-9	Copper concentration in fish tissue – by station	3-27
Table 3-10	Lead concentration in fish tissue – by station	3-27
Table 3-11	Mercury concentration in fish tissue – by station	3-27
Table 3-12	PCB concentration in fish tissue - by station	3-28
Table 3-13	BRI Water quality sampling stations	3-39
Table 3-14	BRI Summary of flows	3-40
Table 3-15	BRI - Precipitation log of three storms	3-41
SECTION 4:	WATER QUALITY DATA SYNTHESIS	
Figure 4 1	Sample locations - DI Island section	

Figure 4-1	Sample locations – RI Island section
Figure 4-2	BRI Water quality sampling stations
Figure 4-3	Sampling locations of reviewed studies in Blackstone River watershed
Figure 4-4	Summary of available data for the Blackstone River watershed
Figure 4-5	RIDEM Class specific criteria
Figure 4-6	Dissolved metals criteria
Figure 4-7	Criteria for ammonia
Figures 4-8 to 4-23	Data on fecal coliform
Figures 4-24 to 4-43	Data on copper
Figures 4-44 to 4-63	Data on lead
Figures 4-64 to 4-121	Data on nutrients and related parameters
Figures 4-122 to 4-129	Data on total suspended solids
Figures 4-130 to 4-132	Macroinvertebrate data

Table of Content Volume II: Appendices

Appendix 1: University of Rhode Island: Wet Weather Study (Wright et al., 1991a) Systemwide Modeling for the Providence Area Combined Sewer System Appendix 2: (URI, 1992) University of Rhode Island: The Blackstone River 1990; Pollutant Discharges and Water Appendix 3: Ouality Review (Wright et al., 1991b) Blackstone River Water Quality Study, 1991 Appendix 4: (ASA, 1992b) Providence - Seekonk River Total Maximum Daily Load (TMDL) Project Appendix 5: (RIDEM, unpubl. data) River Rescue Project: Water Quality in Rhode Island's Urban Waters (1990 to 1995) Appendix 6: (Kerr and Lee, 1996) URI Watershed Watch Lakes Monitoring Data 1993 to 2000 Appendix 7: (URI, 1993 to 2000) State of the State's Waters-Rhode Island, 2000 Section 305(b) Report (Section III): Appendix 8: Stream Sampling Sites for 1991-2000 (RIDEM, 2000) Multiple Station Analyses: Water Resources of the Blackstone River Basin, MA Appendix 9: (USGS, 2000) Water Quality Sampling of Tributaries, 1997 - Present Appendix 10: (NBC, 1998 - 2001) The Blackstone River - Fish Toxics Monitoring, Massachusetts Department of Appendix 11: Environmental Protection (Maietta, 1993) Rapid Bioassessment Screening of Rhode Island Freshwater Benthic Macro-invertebrates Appendix 12: (Gould, 1998; 1999; 2000) Sediment Core Data Appendix 13: (Dr. John King, University of Rhode Island, unpublished data) RIPDES Permitted Discharges, Effluent Monitoring Data, 1997-2001 Appendix 14: (Unpublished data) The Blackstone River Initiative: Water Quality Analysis of the Blackstone River Under Appendix 15:

Wet and Dry Weather Conditions (Wright et al., 2001)

EXECUTIVE SUMMARY

OVERVIEW

The objective of this project is to provide the Rhode Island Department of Environmental Management (RIDEM) with the information to develop accurate and effective Total Maximum Daily Loads (TMDL) for the Blackstone River, Mill River, Peters River, and Valley Falls Pond. TMDLs are required under Section 303(d) of the Clean Water Act and USEPA's Water Quality Planning and Management Regulations (40 CFR Part 130). The 303(d) List identifies the following parameters of concern:

Blackstone River: Biodiversity impacts, pathogens, copper, lead

• Mill River: Lead

• Peters River: Pathogens, copper, lead

• Valley Falls Pond: Biodiversity impacts, pathogens, phosphorus, nutrients, hypoxia, excess

algal growth, lead

This report includes a description of the watershed, compilation of existing water quality data, data analysis and synthesis, and initial identification of data gaps. A total of 15 sediment, fish tissue, and water quality studies were reviewed along with additional data and information relevant for this project. The report consists of two volumes:

Volume I: Data Summary

• Volume II: Appendices (with original data and graphs from the studies used for the data summary)

It should be noted that the data synthesis in this report is only based on data that were collected and published by different sources. Detection limits and analytical methods varied to some extent in the different studies. The reliability of the statistical averages generated in this report should be compared to the number of points in the data set. The number of data points is reported in appropriate tables.

- Blackstone River Watershed: The Blackstone River is an important natural, recreational, and cultural resource to both Rhode Island and Massachusetts. It has a total drainage area of 454 mi² with a total length of 48 miles. The Blackstone River is the second largest source of freshwater to Narragansett Bay. Approximately 75% of the watershed is located within Massachusetts with the remainder located in Rhode Island. The Massachusetts portion of the watershed encompasses Worcester County and small sections of Middlesex, Norfolk, and Bristol Counties. It encompasses a total of thirty cities and towns including Worcester and Attleboro. In Rhode Island, the watershed encompasses a portion of the following cities and towns: Burrillville, Glocester, North Smithfield, Smithfield, Woonsocket, Cumberland, Lincoln, Central Falls, and Pawtucket. There are a total of 102 dams located within the Blackstone River basin.
- *Mill River*: Mill River has a drainage area of approximately 35 mi². Most of the area is located in Massachusetts. The drainage area is characterized by open land and low-density residential development with limited areas of high density, urban development. The river flows into Harris Pond at the State line. From Harris Pond, the river flows for approximately 3,200 ft prior to being conveyed underground to the Blackstone River.

- **Peters River:** Peters River has a smaller drainage area than Mill River. Its headwaters are located in Bellingham, Massachusetts. The river flows for approximately 3.5 miles to the State line and continues for an additional one mile where it combines with the Blackstone River. The drainage area is characterized by medium to medium high residential development, and high density urban development in Woonsocket.
- Valley Falls Pond: Valley Falls Pond and its associated freshwater wetland system, known as Valley Falls Marshes, have been designated by RIDEM as Special Resource Protection Water. RIDEM made this designation due to the wetland system being the largest freshwater marsh and an important stop for migratory birds along the eastern flyway. The wetland system consists of marshland and open water, which form the boundary between Lincoln, Cumberland, and Central Falls. The Blackstone River flows though the open water system, which is created by the Valley Falls Dam. The Rhode Island Heritage Program has indicated the importance of the wetland because it supports several rare nesting birds: Least Bittern, Sora, American Bittern, Green-Winged Teal, and Marsh Wren.

FECAL COLIFORM SOURCES IN THE BLACKSTONE RIVER

Fecal coliform enters the Rhode Island section of the Blackstone River primarily from the following sources:

- Input from Massachusetts: Wright et al. (2001) determined that on average 69% of the total load enters the Blackstone River in Massachusetts during wet weather. Equivalent dry weather load calculations are not available.
- CSO: The CSOs between Lonsdale Avenue in Lonsdale and Slaters Mill appear to have high loadings of fecal coliform as expected.
- Branch River: The Branch River discharges roughly 25% of the flow in the Blackstone River at the confluence. Data by the USGS suggest that the coliform contributions are generally low. Data by the Blackstone River Initiative (BRI) indicate that coliform concentrations during wet weather from the Branch River are high, however.
- City of Woonsocket: Wright et al. (2001) calculated high fecal coliform loadings from the City of Woonsocket. The total load entering the Blackstone River between BRI Stations 13 and 17 was approximately 9%. The main sources are likely stormwater discharges.
- RIPDES –permitted discharges: Fecal coliform loads appear to be small, although fecal coliform concentrations were high in the effluent from the Blackstone Smithfield Company.
- *Mill River:* Dry weather concentrations were within the regulatory standards.
- Peters River: Given that the BRI fecal coliform data from the river were affected by a broken pipe, recent data are not available.

COPPER SOURCES IN THE BLACKSTONE RIVER

Copper enters the Rhode Island section of the Blackstone River primarily from the following sources:

• Input from Massachusetts: Wright et al. (2001) determined that on average 79% of the total load during dry weather and 75% of the total load during wet weather enters the Blackstone River within Massachusetts. Primary sources are the Upper Blackstone Water Pollution Abatement District (UBWPAD) facility in Worchester, MA, and possibly resuspension of sediments from impoundments.

- CSO: The CSOs between Lonsdale Avenue in Lonsdale and Slaters Mill may contain high loads of copper, although data do not exist. Wright et al. (2001) computed the load between Lonsdale and Slaters Mill as 4.1% of the total load.
- Branch River, Mill River, Peters River: The contributions of copper by the tributaries appeared to be comparatively small.
- Woonsocket WWTF: The copper concentrations in the final effluent were comparatively high. The load was calculated by Wright et al. (2001) with 5.9% of the total load entering the river.
- RIPDES—permitted discharges: Aside from the Woonsocket WWTF, and possibly the Osram Sylvania outfall, other discharges appeared to be minor sources of copper.
- Other sources in the RI section of the River: Aside from the copper loading from Massachusetts and the
 Woonsocket WWTF, the available data do not identify specific point sources for copper in the Rhode
 Island section of the river. Uncertain is also the role of resuspension of sediments from impoundments in
 the Rhode Island section.

LEAD SOURCES IN THE BLACKSTONE RIVER

Lead enters the Rhode Island section of the Blackstone River primarily from the following sources:

- Input from Massachusetts: Wright et al. (2001) determined that on average 92% of the total load during dry weather and 72% of the total load during wet weather enters the Blackstone River within Massachusetts. Primary sources are the headwaters of the Blackstone River and possibly resuspension of sediments from Rice City Pond.
- CSO: The CSOs between Lonsdale Avenue in Lonsdale and Slaters Mill in Central Falls and Pawtucket may contain high loads of lead, although data do not exist. Wright et al. (2001) computed the loading as 14% of the total load during wet weather, based on data from BRI Stations 20 and 21.
- Branch River, Mill River, Peters River: The contributions of lead by the tributaries appeared to be comparatively small. Within the Branch River watershed, the total lead concentrations within the Clear River were on average 3 times higher than the concentrations in the Branch River near its confluence, although the data come from different studies.
- Woonsocket WWTF: The lead concentrations in the final effluent of the BRI study were comparatively
 high. The load was calculated by Wright et al. (2001) with 4.5% of the total load entering the river.
 Concentrations in more recent samples collected by the treatment plant as part of the RIPDES monitoring
 are lower than the concentration during the BRI study, however. Therefore, the lead loading by the
 WWTF to the river should be reevaluated.
- Other RIPDES—permitted Discharges: Aside from the Woonsocket WWTF, the total lead concentrations from the Osram Sylvania Products Outfall 200 were elevated, and should be evaluated.
- Other sources in the RI section of the River: Aside from the lead loading from Massachusetts and the Woonsocket WWTF, the available data do not identify specific point sources for lead in the Rhode Island section of the river. Wright et al. (2001) calculated loadings of 4.5% to the Blackstone River during wet weather in the vicinity of the City of Woonsocket.

NUTRIENTS AND RELATED PARAMETERS (FOR VALLEY FALLS POND)

Very little is known about Valley Falls Pond. The pond is eutrophic to hypertrophic, particularly in the summer. It should be noted that the wetland nature of the Valley Falls System (marshes and pond) needs to be considered in any TMDL calculations, since wetlands tend to have higher tolerances to nutrient loads than river or pond areas. However, this important avian resource clearly appears to be beyond its capacity to assimilate additional nutrient loads. While quantitative data are not presently available, it is clear that the nutrient status of Valley Falls Pond is likely controlled primarily by the nutrient levels in the incoming river water and recycling of nutrients from the sediments. In such enclosed systems, the release of nutrients from the sediments during the warmer months can provide a large fraction of the nutrients for algal production (blooms). Sediment core data are consistent with a highly organic enriched system; they contained 10% carbon by weight. In addition, the configuration of the Valley Falls Pond system likely enhances organic matter deposition, due to the apparently low flow-through and the configuration of the basin. Enhanced deposition results in an increased level of sediment nutrient release.

The Blackstone River was nutrient-enriched and likely a significant source for nutrients to Valley Falls Pond. The degree to which the Blackstone River contributes to the eutrophic status in the pond cannot be ascertained, however. Specifically, data collected by the River Rescue and BRI studies stem from the earlier 1990s, when the Woonsocket WWTF was still a significant source of nutrients to the river.

BIODIVERSITY IMPACTS

Macroinvertebrate biodiversity data integrate the cumulative impact of stressors that result in habitat degradation and chemical contamination. The species density is affected by factors such as sediment type, temperature, dissolved oxygen concentration, rainfall / stream flow, organic content, and water chemistry. Stressors include organic loading from point and non-point sources, elevated sediment load.

Blackstone River bioassessments were conducted along the Blackstone River downstream of the Manville Dam. The results for the period from 1995 to 2001 indicated a moderately to slightly impaired benthic community. It appears that organic loading (nutrients, fine particulate organic matter, etc.) is the primary cause for the impaired macroinvertebrate assemblages. Metals do not appear to be a key stressor, as no lethal toxic effects were observed; there may be sublethal effects, however, which impact the growth and reproduction of the macroinvertebrates.

DATA GAPS - INITIAL RECOMMENDATIONS

The final determination of data gaps depends on the selection of a water quality model. Different models require different data as input parameters. In addition, the degree of resolution (i.e., the lengths of individual river sections that will be modeled) needs to be determined. Therefore, the recommendations for data collection are preliminary and designed only to be a starting point for discussion.

• Fecal Coliform, Copper and Lead: The relative contributions of fecal coliform, copper, and lead from major sources should be updated by resampling the BRI stations 12 to 21, as well as the Woonsocket WWTP. BRI stations were well-spaced to reflect the population density bordering the Blackstone River and to address other logical sources such as tributaries and impoundments. Sampling should be conducted during wet and dry weather.

Stations in addition to the BRI stations should be considered:

- Branch River, just downstream of Slaterville Dam
- Mill River, station at the MA/RI border
- Peters River, station at the MA/RI border

- Blackstone River, station between BRI 19 and BRI 20
- Abbot Run Brook, stations at the confluence with the Blackstone River and at the MA/RI border
- Outfalls of the Osram Sylvania, Atlantic Thermoplastics (they could be sampled as part of RIDEM's RIPDES program)
- Major stormwater drainage pipes (a survey prior to monitoring activities may be needed to develop a list of key pipes)
- Sources in the vicinity of CERCLA and waste disposal sites
- Stations that address the role of impoundments in Rhode Island (particularly sediment)

The State of Massachusetts may participate during sampling activities by monitoring at least some of the key sources for fecal coliform and metals. Based on the existing data, it appears that the river will also require decreases in the loading to the Blackstone River within the watershed in Massachusetts in order to improve substantially in Rhode Island.

- Fish Tissues: Tissues from fish should be analyzed to evaluate bioaccumulation of hazardous contaminants. Fish should be collected at several representative stations along the river. At each location, at least five each of a representative predator and benthic species, of a size to be determined, should be collected. Analyses should, at a minimum, include PCBs, metals (cadmium, copper, lead, mercury), arsenic, and pesticides.
- Biodiversity Impacts: It appears that organic loading was a primary cause for the patterns observed in the macroinvertebrate data. These data were the basis for placing the Blackstone River on the 303(d) List for biodiversity impairments. A large point source at the time for organic loading was the Woonsocket WWTF. Since the fall of 2001, the WWTF was upgraded and the effluent was improved, resulting in lower organic loading to the river. It therefore appears wise to conduct the monitoring for biodiversity impacts in the Blackstone River in a two-phased approach:
 - Phase 1: Macroinvertebrate Monitoring at existing Station: Macroinvertebrate monitoring should be conducted at the station below the Manville Dam during the summer, using the identical approach that was used for the monitoring conducted between 1991 and 2001. Data should be compared to the historic data. If indeed the WWTF was the primary cause of the impairment at the station, the benthic community conditions in the Blackstone River should be improved.
 - Phase 2: Expanded Macroinvertebrate Monitoring along the Blackstone River: If the Phase 1 macroinvertebrate survey results in the same findings as the surveys conducted between 1991 and 2001 monitoring period, a more extensive survey is recommended to identify the stressor(s) for the biodiversity impairments along the Blackstone River.
- Valley Falls Pond: To develop and evaluate management alternatives for Valley Falls Pond requires additional data. At present, there is only a nutrient data set from this system from a single season. However, several of the listed concerns for this system relate directly to nutrient loads and levels, i.e., phosphorus, nutrients, and diversity. In addition, there are no data available on the configuration and flows within this wetland and pond system (depths, channels, flows, exchange with the river, watershed inputs). In addition, nutrient issues require additional information on nutrient cycling processes and related effects, such as recycling rate, benthic versus watercolumn algal blooms, watercolumn dissolved oxygen. These data would need to be integrated into a simple model to determine the relative effects of the local watershed, the river, and recycling on controlling the habitat quality of this system. Source reduction and management alternatives could be developed thereafter.

1.0 INTRODUCTION

1.1 Project Overview

The primary objective of this project is to provide the Rhode Island Department of Environmental Management (RIDEM) with the information to develop accurate and effective TMDLs for the Blackstone River, Mill River, Peters River, and Valley Falls Pond. The 303(d) List identifies the following parameters of concern (Table 1-1).

Table 1-1
Project Waterbodies and Impairments Identified in Group 1 of the 2000 303(d) List

Name	Area / Length	Class	Cause of Impairment
Blackstone River	15.7 miles	B1 / B1 {a}	Biodiversity impacts, pathogens, copper, lead
Mill River	0.082	В	Lead
Peters River	0.469	В	Pathogens, copper, lead
Valley Falls Pond	42.7 ac	B1 (E)	Biodiversity impacts, pathogens, phosphorus, nutrients, hypoxia, excess algal growth, lead

TMDLs are required under Section 303(d) of the Clean Water Act and EPA's Water Quality Planning and Management Regulations (40 CFR Part 130). The purpose of TMDLs is to reduce the pollutant loading to waterbodies from point and nonpoint sources in order to achieve water quality goals set for the waterbody.

1.2 Project Tasks

The project consists of the following components:

- Task 1: Review of existing water quality data and delineation of waterbody segments
- Task 2: Identification of data gaps (preliminary)
- Task 3: Preparation of a Monitoring Plan along with a Quality Assurance Project Plan (QAPP) to address data gaps
- Task 4: Implementation of the Monitoring Plan
- Task 5: Comprehensive water quality characterization
- Task 6: Project Meetings

This report presents the findings of Tasks 1 and 2. The findings are based on relevant existing data and information. Preliminary data gaps under Task 2 were identified to provide the additional data and information needed for the development of TMDLs. It is envisioned that these missing data will be obtained during the monitoring period of this project (Tasks 3 and 4).

The report consists of two volumes:

- Volume I: Data Summary
- Volume II: Appendices with original data and graphs from the studies used for the data summary

2.0 BLACKSTONE RIVER WATERSHED

2.1 Introduction

The Blackstone River is an important natural, recreational, and cultural resource to both Rhode Island and Massachusetts. In 1986, the Blackstone River Valley National Heritage Corridor was established by Congress to preserve and interpret the significant historic and cultural lands, waterways, and structures within the watershed. The National Park Service is working with the two States to pursue park development along the River and to coordinate a watershed land-use strategy. In Rhode Island, RIDEM is developing a greenway along the Blackstone River between the villages of Albion and Berkley. A bike path is also under development, which will ultimately extend from India Point Park in Providence to North Smithfield with connection to the East Bay bike path.

The Blackstone River has a total drainage area of 454 mi² with a total length of 48 miles. The drainage area is located in south-central Massachusetts and flows from Worcester, MA, to Main Street Dam in Pawtucket, RI, which is defined as the headwaters of the Seekonk River. The Seekonk River is a tidal estuary that flows for approximately seven (7) miles before combining with the Providence River at India Point. The Blackstone River is the second largest source of freshwater to Narragansett Bay.

Approximately 75% of the watershed is located within Massachusetts with the remainder located in Rhode Island. The Massachusetts portion of the watershed encompasses Worcester County and small sections of Middlesex, Norfolk, and Bristol Counties. It encompasses a total of thirty cities and towns including Worcester and Attleboro. In Rhode Island, the watershed encompasses a portion of the following cities and towns: Burrillville, Glocester, North Smithfield, Smithfield, Woonsocket, Cumberland, Lincoln, Central Falls, and Pawtucket.

The Blackstone River begins in the southern part of the City of Worcester at the confluence of Middle River and Weasel Brook. It flows southward for 16.5 miles through a narrow valley before crossing into Rhode Island. The terrain of the watershed is characterized by gently rolling hills with altitudes increasing to the west. Elevations range from 1,400 ft MSL at headwaters in Worcester to 150 ft MSL at the Rhode Island border. In general, the gradient of the Blackstone River is moderate with slopes averaging about 11 ft/mile from the headwaters to the Woonsocket gauging station. The tributary streams draining the western uplands tend to have steeper gradients than those draining eastern uplands.

There is a total of 452 miles of river and perennial streams in the Blackstone River watershed. Primary tributaries in Massachusetts are Kettle Brook, Quinsigamond River, Mumford River, and West River. Primary tributaries in Rhode Island are Abbot Run Brook, Mill River, Peters River, and Branch River. In addition, there are 183 lakes and ponds, 107 of them larger than 10 acres. The largest lake in the watershed is Lake Quinsigamond in Shrewsbury and Worcester (area: 781 acres). The majority of the lakes are formed or enlarged by impoundments. There are a total of 102 dams located within the Blackstone River basin.

The Mill River has a drainage area of approximately 35 mi², which is primarily located in Massachusetts. The drainage area is characterized by open land and low-density residential development with limited areas of high density, urban development. The headwater of Mill River is North Pond, located in Hopkinton, MA. The river flows into Harris Pond at the State line. Harris Pond is formed by an impoundment that serves as a water supply for the City of Woonsocket. From Harris Pond, the river flows for approximately 3,200 ft prior before being conveyed underground to the Blackstone River. From a headwall located 400 ft upstream of Social Street, the river flows for 1,150 ft through two 10-ft wide and 12-ft high underground concrete conduits to its confluence at the Blackstone River. The Army Corps of Engineers constructed the culverts in 1963 as part of a city-wide flood control project. As part of the project, the banks of the Mill River were armored with rip-rap. Tributaries to Mill River consist of Hop Brook, Quick River, Spring Brook, and Muddy Brook.

The Peters River has a smaller drainage area than the Mill River. Its headwaters are located in Bellingham, Massachusetts. The river flows for approximately 3.5 miles to the State line and continues for an additional one mile where it combines with the Blackstone River. The drainage area is characterized by medium to medium high residential development with high density, urban development in Woonsocket. Tributaries to Peters River consist of the following: Bungay Brook, Arnold Brook, and unnamed tributaries which originate in Franklin State Forest. The Peters River flows for approximately 5,000 ft before being conveyed underground. From Elm Street, the river flows 1,180 ft through a 10-ft by 10-ft underground concrete conduit to its confluence with the Blackstone River. The underground conduits were constructed as part of the same 1963 city-wide flood control project.

Valley Falls Pond and its associated freshwater wetland system, known as Valley Falls Marshes, have been designated by RIDEM as Special Resource Protection Water. RIDEM made this designation due to the wetland system being the largest freshwater marsh and an important stop for migratory birds along the eastern flyway. The wetland system forms the boundary between Lincoln, Cumberland, and Central Falls. The Blackstone River flows though the open water part of the system, which is created by the Valley Falls Dam. The Rhode Island Heritage Program has indicated the importance of the wetland because it supports several rare nesting birds: Least Bittern, Sora, American Bittern, Green-Winged Teal, and Marsh Wren.

Provided in Figure 2-1 is a general map of the entire Blackstone River Watershed. Figure 2-2 depicts the area surrounding Valley Falls Pond.

2.2 Geology

2.2.1 Surficial Geology

Within the Blackstone River watershed, overburden soils consist primarily of glacial till and outwash including glaciofluvial ice-contact deposits. Till is an ice-deposited sediment, and it is highly variable in texture (gravel, cobbles, stones, and boulders), composition, thickness, and structural features. This variability is often reflected in its hydraulic properties. Outwash or stratified drift deposits consist of well-sorted fine to coarse-grained sand and silt deposited from glacial meltwaters. Glaciofluvial deposits are ice-contact deposits located where meltwaters formed against bedrock. These deposits consist of well-sorted fine-grained sand and silt, and create a landscape of kames, terraces, eskers, and outwash plains.

The glacial deposits in Rhode Island can be divided into four principal types: upland till plains, Narragansett till plains, Charlestown and Block Island moraines, and outwash deposits. The Blackstone River watershed is dominated primarily by upland till plains with some regions of outwash deposits along the eastern and southeastern margins of the watershed. The upland till plains consists of till derived mostly from bedrock such as granite, schist, and gneiss. Bedrock outcrops are visible in some regions, along with scattered glacial stones and boulders. The till is relatively loose and unconsolidated; however, some areas are more heavily compacted. On average, the till is about twenty feet thick. Deposited in irregular layers by glacial meltwater, outwash deposits cover lowland areas and fill preglacial stream channels. The deposits consist of small particles of gravel, sand, silt, and clay. Windblown deposits of fine silt cap some of the outwash areas.

2.2.2 Soils

Soil deposits within the Blackstone River watershed also reflect the glacial origins of the landscape and consist of till, organic material, and outwash deposits including glaciofluvial parent materials.

2000 Feet

Figure: 2-2 VALLEY FALLS POND AND SURROUNDING

File: BASE.apr

Rhode Island DEM

January 2004

The dominant soil series within regions that are characterized by upland till plains are Canton and Paxton soils. Canton soils formed in the unconsolidated till deposits; Paxton soils formed within the consolidated deposits.

Canton soils are primarily located on the crests and side slopes of glacial upland hills and ridges. Slopes range from 0 to 35 percent. Typically, Canton soils have a three-inch thick surface layer of very dark, grayish-brown, fine sandy loam. The subsoil is dark yellowish-brown, yellowish-brown, and light olive-brown fine sandy loam. The substratum is olive-gray and light olive-gray gravelly loamy sand. Canton soils contain various degrees of slopes intermingled with areas of bare, hard, exposed bedrock. The permeability of the Canton soils is moderately rapid in the surface layer and subsoil and rapid in the substratum. Available water capacity is moderate and the soil is moderately to well-drained.

Paxton soils form on side slopes and crests of glacial till uplands and drumlins. Slopes range from 0 to 15 percent. Typically, Paxton soils have a five-inch thick surface layer of very dark, grayish-brown, fine sandy loam. The subsoil is brown and yellowish-brown fine sandy loam, and the substratum is light brownish-gray, yellowish-brown, and grayish-brown fine sandy loam. The permeability of the Paxton soils is moderate to moderately rapid in the surface layer and subsoil, and slow to very slow in the substratum. Available water capacity is moderate, and the soil is well-drained.

Within the outwash deposits, some areas are capped with windblown deposits of silt. Bridgehampton soils formed in these windblown deposits. These soils are commonly observed on glacial till uplands and outwash terraces. Slopes range from 0 to 15 percent. Typically, Bridgehampton soils have an eight-inch thick surface layer of very dark grayish-brown silt loam. The subsoil and substratum vary in coloration and texture from a dark yellowish-brown silt loam to a grayish-brown, very gravelly sand. The permeability of this soil is moderate in the surface layer and subsoil and rapid to very rapid in the substratum. The available water capacity is high and runoff is slow. Bridgehampton soils are medium to very strongly acidic.

Soils mapped within urbanized areas near the central portions of villages are variant and include Urban-land complex, Udorthents, and Merrimac urban land-complex. These soils are typically moderately well-drained to excessively-drained soils that have been disturbed by cutting or filling. The areas consist mainly of sites for buildings, paved roads, and parking lots. Additionally, hydric soils are associated with wetlands and other riparian areas adjacent to the many watercourses within the Blackstone River watershed.

Provided in Figure 2-3 is a general overview of soil types within the watershed and the appropriateness for subsurface disposal of wastewater. Several studies have concluded that failed septic systems can be a significant source of pathogens and nutrient loadings to a waterbody. The areas that rely on on-site disposal of wastewater are also shown in Figure 2-3.

2.2.3 Bedrock Geology

The bedrock formations in Rhode Island are almost completely mantled by deposits of outwash and glacial till. Bedrock and consolidated rocks within the Blackstone River watershed can be categorized into crystalline (igneous and metamorphic) and sedimentary rocks. Three distinct formations can be observed within the watershed; the Blackstone Group of metamorphic rock along the Blackstone Valley, older igneous granite rock of several ages, and Carboniferous sedimentary rock of the Narragansett Bay Group in eastern Rhode Island and pockets in north-central Rhode Island. Located in one of these pockets, much of the Woonsocket, Rhode Island area is underlain by this sedimentary rock, also known as the Bellingham Conglomerate. This sedimentary formation includes beds of gray to green sandstone, conglomerate, and phyllite. Metamorphism caused a foliation discordant to the bedding in many places, and numerous quartz veins intersect these beds.

Various types of igneous and metamorphic bedrock (granite, diorite, gabbro, schist, and gneiss) underlie areas of the watershed not underlain by sedimentary rocks of the Narragansett Bay group. The bedrock formations

are of Paleozoic and Precambrian age and include the Nipsachuck Gneiss, the Absalona porphyroblastic biotite gneiss, Scituate Granite Gneiss, Ponaganset Gneiss, Esmond Granite, and the Blackstone series. The Blackstone Series of Precambrian metamorphic rocks includes quartzite, quartz-mica schist, amphibolite, and epidosite.

2.3 Climate

There are a total of eight weather stations that contain climatological data from the Northeast Regional Climatological Center, as listed below in Table 2-1. The individual gauging stations are geographically distributed equally in the watershed. A preliminary investigation showed no significant variability in the daily total rainfall amounts at different gauging stations. There is also a complete weather record maintained at T.F. Green Airport, located in Warwick, RI. A climatological summary of the airport station for the period 1961 to 1990 is presented in Table 2-2, and Figures 2-4 and 2-5.

Annual temperature in the area can range from a mean of 28°F in January to 73°F in July. Figure 2-5 is a box-whisker plot with the mid-point being the arithmetic mean and the range being the 95% confidence interval. The mean annual precipitation is 45.6 inches. Monthly precipitation levels are fairly uniform ranging only between 3.2 and 4.4 inches. The highest monthly precipitation over the thirty year period was 12.7 inches.

Station Name Record of Daily Rainfall Barre Falls Dam, MA 1959 – present Boylston, MA 1949 - present 1949 - present Franklin, MA Milford, MA 1949 - present Northbridge, MA 1964 - present West Medway, MA 1957 - present Woonsocket, RI 1949 - present 1949 – present Worcester, MA

Table 2-1
Summary of Available Precipitation Records

2.4 Surface Water Hydrology

The USGS maintains a stream gauge on the Blackstone, which is located just upstream of the Villanova Street bridge in Woonsocket, Rhode Island. The period of record for the data summary is water years 1929 to 1999. The average annual mean flow is 779 cfs. The monthly mean flow ranges from a high of 1,511 cfs in March to a low of 309 cfs in August (Figure 2-6). Presented in Table 2-3 are the summary statistics for the Blackstone River at the Woonsocket gauge.

The USGS also maintains a stream gauge on the Branch River in Forestdale, Rhode Island, which is located approximately 400 feet downstream of Mill Dam. The Branch River is the largest tributary to the Blackstone River in Rhode Island and is impaired for pathogens and lead (see Section 2.4.3). The period of record for the data summary is water years 1940 to 1999. The average annual mean flow is 175 cfs. The monthly mean flow ranges from a high of 379 cfs in March to a low of 59.3 cfs and 59.4 cfs in July and August, respectively (see Figure 2-7). Presented in Table 2-4 are the summary statistics for the Branch River at the Forestdale gauge.

Table 2-2 Climatological Summary

Period of Record: June 1948 to July 1999 T. F. Green Airport

				Ten	<u>iperatu</u>	re (degre	es F)					
	Normals			Extremes				Normal Number of Days				
Month	Normal Max	Normal Min	Normal Avg	Record Max	Year	Record Min	Year	Max 90 and Above	Max 32 and Below	Min 32 and Below	Min 0 and Below	
JANUARY	36.1	19.3	27.7	69	1995	-13	1976	0	12	28	1	
FEBRUARY	37.9	21.1	29.5	72	1985	-7	1979	0	8	24	1	
MARCH	46.6	29.5	38	85	1998	1	1967	0	1	20	······	
APRIL	57.5	38.3	47.9	98	1976	14	1954	0	'n	6		
MAY	67.8	48	57.9	95	1996	29	1956	1	, , , , , , , , , , , , , , , , , , ,	o		
JUNE	76.9	57.3	67.1	97	1988	41	1980	2	ň	-	0	
JULY	82	63.7	72.8	102	1991	48	1988	1	<u>ŏ</u>	<u>V</u>		
AUGUST	80.6	63.2	71.5	104	1975	40	1965		<u> </u>		0	
SEPTEMBER	73.4	53.9	63.7	100	1983	32	1951	1	0			
OCTOBER	63.2	43	53.1	88	1949	20	1976	t	-		0	
NOVEMBER	52.2	35	43.6	81	1950	6	1989	n		13	<u>u</u>	
DECEMBER	40.7	24.4	32.5	77	1998	-10	1980	<u> </u>	7	25	0	
Spring	57.3	38.6	47.9	98		4		г -				
Summer	79.8	61.1	70.5	104	-	40		ļ	ļ <u></u>	26	0	
all	62.9	44	53.5	100	····	6		8	0	0	0	
Vinter	38.2	21.6	29.9	77		-13		 	0	17	0	
Annual	59.6	41.3	50.4	104	-+	-13		10	27 28	77 120	2 2	

	Precipitation (inches)												
				Number of Days									
Month	Normal Precip.	Greatest Monthly	Year	Least Monthly	Year	Greatest Daily	Year	0.01" and above	0.1" and above	1.0" and above			
JANUARY	3.88	11.66	1979	0.5	1970	2.9	1982	11	7	4			
FEBRUARY	3.61	7.2	1984	0.39	1987	2.59	1966	10	6				
MARCH	4.05	8.84	1983	0.56	1981	3.15	1987	11	7				
APRIL	4.11	12.74	1983	1.48	1966	4.3	1983	11	6	1			
MAY	3.76	8.38	1984	0.71	1964	5.15	1984	11	7	1			
JUNE	3.33	11.08	1982	0.05	1949	3.29	1998	11	6				
JULY	3.18	8.08	1976	0.32	1952	4.78	1976	9	5				
AUGUST	3.63	11.12	1955	0.71	1984	6.31	1979	9					
SEPTEMBER	3.48	7.92	1961	0.77	1959	4.71	1961	8	6	<u>]</u>			
OCTOBER	3.74	11.89	1962	0.4	1994	5.39	1962	9	5				
NOVEMBER	4.43	11.01	1983	0.81	1976	3.52	1983	11	6				
DECEMBER	4.38	10.75	1969	0.58	1955	3.47	1969			1			
Spring	11.92	12.74		0.56		5.15		33					
Summer	10.14	11.12		0.05	·	6,31		***************************************	20	3			
Fall	11.65	11.89		0.4		5.39		29	17	3			
Winter	11.87	11.66		0.39	-			28	18	3			
Annual	45.58	12.74		0.05	\vdash	3.47 6.31		21 111	13 68	<u>2</u>			

	Snowfall (inches)											
		Extremes										
	Normal	Greatest		Greatest		Num o 0.1" and	3.0" and					
Month	Snowfall	Snowfall	Year	Daily	Year	Above	Above					
JANUARY	10.00	37.20	1996	20.8	1996	5	1					
FEBRUARY	10.80	30.90	1962	18.3	1961	6	1					
MARCH	6.00	31.60	1956	14.7	1956	3	† <u>-</u>					
APRIL	0.70	7.60	1982	7.3	1982	1	† -					
MAY	0.20	7.00	1977	6.7	1977	0	0					
JUNE	0.00	0.00	1999	0	1999	0	0					
JULY	0.00	0.00	1998	0	1999	0	<u>-</u>					
AUGUST	0.00	0.00	1998	0	1998	0	0					
SEPTEMBER	0.00	0.00	1998	0	1998	0	0					
OCTOBER	0.20	2.50	1979	2.5	1979	0	0					
NOVEMBER	1.20	8.00	1989	8	1989	1	Ö					
DECEMBER												
Spring	6.90	31.60		14.7		4	1					
Summer	0.00	0.00		0		0	0					
Fall	1.40	8.037.2	***************************************	8	f	1	0					
Winter	20.80	37.20		20,8		11	2					
Annual	29.10			20,8		16	3					

Figure 2-4

Air Temperature

Period of Record: June 1948 to July 1999

Figure 2-5 **Annual Precipitation Trend**

Figure 2-6
Blackstone River at Woonsocket
Monthly Mean Flow Data (USGS)
(for Water Years 1929 to 1999)

Figure 2-7
Branch River at Forestdale
Monthly Mean Flow Data (USGS)
(for Water Years 1940 to 1999)

Table 2-3
Flow Data for the Blackstone River at Woonsocket, RI
(water years 1929 -1999)

Summary Statistics	Drainage Area & Flow Rates
Drainage area	416 sq.mi
Average Annual Mean	779 cfs = 503 MGD
Maximum Annual Mean	1,162 cfs = 751 MGD
Minimum Annual Mean	345 cfs = 223 MGD
10% exceeds	1,680 cfs = 1,086 MGD
50% exceeds	538 cfs = 348 MGD
90% exceeds	162 cfs = 105 MGD
7Q10	101.9 cfs = 65.9 MGD

Sources: Flow Data - USGS

7Q10 Flow - RIDEM, Office of Water Resources

Table 2-4
Flow Data for the Branch River at Forestdale, RI
(for water years 1940 -1999)

Summary Statistics	Drainage Area & Flow Rates
Drainage area	91.2 sq.mi
Average Annual Mean	175 cfs = 113 MGD
Maximum Annual Mean	261 cfs = 169 MGD
Minimum Annual Mean	76.5 cfs = 49.4 MGD
10% exceeds	379 cfs = 245 MGD
50% exceeds	122 cfs = 79 MGD
90% exceeds	26 cfs = 16.8 MGD
7Q10	13.4 cfs = 8.7 MGD

Sources: Flow Data - USGS

7Q10 Flow - RIDEM, Office of Water Resources

2.4.1. Tributaries

The portion of the Blackstone River watershed within Rhode Island has numerous tributaries and perennial streams, which flow into the main stem of the Blackstone River. Provided below is a brief description of the larger tributaries from north to south (see Figure 2-8 for flow schematic of main stem of the Blackstone River):

- *Branch River*: The largest tributary within Rhode Island is the Branch River. The Branch River has a drainage area of approximately 91.2 mi², which represents approximately 20% of the drainage area of the Blackstone River. The Branch River flows west to east and meets the Blackstone River in North Smithfield near the State line. The following are primary tributaries to the Branch River: Clear River, Chepachet River, Pascoag River, and Tarklin Brook.
- Cherry Brook: The headwaters of Cherry Brook is Cedar Swamp Brook, which is a large wetland system located in North Smithfield at a low point between Woonsocket Hill and Whortleberry Hill. The brook flows north into the City of Woonsocket and enters the Blackstone River adjacent to the Providence and Worcester (P&W) railroad easement.

The Louis Berger Group, Inc.

Rhode Island DEM

BLACKSTONE RIVER FLOW SCHEMATIC

- *Mill River*: Mill River is one of the waterbodies specifically identified for TMDL development. It has a drainage area of approximately 35 mi², which represents approximately 8% of the drainage area of the Blackstone River. A description of the tributary is provided in Section 2.1.
- **Peters River:** Peters River is one of the waterbodies specifically identified for TMDL development. It has a smaller drainage area than the Mill River. A description of the tributary is provided in Section 2.1.
- Crook Fall Brook: Crook Fall Brook flows between three surface reservoirs used for drinking water (i.e., Woonsocket Reservoirs No. 3, 2, and 1). These reservoirs serve as the water supply for the City of Woonsocket. The Woonsocket Water Treatment Plant and subsequent effluent discharge is located at the confluence with the main stem.
- Mussey Brook: Mussey Brook flows west to east and drains Meaders Pond and Rochambeau Pond.
- West Sneech Brook: West Sneech Brook is a small tributary that flows north to south parallel to Mendon Road (Route 122). The brook enters the main stem approximately 0.5 miles north of the I-295 bridge crossing.
- Scott Brook: The headwaters of Scott Brook is a wetlands system north of I-295. The brook flows along Scott Road to a low point prior to Mendon Road, where the stream is culverted to the Blackstone River.
- *Monastery Brook:* Monastery Brook flows from Angel Road and crosses Mendon Road. The brook discharges to the Blackstone River at the backwaters of Pratt Dam.
- Abbot Run Brook: The headwaters of Abbot Run Brook is in Wrentham, MA. The brook flows southward meandering along the state line between North Attleboro and Cumberland. The brook enters the Blackstone River downstream of the impoundment at Happy Hollow Pond adjacent to the P&W rail crossing. Sneech Pond, Diamond Hill Reservoir, Arnold Mills Reservoir, Abbot Run, and Happy Hollow Reservoir are components of the City of Pawtucket and Town of Cumberland water supply system.

2.4.2. Impoundments

There are a total of 102 impoundments located within the Blackstone River Watershed. The impoundments were constructed over the years to provide water supply for drinking and industrial uses. There are also several impoundments that were constructed to generate hydroelectric power.

There are a total of nine impoundments on the main stem of the Blackstone River within the Rhode Island segment. Provided in Table 2-5 is a summary of data on all the impoundments within the RI portion of the watershed (i.e., drainage area, crest height, etc.). The impoundments on the main stem and its potential impact on river flow are discussed below (see Figure 2-8 for schematic of main stem). This discussion includes the Tupperware and Saranac Dams in Massachusetts; the two dams are close to the RI border.

• Tupperware Dam Blackstone, MA (Flow Control): Although located in Massachusetts, Tupperware dam is included in the study area due to its impact on flow in the River. The FERC license indicates the dam is operated as a run-of-the river. However, RIDEM has questioned its impact on potential fluctuations in flow levels. Flow studies have concluded that the dam has created significant fluctuations in river flow in the past. The hydropower facility is licensed to divert flow to operate a 2,000 KW power plant. Flow is diverted to a head pond with penstock intake via a 1,100-ft canal. Previous operational procedures of the dam diverted flow to the point of no-flow conditions from the Blackstone Gorge to the confluence with Branch River. RIDEM and current operators of the dam have negotiated terms to maintain a more consistent flow in the gorge.

Table 2-5

Dams and Impoundments in the Blackstone River Watershed in Rhode Island
Source: RI Department of Environmental Management

DAM NAME	RIVER	NEAR-TOWN	DAM-TYPE.	PURPOSE	EAR CONSTRUCTED	(feet)	(feet) THĐỊΞΗ MA	(cts) WCJT. FLOW	AX. STORAGE	ORMAL STORAGE	AARIAGE AREA q. mile)	эдүг жиер	QAAZ#	37
ARNOLD MILL POND	ABBOTT RUN	CUMBERLAND	EARTH, MASONRY	OTHER		J -	ď	A .	M S	N :	s)			ıs
HAPPY HOLLOW POND	ABBOTT RUN	CENTRAL FALLS	MASONRY.EARTH	MIN WTD			0 ;	040	13	0.	18 LOCAL GOV		1	SMALL
HOWARD POND	ABBOTT RUN	CUMBERLAND			1882	L	12	2,000	360	220	28 LOCAL GOV.		SIGNIF. S	SMALL
PAWTUCKET RESERVOIR	ABBOTT RUN	CUMBERI AND	FADTH COAVITY CONCOUNTS		1883		4		9	6	20 PRIVATE	re Low		SMALL
RAWSON POND	ABBOTT RUN	CHABEDI AND	A SOCIOLITY CONCRETE	MUN WTR	1928	2,900	33	6,700	5,300	5,125	18 LOCAL GOV	GOV. HIGH		MEDIUM
ROBIN HOLLOW POND	ABBOTT RUN	CENTRAL EALL	MASONKY, GRAVITY, EARTH	OTHER, RECREATION	1885	200	6	1,720	154	128	19 PRIVATE			SMALL
CRANBERRY BOG. VERIFY	ABBOTT RIIN . TP	CEININGE FALES	EAR! H, MASONRY	WTR SUPPLY	1937	200	13	1,680	240	208	27 PRIVATE			SMALL
THORNLEY FARM POND	ABBOTT RUN . TR	CIMBEDIANO					9	-	25	18	LOCAL GOV.			SMALL
LAPIERRE FARM POND	AI DRICH BROOK		***************************************	***************************************	1948	250	7	30	2	1	0 PRIVATE			SMALL
ALBION	8/4/KTONE BUZED	םסעצורר אוררב	EAKIH	FIRE/STOCK	1962		12	122	6	9	0 PRIVATE			SMALL
ASHTON	at A Cyclosic business	CINCOLIN	MASONRY	OTHER	1850	60	181	38,000	347	235	411 PRIVATE			SMALI
CENTRAL FALLS	PLACASIONE RIVER	CUMBERLAND	MASONRY, EARTH, ARCH	OTHER	1885	318	18	19,800	200	112	421 PRIVATE		T	CMAL
CHICATOR PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS OF THE PROPERTY AND ADDRESS OF THE PROPERTY ADDRESS	BLACKSTONE RIVER	CENTRAL FALLS	ROCKFILL, GRAVITY, EARTH	HYDROELEC	1850	220	:	17.300	160	ğ	473 PDIVATE		Т	1
ELLY. WEBBING MILL (POWIUCKET)	BLACKSTONE RIVER	CENTRAL FALLS/PAW					2	himming				יופוסו		SMALL
MANVILLE	BLACKSTONE RIVER	CUMBERLAND	MASONRY	OTHER	1060	Cuc		-	+			- 1	- 1	
PAWTUCKET LOWER (Main Street)	BLACKSTONE RIVER	PAWTUCKET		HYDROEI EC	0001	200		14,000	349	254	408 LOCAL GOV.	2	- ; -	SMALL
PAWTUCKET UPPER (Slater MIII)	BLACKSTONE RIVER	PAWTUCKET	F MASONDY		060	3		18,000	20	12	474 PRIVATE	E LOW		SMALL
РКАП ДАМ	BLACKSTONE RIVER	CUMBERLAND/LINC		7 J L	1800	8	15	20,700	9	45	474 PRIVATE	E SIGNIF.		SMALL
VALLEY FALLS POND	BLACKSTONE RIVER	CENTRAL FALLS				+	1	-		-	LOCAL GOV	SOV. SIGNIF.	_	
WOONSOCKET FALLS	BLACKSTONE RIVER	WOONSOCKET		HYDROELEC	1853	220	22 1	19,100	828	480	445 PRIVATE			SMALL
FORESTDALE POND	BRANCH RIVER	NORTH SMITHERER	MANONIN	LOOD CTRL, HYDROELEC.	1960	268	_ :	18,900	200	90	369 LOCAL GOV		_	SMALL
NASONVILLE POND	BRANCH RIVER	NORTH SMITHELE D	MASOINT, ROCKFILL GRAVITY	OTHER	1883	137	17	5,000	280	160	96 PRIVATE	SIGNIF.	- 1	SMALL
OAKLAND POND	BRANCH RIVER				1883	140	14	3,168	35	20	75 PRIVATE	۸ د		SMALL
SLATERSVILLE RESERVOIR LOWER	BRANCH RIVER		T	OTHER	1850	330	11	4,280	196	114	68 PRIVATE			SMALL
SLATERSVILLE RESERVOIR MIDDI F	RRANCH DIVED		E	OTHER	1886	320	15	8,550	328	208	94 PRIVATE	NO.		SMALL
SI ATERSVII F DESEDVOID			Ī	OTHER, RECREATION	1886	400	20	7,500 1,	330	740	94 PRIVATE		•	MFDIIM
מנים ביסליורבר הבטבחיסות סיידים	BRANCH RIVER	HFIELD	MASONRY, GRAVITY, EARTH	OTHER	1886	256	-	(")	_	1 970	SO DDIVATE		3	
BURLINGAME RESERVOIR LOWER	BRANDY BROOK	GLOCESTER		ОТНЕК	_	250	<u>. </u>		l			T	-;	MEDIO ME
BURLINGAME RESERVOIR UPPER	BRANDY BROOK		EARTH, ROCKFILL, CONCRETE	WILDLIFE	200	2 2	1	2	7	7	ZSIAIE	MOT.	_	LARGE
PASCOAG RESERVOIR UPPER	BRANDY BROOK		-	RECREATION	2 0	2 2			1	228	ZSTATE			SMALL
SWEET'S MILL POND	BRANDY BROOK			OTHER	3	7	,,	1,020	000,	000,	8 PRIVATE		T	MEDIUM
SERVOIR	BURNT SWAMP BROOK	_	CONCRETE	MIN WTD	<u> </u>	2	L			-	STATE	T		SMALL
DUHALLOW POND	BURNT SWAMP BROOK		1		12/1	200,	╧	3,100 ##		11,000	8 LOCAL GOV			MEDIUM
KER.ANNA POND	BURNT SWAMP BROOK		FARTH CONOBETE			?	×		80		LOCAL GOV.	ov. Low	SMALL	4LL
	A			ACCREATION TO THE PROPERTY OF	1893	140	10	30	24	18	4 LOCAL GOV. LOW	ov. Low	SMALL	4 LL

Page 1

Table 2-5

Dams and Impoundments in the Blackstone River Watershed in Rhode Island
Source: RI Department of Environmental Management

DAM NAME	RIVER	NEAR-TOWN	DAM-TYPE	PURPOSE	YEAR CONSTRUCTED	CENGTH (feet)	(1991) THDI3H MAC	MAX. FLOW (cts)	MAX. STORAGE	35AROTZ JAMRON	SRAINAGE AREA	ОМИЕВ ТКРЕ	GAAZAI	371
DURFEE HILL WILDLIFE MARSH #2	САБУ ВРООК	GLOCESTER	EARTH	WILDLIFE	1965		!	55	55	45	1		wo.	SMALI
CHERRY VALLEY POND	CHEPACHET RIVER	GLOCESTER	EARTH, ROCKFILL, CONCRETE	RECREATION	1958	<u> </u>	<u> </u>	32	86	77		Ы	NO.	SMALL
GILLERAN POND	CHEPACHET RIVER	BURRILLVILLE		OTHER	1883		ī	2,298	50	16			ΓΟW	SMALL
KEECH POND	CHEPACHET RIVER	GLOCESTER	GRAVITY, EARTH	RECREATION	1952			435	870	768			row	SMALL
MAPLEVILLE POND	CHEPACHET RIVER	BURRILLVILLE	EARTH, MASONRY	IND WTR	1883			1,157	15	12	21	PRIVATE	row	SMALL
MOWRY POND	CHEPACHET RIVER	GLOCESTER	EARTH, MASONRY	OTHER	1883			1,082	42	24	12	PRIVATE	MOT	SMALL
SMITH + SAYLES RESERVOIR	CHEPACHET RIVER	GLOCESTER	MASONRY, GRAVITY, EARTH	RECREATION	1865	980		785	1,450	875			Low	MEDIUM
STEERE'S POND LOWER	CHEPACHET RIVER	GLOCESTER	EARTH, MASONRY	OTHER		180		1,074	24	12	-	-	FOW	SMALL
VALENTINE MILL POND	CHEPACHET RIVER	GLOCESTER	MASONRY	OTHER									LOW	
WRIGHT, T. FARM POND	CHEPACHET RIVER . TR	GLOCESTER	EARTH	FIRE/STOCK	1973	300	11	65	œ	9	o	O PRIVATE	Mo/l	SMALL
TODD'S POND	CHERRY BROOK	NORTH SMITHFIELD	EARTH, MASONRY	OTHER	_	285	10	143	75	41	7		row	SMALL
GREEN SHODDY MILL POND	CLEAR RIVER	BURRILLVILLE			1883	160	15	1,363	æ	ī.	13		MOT	SMALL
PREMIER MILL POND	CLEAR RIVER	BURRILLVILLE	MASONRY, EARTH	ОТНЕЯ	1883	450	10	1,265	10	6	14		row	SMALL
PRENDERGAST MILL POND	CLEAR RIVER	BURRILLVILLE	CONCRETE, EARTH	ОТНЕК	1928	110	14	1,174	58	19	13		row	SMALL
WALLUM LAKE	CLEAR RIVER	BURRILLVILLE	MASONRY, GRAVITY, EARTH	RECREATION	1866	8	7	80	#####	000,6	2		row	MEDICM
WILSON RESERVOIR	CLEAR RIVER	BURRILLVILLE	GRAVITY, EARTH	RECREATION, OTHER	1866	480	21	395	840	590	13	RIVATE	LOW	MEDIUM
BARKER FARM POND	CLEAR RIVER - TR	BURRILLVILLE			1957	089	10	168	2	m	0	RIVATE	NON	SMALL
LAFERRIER FARM POND	CLEAR RIVER . TR	BURRILLVILLE			1971	210	13	56	Ж	2	0		Low	SMALL
ROSS POND	CLEAR RIVER . TR	BURRILLVILLE	EARTH, CONCRETE	RECREATION		150	9	40	12	10	_		row	SMALL
WOONSOCKET RESERVOIR #1	CROOKFALL BROOK	NORTH SMITHFIELD	EARTH, CONCRETE, MASONRY	MUN WTR	1883	240	41	2,200	145	105	8	>.	Ŀ.	MEDIUM
WOONSOCKET RESERVOIR #3	CROOKFALL BROOK	- 1	MASONRY, GRAVITY, EARTH	MUN WTR	1895	1,500	27		4,740	3,950	3		$\overline{}$	MEDIUM
PRATT POND	DAWLEY BROOK	\neg		RECREATION		156	00	15	18	15	0			SMALL
HANDY POND LOWER	HANDY BROOK			OTHER		100	12	06	10	ω,	-	ш		SMALL
HANDY POND UPPER	HANDY BROOK	LINCOLN	EARTH, CONCRETE	IND WTR		300	12	75	20	45				SMALL
SPRING LAKE	HERRING BROOK	BURRILLVILLE		RECREATION	1885	55	80	56	840	069	7			SMALL
CASS PARK POND	RONMINE BROOK	WOONSOCKET	EARTH, CONCRETE	RECREATION	1946	400	œ	250	α	9		5		SMALL
SYLVESTER POND	RONMINE BROOK	WOONSOCKET		OTHER	1922	256	24	113	81	0,2	8	Ι.		SMALL
KEACH POND	KEACH BROOK	EAST PUTNAM, CN	EARTH, ROCKFILL, MASONRY	RECREATION		100	2	950	76	61	m			SMALL
BUCK HILL POND	LEESON BROOK	Ì	GRAVITY, EARTH	RECREATION	1962	200	13	178	110	96	1.8			SMALL
SHIELDS FARM POND	LELAND BROOK · TR	BURRILLVILLE			1966		12	64	6	7	0	ш		SMALL
WILBUR POND	MARY BROWN BROOK	- International	GRAVITY, EARTH	RECREATION	1854	150	7	50	100	56	1 1			SMALL
HARRIS POND DAM	MILL RIVER	WOONSOCKET	EARTH, GRAVITY, CONCRETE MUN WTR	MUN WTR	1969	1969 1,018	38	8,500 2,850		1,050	32 1			MEDIUM

Page 2

Table 2-5

Dams and Impoundments in the Blackstone River Watershed in Rhode Island

Source: RI Department of Environmental Management

DAM NAME	RIVER	NEAR-TOWN	DAM-TYPE	PURPOSE	дэтэлятемоэ яазх	(1991) HTDNAT MAG	DAM HEIGHT (feet)	(cls) WAX. FLOW	ABAROT2 .XAM	ADAROTE JAMRON	DANINAGE AREA (sq. mile)	ОМИЕВ ТҮРЕ	дяахан	3ZIS
SOCIAL PARK POND LOWER	MILL RIVER	WOONSOCKET	EARTH, CONCRETE	RECREATION	1961	200	11	9	48	40	0	LOCAL GOV.	NO7	SMALL
MISCOE LAKE	MISCOE BROOK	CUMBERLAND	ROCKFILL, EARTH	ОТНЕЯ	1937	75	12	δ	244	226	<u>е</u>		MO_	SMALL
CAMP ALDERSGATE POND	MOSQUITOHAWK BROOK	GLOCESTER	GRAVITY, EARTH	RECREATION	1973		10	9	5	4	1	1 PRIVATE	NO.	SMALL
LAKE ALDERSGATE	MOSQUITOHAWK BROOK . TR GLOCESTER	RICOCESTER	EARTH	RECREATION		200	9	35	8	99	0	O PRIVATE	NO.	SMALL
MEADER POND	MUSSEY BROOK	LINCOLN	ROCKFILL, EARTH, CONCRETE	OTHER		8	2	9	12	10	Ö	O PRIVATE	ΜO	SMALL
MEMORIAL PARK	MUSSEY BROOK	LINCOLN	- 1	RECREATION		700	6	126	10	6	0	Š	NO.	SMALL
MOWRY-PAINE POND	PAINE BROOK	GLOCESTER	EARTH, MASONRY	RECREATION		250	12	2,612	42	50	2	2 PRIVATE	ΛOM	SMALL
AKELA POND	PASCOAG RIVER	BURRILLVILLE	STONE, EARTH	отнек	1883	20	10	329	9	c)			LOW	SMALL
AMERICAN MILL POND	PASCOAG RIVER	BURRILLVILLE	STONE, EARTH	ОТНЕК	1883	190	14	292	æ	9		9 PRIVATE	Low	SMALL
GRANITEVILLE POND LOWER	PASCOAG RIVER	BURRILLVILLE	epitepitepipitetepitetetetitetetetetetet		-	700	4	Ī			29 F	29 PRIVATE	MOJ	SMALL
HARRISVILLE POND	PASCOAG RIVER	BURRILLVILLE	ROCKFILL, GRAVITY, EARTH	OTHER, RECREATION	1854	550	19	3,200	100	99	43 F	43 PRIVATE	NO.	SMALL
UNION MILL POND	PASCOAG RIVER	BURRILLVILLE	EARTH, MASONRY	ОТНЕК	1883	290	7	425	2	45	6	9 PRIVATE	SIGNIF	SMALL
KNIBB FARM POND	PASCOAG RIVER . TR	BURRILLVILLE	***************************************		1950	200	00	14	7	7	-	PRIVATE	row	SMALL
PECKHAM POND #1	PECKHAM BROOK	GLOCESTER	EARTH, MASONRY	отнек		280	9	15	01	9	ь.	PRIVATE	LOW	SMALL
PECKHAM POND #2	РЕСКНАМ ВКООК	GLOCESTER	EARTH, MASONRY	ОТНЕК		250	4		28	16	-	PRIVATE	Low	SMALL
PECKHAM POND #3	PECKHAM BROOK	GLOCESTER	EARTH, MASONRY	отнек		***************************************	14	8	8	12		PRIVATE	LOW	SMALL
PECKHAM POND #4	PECKHAM BROOK	GLOCESTER	EARTH, MASONRY	отнея	1800	100	5	-	4	2	-	PRIVATE	LOW	SMALL
PECKHAM POND #5	PECKHAM BROOK TR	GLOCESTER					2		***************************************	-	а.		LOW	
COOMER LAKE	PEEPTOAD BROOK	GLOCESTER	ROCKFILL, EARTH	RECREATION, WTR SUPPLY	1885	330	6	800	510	383	3	LOCAL GOV.	LOW	SMALL
SANDY BROOK POND #1	PEEPTOAD BROOK	GLOCESTER	EARTH, MASONRY	ОТНЕВ		230	7		30	25	m	PRIVATE	LOW	SMALL
SANDY BROOK POND #2	PEEPTOAD BROOK	GLOCESTER	destructive de la la constitución de la constitució				9		Э	2	4	1	LOW	
JENCKESVILLE POND LOWER	PETERS RIVER	WOONSOCKET	CONCRETE EARTH	ОТНЕЯ	1905	105	0	930	4	ю	11 P	11 PRIVATE	row	SMALL
JENKESVILLE POND UPPER	PETERS RIVER	WOONSOCKET	EARTH, CONCRETE	OTHER		8	7	-	6	7	11	11 PRIVATE	LOW	SMALL
LAKE BEL AIR	RANKIN BROOK	NORTH SMITHFIELD	EARTH, MASONRY	RECREATION		180	7	15	23	8	-1	1 PRIVATE	NO.	SMALL
WINSOR FARM POND	RANKIN BROOK	NORTH SMITHFIELD	tipetestelepitettelepitet	WILDLIFE	1957	160	9	173	S.	4	0	O PRIVATE	MO	SMALL
LITTLE ROUNDTOP POND	ROUNDTOP BROOK	BURRILLVILLE	EARTH	WILDLIFE	1965	100	9	27	20	18	0	O STATE	MON	SMALL
ROUND TOP PONDM	ROUNDTOP BROOK	BURRILLVILLE	GRAVITY, EARTH	RECREATION	1905	140	21	2,076	9	20	6	STATE	row	SMALL
O'REILLY POND	SAUNDERS BROOK . TR	GLOCESTER	EARTH	OTHER		300	4		7	S	4	1	LOW	SMALL
FACTORY MUTUAL RESEARCH CTR LOWESHADY OAK BROOK	SHADY OAK BROOK	GLOCESTER	EARTH	OTHER	1948	300	24	800	125	75	2 P	PRIVATE	LOW	SMALL
FACTORY MUTUAL RESEARCH CTR UPPESHADY OAK BROOK	SHADY OAK BROOK	GLOCESTER	EARTH, MASONRY	OTHER	1972	350	19	1,115	10	9	2 P	2 PRIVATE	LOW	SMALL
DAVID KING FARM POND	SPRING GROVE BROOK		EARTH	FIRE/STOCK,WILDLIFE	1974	500	13	77	22	15	0	O PRIVATE	LOW	SMALL
MOWER POND	SPRING GROVE BROOK	GLOCESTER	GRAVITY, EARTH	RECREATION	1885	300	14	63	265	234	11	1 PRIVATE	LOW	SMALL

Page 3

Table 2-5

Dams and Impoundments in the Blackstone River Watershed in Rhode Island
Source: RI Department of Environmental Management

DAM NAME	RIVER	NEAR-TOWN	DAM-TYPE	PURPOSE	EAR CONSTRUCTED	(1991) HT2N3J MAG	(1991) THOISH MAC	(cts) WOJ7 .XAI	35A90T2 .XAI	39AROT2 JAMRO	ASHAGE AREA .p. mile) Service Area Area Area Area Area Area Area Are		дяаха	3 ZI
OLD MILL POND	SPRING GROVE BROOK	GLOCESTER	EARTH, CONCRETE	OTHER		35	2	N C	4	7	:¥ -	T	T	s
SNAKESKIN POND	SPRING GROVE BROOK	GLOCESTER	EARTH, MASONRY	OTHER		8	00	184	35	, 60	PRIVATE	20%		SMALL
DAVIS FARM POND	SPRING GROVE BROOK . TR GLOCESTER	GLOCESTER	EARTH	FIRE/STOCK	1951	390	10	52		-	OPRIVATE			SMALL
NEW POND	SPRING GROVE BROOK . TR GLOCESTER	GLOCESTER	EARTH	OTHER		450	80	. 35	16	9	PRIVATE			SMALI
SHINGLE MILL POND UPPER	STINGO BROOK . TR	GLOCESTER	EARTH, MASONRY	OTHER		150	œ	85	32	15	2 PRIVATE			SMALL
SPRING GROVE POND	SUCKER BROOK	GLOCESTER	EARTH	OTHER							3TAVIA9			CAAALI
STEERE'S SAWMILL POND	SUCKER BROOK	GLOCESTER	EARTH, ROCKFILL	ОТНЕЯ	1822	9	12	150	104	30	A PRIVATE			- 145
SUCKER BROOK BRIDGE POND	SUCKER BROOK	GLOCESTER	EARTH, CONCRETE	OTHER		Ľ	13	242	7.	σ	TAVIDA			17070
SUCKER POND	SUCKER BROOK	BURRILLVILLE	GRAVITY, EARTH	OTHER	1883		13	117	05.5	220	774/100			SIMPLE
NICHOLS POND	TARKILN BROOK	NORTH SMITHFIELD	GRAVITY, EARTH	RECREATION	1885	L	0	560	2 2	7.7	7 001//07			SAAA
TARKILN MILL POND	TARKILN BROOK	NORTH SMITHFIELD			1882			2 923	, ¥	, 4	7 V V O			SIMPLE
TARKILN POND	TARKILN BROOK	NORTH SMITHFIELD	GRAVITY, EARTH	RECREATION	1886	l	-	910	2 4	2 2				SWALL
CLEMENCE FARM POND	TARKILN BROOK . TR	GLOCESTER	EARTH	FIRE/STOCK			α	12	3 =	3	A LOCAL GOV			SMALL
THOMPSON POND	TARKILN BROOK . TR	GLOCESTER	EARTH	FIRE/STOCK		707) m	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2, 2,	, 6	סומאומם ט	1		SMALL
WOONSOCKET SPORTSMEN'S CLUB PON TARKILN BROOK . TR	TARKILN BROOK . TR	BURRILLVILLE	ЕАКТН	RECREATION	1954	250	00	145	12	α	TAVIAG O		I	CAAAL
OLNEY POND	THREADMILL BROOK	LINCOLN	MASONRY, GRAVITY, EARTH	RECREATION	1883	220	28	88	1.860	1 490	1 STATE			MEDITIM
STUMP HILL RESERVOIR. VERIFY	THREADMILL BROOK . TR	LINCOLN	ЕАКТН	ОТНЕЯ			10	<u>-</u> -	, LC	4	YOUR BOOK	2		2000
FORT FARM POND #1	TROUT BROOK	NORTH SMITHFIELD	EARTH	FIRE/STOCK, WILDLIFE	1963	170	=	70	2 2	23	0 10001			SMALL
O'HARA POND	TROUT BROOK	- 1	EARTH, MASONRY	OTHER	1830	170	00	48	1 2	3 ~	1 PPIVATE			SMALL
TROUT POND	TROUT POND BROOK	_	EARTH, MASONRY	FIRE/STOCK	1883	300	000	5		2 6	פדאייופפ ס			SMALL
BLACK HUT POND	UNNAMED STREAM			WILDLIFE	1968	270	1=	3 4	1 9	=	OCTATE	30		SIVIALL
. POND	UNNAMED STREAM	NORTH SMITHFIELD		RECREATION		200	4	35		7	700	Т.		SATALL
MANN POND	WINDSOR BROOK		EARTH	FIRE/STOCK	1949	250	0	17	,	-	O PRIVATE			SMALL

- Saranac Dam (aka Bridge Street Dam), Blackstone, MA (Run-of-the-River): Saranac Dam is located just downstream of the confluence of the Branch River at the State line, where the river reenters RI. The dam and associated canal and tailrace are no longer in use.
- Thundermist Dam (aka Woonsocket Falls), Woonsocket, RI (Flow Control): This dam is primarily used for flood control purposes. It is operated by the City of Woonsocket. Power generation capabilities were added later for a 1,200 KW powerhouse. The turbines operate at a flow range of 120 cfs to 1,000 cfs. Intake for the turbines is through two 8-ft diameter penstocks located approximately 60 ft upstream. Maximum flow diversion from the river, permitted by FERC, is 820 cfs. The dam is 266 ft long with a crest height of 40 ft. The maximum storage capacity of the reservoir behind the dam is 300 acre-ft. The Ocean State Power intake is located just upstream of Thundermist Dam with a permitted water withdrawal of 4 MGD. Water withdrawal is required to cease when river flow is below 7Q10 (102 cfs).
- Manville Dam, Cumberland/Lincoln, RI (Run-of-the-River): Manville Dam is 160 ft long with a crest height of 19 ft. The surface area of the reservoir is 58 acres with a storage capacity of 58 acre-ft at an elevation of 89.4 ft (NGVD). The dam is no longer used.
- Albion Dam, Cumberland/Lincoln, RI (Run-of-the-River): Albion Dam is 300 ft long with a crest height of 25 ft. The surface area of the reservoir is 55 acres with a storage capacity of 495 acre-ft. The dam was proposed for construction of a 940 KW generating facility in 1991; however, the facility was never constructed. The dam is no longer used.
- Ashton Dam, Cumberland/Lincoln, RI (Run-of-the-River): Ashton Dam is 318 ft long with a crest height of 18 ft. The maximum storage capacity of the reservoir behind the impoundment is 200 acre-ft. Ashton Dam was also proposed for use to generate hydroelectric power, but was never constructed. The dam is no longer used and is operated as run-of-the-river.
- Pratt Dam (aka Lonsdale Dam), Cumberland/Lincoln, RI (Run-of-the-River): Pratt Dam is no longer used. The RIDEM dam database had no information on the structure.
- Valley Falls Dam (aka Central Falls Dam), Cumberland/Central Falls, RI (Run-of-the-River): Valley Falls Dam has a FERC license to operate a 818 KW generating facility. The dam diverts flow to a 500-ft long and 35-ft wide headrace to two fix blade turbines. The turbines operate (on or off) at a minimum flow of 400 cfs. The dam is permitted to operate as run-of-the-river. The FERC permit requires inflow equal outflow below aquatic base flow of 238 cfs. The dam also has a low-flow bypass to operate when flows are below 7Q10 (108 cfs).
- Elizabeth Webbing Mill Dam (aka Pawtucket Dam, also Pantex Dam), Central Falls/Pawtucket, RI (Flow Control): Elizabeth Webbing Dam has a FERC license to operate a 670 KW electric generating facility. Flow is diverted to the plant to generate power. The FERC permit requires inflow to outflow below aquatic base flow of 238 cfs. The permittee is not required to provide flow over the spillway due to the tailwater depth of Slaters Mill dam located downstream.
- Slaters Mill Dam, Pawtucket, RI (Run-of-the-River): The historic dam diverts sufficient flow to turn a water wheel. The dam has a spillway height of 7 ft at a crest elevation of approximately 23 ft (NGVD).
- Main Street Dam (aka, Pawtucket Falls Dam), Pawtucket, RI (Flow Control): The Main Street Dam is the limits of tidally influenced Seekonk River and freshwater Blackstone. The dam diverts flow to the Bridge Mill Power Generating Facility, which has a capacity of 1700 KW. The dam is approximately 170 ft long with a dam height of 17 ft. The FERC license requires a minimum flow of 50 cfs over the spillway be maintained.

2.4.3. Water Quality Classification

The Blackstone River, Mill River, and Peters River have been classified as follows (Figure 2-9).

• Blackstone River:

- Class B1 from MA/RI border to CSO outfall located at the Blackstone River and Samoset Street in Central Falls. This includes Valley Falls Pond.
- Class B1{a} from CSO outfall at the Blackstone River and Samoset Street in Central Falls to Main Street Dam in Pawtucket, RI.

Mill River:

- Class B from MA/RI border to confluence with the Blackstone River (RI segment).
- Class B from North Pond to MA/RI border (MA segment).

Peters River:

- Class B from MA/RI border to confluence with the Blackstone River (RI segment).
- Class B from Curtis Pond to MA/RI border (MA segment).

The Rhode Island 2000 Draft 303(d) List of Impaired Waters cites numerous concerns in the Blackstone River and its tributaries. Presented below is a list of waterbodies identified in the RI portion of the Blackstone River watershed (Table 2-6). These impairments are relevant for this study as the individual tributaries represent point sources to the Blackstone River. Listed in Table 2-7 are Massachusetts 1998 303(d) List of Impaired Waterbodies within Blackstone River Watershed relevant for this study.

Table 2-6
State of Rhode Island 2000 303(d) List of Impaired Waterbodies
Impaired Waters within Blackstone River Watershed

Waterbody Name	Cause	Group
Branch River	Biodiversity Impacts, Pathogens, Lead	Group 2
Clear River	Biodiversity Impacts, Lead	Group 2
Slatersville Reservoir	Lead, Copper (Group 2)	Group 2, 4
	Pathogens, Phosphorus (Group 4)	
Tarklin Brook	Biodiversity Impacts	Group 5
Scott Pond	Hypoxia, Phosphorus, Excess Algal Growth	Group 2
Blackstone River	Biodiversity Impacts, Pathogens, Copper, Lead (Group 1)	Group 1, 5
	Hypoxia, Nutrients, Ammonia (Group 5)	_
Valley Falls Pond	Biodiversity Impacts, Lead, Pathogens, Nutrients, Hypoxia,	Group 1
	Excess Algal Growth	
Mill River	Lead	Group 1
Peters River	Pathogens, Copper, Lead	Group 1
Abbott Run Brook	Biodiversity Impacts (Group 2),	Group 2, 3
	Lead (Group 3)	
Long Brook	Pathogens	Group 2
Ash Swamp Brook	Pathogens	Group 2
Burnt Swamp Brook	Pathogens	Group 2
Catamint Brook	Pathogens	Group 2
Robin Hollow Pond	Total Coliform	Group 2

Table 2-7 State of Massachusetts 1998 303(d) List of Impaired Waterbodies Impaired Waters within Blackstone River Watershed

(Limited to Study Area)

Waterbody	Description	Cause of Impairment
Blackstone River	Sampling station at Millville to Rhode Island	PCBs, nutrients, pH, flow
	border	alteration, fecal coliform bacteria,
		suspended solids, turbidity
Peters River	Outlet of Curtis Pond in Bellingham to Rhode	Metals, fecal coliform bacteria
	Island border	
Mill River	Outlet of North Pond in Milford/Upton to	PCBs, metals
	confluence with Blackstone River in Woonsocket	
Harris Pond	Formed by impoundment in Mill River at	Noxious plants
	Blackstone/Woonsocket line	. 7

The Preliminary Data Report prepared by RIDEM indicates that the Blackstone River violates water quality standards for pathogens, copper, lead, and biodiversity. Valley Falls Pond violates water quality criteria for biodiversity impacts, pathogens, nutrients, hypoxia, and lead. Mill River violates criteria for lead and Peters River violates for pathogens, copper, and lead. As a result, RIDEM has given these waterbodies high priority for the development of TMDLs by placing them into Group 1.

2.4.4. Segment Classification

In accordance with the River Policy and Classification Plan, Rhode Island Rivers Council has designated segment classifications for the Blackstone River and its tributaries. Segment classifications are useful in providing input into the actual intended use of a waterbody in order to establish appropriate water quality goals. Provided below are the segment classifications established by the RI Rivers Council (Rhode Island Statewide Planning, 1998):

- Wallum Lake (Water Supply): Wallum Lake is a drinking water supply for Zambarano Hospital, but is approved for contact recreational use in Massachusetts. Hunting and hiking are supported within Buck Hill Wildlife Management Area and Douglas State Forest. Since Wallum Lake is a drinking water supply, there is a buffer zone around the Rhode Island portion of the lake; swimming and fishing are not allowed. Endangered species are documented in the eastern and southern high quality streams to the lake.
- Clear River above Wilson Reservoir (Recreational Open Space): Three quarters of a mile from Wallum Lake to a point one-half mile above Wilson Reservoir, the Clear River is the receiving water for a permitted wastewater discharge from Zambarano. This segment has limited recreational potential but is valued open space for habitat resources.
- Clear River below Wilson Reservoir (Recreational Open Space): The Clear River from Wilson Reservoir to its confluence with the Chepachet River is suitable for recreation, however is limited by low flows. In the last mile of the river, contact recreational activities are limited due to the permitted discharge from Burrillville Wastewater Treatment Facility.
- Wilson Reservoir (Recreational Open Space): Located in central Burrillville, the Wilson Reservoir is used for recreation and open space. Although suitable for swimming and boating, these recreational uses are threatened by the presence of failed or poorly functioning septic systems.

- Pascoag Reservoir (Recreational Open Space): The Pascoag Reservoir, also known as Echo Lake, is
 situated in south-central Burrillville. It is suitable for contact recreation and has two state boat ramps. The
 Pascoag River and its tributaries to its confluence with the Clear River are also valued as recreational open
 space.
- *Nipmuc River and Pond (Pristine):* The Nipmuc River and Pond are located in north central Burrillville and generally inaccessible. These pristine waterbodies are valuable open space.
- Spring Lake (Recreational Open Space): The lake is suitable for recreational swimming and boating.
- Smith Reservoir, Sayles Reservoir, and Keech Pond (Recreational Open Space): These three waterbodies are located in Glocester and are suitable for fishing, swimming, and boating. Critical habitat areas are located northeast of the Reservoir.
- Chepachet River (Recreational Open Space): The Chepachet River and its tributaries from Smith and Sayles Reservoir in Glocester to its confluence with the Clear and Branch Rivers are stocked for fishing and have open space value.
- Branch River upstream of Slaterville Reservoir (Recreational Open Space): The Branch River from its confluence with the Clear and Chepachet Rivers to the Slatersville Reservoir is suitable for fishing and swimming. It has recreational open space value, and mill villages are located along its corridor.
- Slatersville Reservoir (Recreational Open Space): Slatersville Reservoir (upper and lower) has recreational value and is designated as swimmable and fishable. However, it has a boat ramp and fishing club access. Its current condition with respect to contact recreation is marginal due to fecal coliform and metals levels that exceed State standards. The Landfill Resource and Recovery Superfund site is located near the Slatersville Reservoir.
- **Branch River downstream of Slaterville Reservoir** (Recreational Multiple Use): The Branch River from Slatersville Reservoir to its confluence with the Blackstone River at the Blackstone Gorge in the Town of North Smithfield has scenic and open space value with mill villages located along the river. It is suitable for non-contact recreation.
- Blackstone River Blackstone Gorge to State line (Recreational Open Space): The Blackstone River is suitable for non-contact recreation. White water rafting is occasionally possible in this segment. Massachusetts and Rhode Island have purchased the riverbanks on both sides of the Gorge, where a bistate park will developed.
- Blackstone River State line to Thundermist Falls, Woonsocket (Recreational Multiple Use): The Blackstone River is suitable for non-contact recreational activities. Mills with historical value are located along the river corridor. Ocean State Power, which is in Burrillville, has a water intake located just upstream of Thundermist Dam.
- Blackstone River Thundermist Falls to Manville Dam (Recreational Multiple Use): The Blackstone River is a multiple use urbanized open space with significant recreational value. Primary contact recreational activities are limited immediately downstream of the Woonsocket WWTF.
- Woonsocket Reservoirs and Crook Fall Brook (Water Supply): Woonsocket Reservoirs and Crook Fall Brook and its tributaries are components of a public water supply. The main reservoir, which is identified as Reservoir No. 3, is located in Smithfield and North Smithfield. Mill sites, historical resources, and archeological remains can be found along Crook Fall Brook.

- **Sneech Pond** (Water Supply): Sneech Pond is a public water supply for the Town of Cumberland. It is noted for its unique aquatic habitat.
- Diamond Hill Reservoir, Arnold Mills Reservoir, Abbot Run Brook, and Happy Hollow Reservoir (Water Supply): These waterbodies are components of the City of Pawtucket water supply. The water quality in Abbot Run, which flows into Massachusetts and returns to Rhode Island, is threatened due to urban development.
- Blackstone River Manville Dam to Valley Falls Marsh (Recreational Open Space): The Blackstone River is classified as non-contact recreation. There are historic mills between Manville and Valley Falls. This river segment includes the Blackstone River State Park, as well as other local parks that provide open space.
- Valley Falls Marsh (Recreational Open Space): Valley Falls Marsh, identified as an important wetland
 system in Rhode Island, provides open space and habitat in a relatively urbanized setting. Located north of
 the City of Central Falls in the Towns of Lincoln and Cumberland, it is the largest freshwater wetland
 system in northern Rhode Island. From the Blackstone River, there is boat access to the marsh for fishing.
- Blackstone River Valley Falls Marsh to Main Street Bridge, Pawtucket (Recreational Open Space): The Blackstone River is classified for multiple use in an urbanized open space. In addition to its historic value, this segment provides the setting for local parks, as well as the Slater Mill.

2.5 Groundwater Hydrology

2.5.1 Aquifers

Within the Blackstone River watershed, groundwater can be found within three distinct hydraulically-connected aquifers: bedrock, till, and stratified glacial outwash and drift deposits. Groundwater supplies are contained below the land surface in interstitial spaces within the bedrock. Interstices can range in size from minute pores in clay to expansive solution cavities in limestone. However, the largest groundwater supplies within the Blackstone River watershed are in the stratified glacial drift and outwash deposits of sand and gravel. Large quantities of water may be obtained from these deposits wherever they lie below the water table. Due to the large thickness of the outwash deposits, one of the best sources for groundwater are the pre-glacial river channels. Outwash deposits commonly exceed 200 feet thick in these channels. Municipal and industrial wells in these deposits commonly yield between 10 and 1,000 gpm (gallons per minute).

Because the groundwater supply is largely dependent upon recharge from the river, the quality of the water recharge is of great importance. Additionally, water supply is provided to some extent through wells driven into bedrock. The yield of bedrock-driven wells within the watershed can range from about 10 to 80 gpm.

2.5.2 Groundwater Resources

Groundwater is used extensively as a drinking water supply in the watershed. There are a total of 24 community wells and 51 non-community wells in the region. USGS has modeled the aquifer in the basin and determined the safe yield to be 12 MGD (Johnston and Dickerman, 1974). The USGS study indicated that pumping at higher rates would have a significant negative impact on stream flow hydrology. During periods of low flow, stream flow would leak into the aquifer depleting stream flow.

Provided in Figure 2-10 is a map showing groundwater classifications, well head protection areas, and areas of know groundwater contamination. Groundwater classes consist of the following (RIDEM, 1996):

- GAA: Groundwater designated to be suitable for public or private drinking water use without treatment. These areas are applicable to wellhead protection areas and recharge areas for groundwater aquifers used for public water supply.
- GA: Groundwater designated to be suitable for public or private drinking water use without treatment.
- GB: Groundwater resources designated not suitable for public or private drinking water use.
- NA: The NA designation refers to areas of non-attainment due to pollutant concentrations greater than the groundwater quality standards for the applicable classification.

2.6 Land Use

In Massachusetts, the Blackstone River watershed has an area of approximately 335 mi² with the following land uses:

- 67% forested:
- 8% urban:
- 3% lakes; and
- 22% mainly low density to average density residential/commercial developments.

The City of Worcester, located at the headwaters of the Blackstone River, represents approximately 36% of the population and 11% of the land area.

In Rhode Island, the Blackstone River watershed has an area of approximately 110 mi² with the following land uses:

- 75% rural and/or very low density residential land, and
- 25% evenly divided by urban and higher density residential developments.

The Cities of Central Falls, Woonsocket, and Pawtucket are the major developed areas in Rhode Island, containing approximately 36% of the population and 8% of land area within the watershed.

Historically, developments in the watershed had the highest density along the banks of the Blackstone River and its tributaries. In general, the Rhode Island communities are more densely developed then the Massachusetts communities. In the last few decades, formerly rural towns along the Blackstone River have started to become more suburban communities.

The Blackstone River watershed has experienced significant growth in population and housing from 1960 to the present (Tables 2-8 and 2-9). One point of interest is that the population for the MA communities increased in the 1960s, remained stagnant in the 1970s, and increased on average by 8-9% during the 1980s and 1990s. The housing data, however, show exponential growth of residential development in the region with consistent 15% growth for the period of record. The population for the communities in RI experienced considerable growth from 1960 to 2000 with the exception of Pawtucket, Central Falls, and Woonsocket. The City of Woonsocket has experienced a consistent decline in population from 1960 to 2000. Pawtucket and Central Falls has also experienced a population decline from 1960 to 1970 with a resurgence in the 1980s and 1990s. It is interesting to note that Burrillville has experienced a significant increase in population from 1960 to 1990; however, there is a population decline in the 2000 census. In general, housing growth outpaced the population growth for the watershed. This is indicative of low-density residential development which is characteristic of the majority of the communities in the watershed.

Several of the smaller communities in the watershed show consistent growth while larger cities are stagnant or decrease in size. This growth pattern is typical for the trend of suburban sprawl that has been growing since the 1960s nationally. In the 1980s, the MA communities had growth rates of 10% to 20% with several towns

Table 2-8 **Population and Housing Data**

			_			
	Land Area					
Town	(sq. miles)	1960	1970	1980	1990	2000
Population Data (No. of persons)					
Burrillville	55.6	9,119	10,087	13,164	16 220	15.50
Central Falls	1.2	19,858	18,716		16,230	15,79
Cumberland	28.8	18,792	26,605	16,995	17,637	18,92
Glocester	54.8	3,397		27,069	29,038	31,84
Lincoln	18.2		5,160	7,550	9,227	9,94
North Smithfield	24.0	13,551	16,182	16,949	18,045	20,89
Pawtucket		7,632	9,349	9,972	10,497	10,61
Smithfield	8.7	81,001	76,984	71,204	72,644	72,95
Woonsocket	26.6	9,442	13,468	16,886	19,163	20,61
WOOIISOCKEL	7.7	47,080	46,820	45,914	43,877	43,22
Population Density	Data (No. of perso	ons per squa	re mile)			
Burrillville	55.6	164	181	237	292:	28
Central Falls	1.2	16,548	15,597	14,163	14,698	15,77
Cumberland	28.8	653	924	940	1,008	1,10
Glocester	54.8	62	94	138	168	
Lincoln	18.2	745	889	931	991	18
North Smithfield	24.0	318:	390;	416		1,14
Pawtucket	8.7	9,310	8,849		437	44
Smithfield	26.6	355	506	8,184;	8,350	8,38
Woonsocket	7.7	6,114	6,081	635 5,963	720	77.
		0,111	0,001;	3,903;	5,698	5,61
Housing Data (No.						
Burrillville	55.6	3,216	3,168	4,602	5,751	5,82
Central Falls	1.2	7,249	6,847	7,446	7,337	7,27
Cumberland	28.8	5,697	7,851	9,152	11,217	12,57
Glocester	54.8	1,743	1,685	2,829	3,460	3,780
Lincoln	18.2	4,283	5,215	6,348	7,281	8,508
North Smithfield	24.0	2,285	2,806	3,526	3,835	4,070
Pawtucket	8.7	28,130	27,864	29,768	31,615	31,819
Smithfield	26.6	2,763	3,835	5,117	6,308	7,396
Voonsocket	7.7	16,269	16,489	18,354	18.739	18,757
Housing Density Da	ta (No of dwalling	S DON SQUENO				
Burrillville	55.6	s per square 58	<i>mile)</i> 57:	83:	1021	100
entral Falls	1.2	6,041	5,706		103	105
Cumberland	28.8;	198:		6,205	6,114	6,058
locester	54.8		273:	318	389	437
incoln	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	32;	31:	52:	63	69
North Smithfield	18.2	235	287	349	400	467
	24.0	95	117	147	160	170
awtucket	8.7	3,233	3,203	3,422	3,634	3,657
mithfield	26.6	104	144	192	237:	278
Voonsocket	7.7	2,113	2,141	2,384	2,434	2,436

Source: RI Statewide Planning

Table 2-9 **Population and Housing Growth**

Town	1960 to 1970	1970 to 1980	1980 to 1990	1990 to 2000
	1 25 00 00 15 7 0	15.0 to 1500	1500 to 1550	1990 to 2000
Population Growth				
Burrillville	10.6%	30.5%	23.3%	-2.7%
Central Falls	-5.8%	-9.2%	3.8%	7.3%
Cumberland	41.6%	1.7%	7.3%	9.6%
Glocester	51.9%	46.3%	22.2%	7.8%
Lincoln	19.4%	4.7%	6.5%	15.8%
North Smithfield	22.5%	6.7%	5.3%	1.2%
Pawtucket	-5.0%	-7.5%	2.0%	0.4%
Smithfield	42.6%	25.4%	13.5%	7.6%
Woonsocket	-0.6%	-1.9%	-4.4%	-1.5%
Housing Growth		·		
Burrillville	-1.5%	45.3%	25.0%	1.2%
Central Falls	-5.5%	8.7%	-1.5%	-0.9%
Cumberland	37.8%	16.6%	22.6%	12.1%
Glocester	-3.3%	67.9%	22.3%	9.4%
Lincoln	21.8%	21.7%	14.7%	16.9%
North Smithfield	22.8%	25.7%	8.8%	6.1%
Pawtucket	-0.9%	6.8%	6.2%	0.6%
Smithfield	38.8%	33.4%	23.3%	17.2%
Woonsocket	1.4%	11.3%	2.1%	0.1%

Source: RI Statewide Planning

experiencing 20-30% growth, including West Boylston, Grafton, Upton, Hopkinton, Douglas, Uxbridge, Mendon, Hopedale, Franklin, Wrentham, Plainville, North Attleboro, Blackstone, and Millville.

Water use within the watershed can also be used as an indicator of growth and potential impact to streamflow hydrology. The USGS collects various water-use data on a watershed basis for the United States. The data were only available for 1985 and 1995. According to the USGS, there was a 23% increase in population using groundwater as a drinking water supply in the Blackstone River watershed.

Provided below in Table 2-10 is a detailed summary of land use within the RI portion of the watershed. This information is also presented graphically in Figures 2-11A and 2-11B.

Table 2-10 **Summary of Land Use**

Description	Area (acres)	% of Area
High Density Residential (<1/8 acre lots)	2,001	2.2%
Medium High Density Residential (1/4 to 1/8 acre lots)	5,522	6.2%
Medium Density Residential (1 to ¼ acre lots)	7,533	8.4%
Medium Low Density Residential (1 to 2 acre lots)	1,040	1.2%
Low Density Residential (>2 acre lots)	936	1.0%
Forest	46,474	52.0%
Airports (and associated facilities)	83	0.1%
Commercial/Industrial Mixed	2,887	3.2%
Agriculture	4,026	4.5%
Developed Recreation (all recreation)	811	0.9%
Transitional Areas / Vacant Land / Brushland	1,476	1.7%
Institutional (schools, hospitals, churches, etc.) / Cemeteries	1,117	1.2%
Mines, Quarries and Gravel Pits	800	0.9%
Waste Disposal (landfills, junkyards, etc.)	363	0.4%
Water and Sewage Treatment	56	0.1%
Other Transportation (terminals, docks, etc.)	212	0.2%
Power Lines (100 ft or more width)	780	0.9%
Roads (divided highways >200 ft plus related facilities)	749	0.8%
Water	3,703	4.1%
Wetland (not to be classified)	8,832	9.9%
Total	89,401	100%

Source: Rhode Island Statewide Planning Program, 1999

2.7 Natural Resources and Protected Areas

2.7.1 Wetlands

The Blackstone River system includes various inland freshwater systems and discharges to a tidally influenced riverine system. The United States Fish and Wildlife Service (USFWS) National Classification System (Cowardin et al., 1979) and RIGIS were used to identify wetlands in the basin (Figure 2-12).

Wetlands located in the basin consist of non-tidal riverine systems, lacustrine wetland systems, and palustrine systems (ponds, emergent marshes, forested and scrub-shrub swamps, and areas of open water). Wetlands account for approximately 12,535 acres (or 14%) of the watershed. Significant wetland formations in the

watershed are Valley Falls Pond, Lonsdale Marsh, and Cedar Swamp. As previously discussed, Valley Falls Pond and its associated wetland system has been designated as a Special Resource Protection Water. The wetland system consists of marshland and an open water system creating a critical habitat for migratory birds.

In addition to wetlands, Figure 2-12 depicts land that has been preserved and protected by the State as greenspace and greenways. The figure depicts the following types of protected land: open space, scenic areas, Audubon land, and greenway corridor. Open land depicts areas of public and private land protected from future development. The land is under control of Federal, State, local municipality, or private foundation or society. The sites are numerous and scattered throughout the region. Greenways, which typically follow rivers or former railroad easements, connect the protected land (or greenspace) to form a linear system or corridor of protected lands. The goal of establishing greenways along river alignments is to create buffers of natural vegetation and wetlands to provide essential habitat and improve water quality.

Figure 2-12 also depicts the following special designated and/or protected areas:

- Scenic Areas: Designated by RIDEM as noteworthy or distinctive landscapes or views.
- Audubon Lands: Open space protected by Audubon Society of Rhode Island.

2.7.2 Special Natural Resource Protection Areas

RIDEM has designated several Special Resource Protection Waters (SRPWs) as high quality waters. These waters have significant ecological or recreational uses, which may include, but is not limited to: wildlife refuge or management areas, public drinking water supplies, State and Federal Parks, designated estuarine sanctuary areas, waterbodies containing critical habitat, protected or threatened wetlands, and scenic river systems. Provided below is a list of Special Natural Resource Protection Areas in the Blackstone River watershed:

- Abbott Run Brook
- Ash Swamp Brook
- Crook Fall Brook
- Diamond Hill Reservoir
- East Sneech Brook
- Happy Hollow Pond
- Long Brook
- Lonsdale Marsh
- Arnold Mills Reservoir
- Robin Hollow Reservoir
- Smith and Sayles Reservoir
- Sneech Pond
- Valley Falls Pond
- Woonsocket Reservoirs No.1 and No. 3.

With the exception of Lonsdale Marsh, Smith and Sayles Reservoir, and Valley Falls Pond, each of the above waterbodies are water supply reservoirs or tributaries to water supply reservoirs. Lonsdale Marsh and Valley Falls Pond are listed as SRPWs due to these wetland systems providing critical habitat.

2.7.3 Forests

The Blackstone River Watershed is considered part of the Central Hardwood Forest Region, which has a variable climate and rich soils. The forest region is consistent with climates subject to adequate precipitation. The region can be broadly characterized as mixed Oak-Hickory. The majority of the tree species consist of

white oak (*Quercus alba*), red oak (*Quercuc rubra*), and black oak (*Quercuc velutina*). The watershed contains deciduous forests, evergreen forests, and forested swamps. Provided in Table 2-11 is a summary of the type of forest within the Rhode Island portion of the watershed.

Table 2-11
Summary of Forest Coverage Data

Forest Description	Area (acres)	% of Total Area
Deciduous Forest (>80% hardwood)	32,999	37%
Developed Recreation (all recreation)	811	1%
Evergreen Forest (>80% softwood)	2,066	2%
Mixed Deciduous Forest (50 to 80% hardwood)	5,679	6%
Mixed Evergreen Forest (50 to 80% softwood)	5,729	6%
Total Area of Forests	46,474	52%
Total Area of Watershed (RI only)	89,401	

2.8 Aquatic Ecosystems

2.8.1 Fisheries

Historically, the Blackstone River has played an important role in supporting spawning runs of anadromous species of fish. Each spring, adult Atlantic salmon, river herring (alewife and blueback herring), and American shad would ascend the river to spawn. However, due to the construction of numerous impoundments along the river in the 1800's, the spawning process was interrupted and eliminated. The existence of the impoundments has virtually eliminated all anadromous fishery migration.

In November of 1994, the U.S. Army Corps of Engineers (USACE) studied ways to restore targeted species of anadromous fish to the Blackstone River (i.e., American Shad and River Herring). RIDEM's Division of Fish, Wildlife, and Estuarine Resources also conducted anadromous fishery restoration projects in the Blackstone River. One of the alternatives proposed by USACE was to remove part or all of the impoundments. A cleared breach would provide both upstream and downstream fish passage needs. However, other issues, such as contaminated sediments could be critical in determining whether the impoundment removal was feasible. Alternative solutions include fish ladders, locks, fish lifts, and retrofits.

Recent improvement in water quality in the Blackstone River and the advances of fishway technology have indicated that restoring populations of American shad and river herring to the lower reaches of the Blackstone River may be possible. Restoring the Atlantic salmon would be more difficult due to the number of dams on the main stem and tributaries. The Blackstone River was not included among 28 major rivers in New England that contained significant Atlantic salmon populations in pre-colonial times; consequently, it is not one of the rivers targeted for Atlantic salmon restorations (USFWS, 1989). Provided below in Table 2-12 is a summary of water quality chemistry necessary to sustain the fisheries.

Reintroduction of anadromous fishes to their previous spawning grounds in the Blackstone River would also have a positive effect on the ecology of the river. In freshwater areas where herring have been restored, studies show that resident fish populations were enhanced. The juvenile herring produced in the spawning run serve as a food supply for bass and other resident species. All life stages of anadromous herrings are important for age for many freshwater and marine fish. In addition, birds, amphibians, reptiles, and mammals have also been documented as predators.

Table 2-12
Life Supporting Conditions for
American Shad, Alewife, and Blue Herrings

	Water Temperature (°C)	PH	Dissolved Oxygen (mg/l)	Total Suspended Solids (mg/l)
		Am	ierican Shad	
Eggs	>13	>6.0	>5.0	NL
Larvae	15.5 - 26.1	>6.7	>5.0	100
	-		Alewife	
Eggs	>11	>5.0	>5.0	NL
Larvae	>8	>5.5	>5.0	500
		Bl	ue Herring	
Eggs	>14	>5.7	>5.0	NL
Larvae	>14	>6.2	>5.0	500

NL = Not listed

Source: USACE, 1994

A comprehensive fisheries surveys of the Blackstone River watershed was conducted by RIDEM in 1975 and MADEP, Department of Fisheries, Wildlife and Environmental Law Enforcement (DFWELE) in 1973. The survey indicated that the fishery resources present were typical of warm water habitats (specific species were not listed). The species found were those capable of surviving in poor quality waters resulting in resident fish populations that were undesirable for sport fishing. Later fish data showed that the warm water habitat species were predominant (EEI, 1987). However, a greater number of game species were present, which included yellow perch, largemouth bass, smallmouth bass, black crappie, chain pickerel, and northern pike.

The main restoration objective of the RIDEM Study was to build fishways at the four lower dams (Phase I of the anadromous fishery restoration project) to open sufficient spawning and nursery habitat for self-sustaining populations of shad and river herring. Other objectives included providing sufficient flows during critical lifecycle periods during august and spring migration.

In the spring of 1993, RIDEM released approximately 3,000 adult blueback herring just below Albion Dam, between Cumberland and Lincoln. These fish were obtained from the Charles River through a cooperative effort with the Massachusetts Division of Marine Fisheries. The juvenile blueback herring were recovered in August of 1993 above Valley Falls Dam. The captured fish appeared to be in excellent health. These efforts indicated that the river has a high anadromous fish restoration potential.

The Massachusetts Department of Public Health (DPH) issued a fish consumption advisory due to polychlorinated biphenols (PCB) contamination for three impoundments, which were Riverdale, Rice City Ponds, and Blackstone River impoundment above the Blackstone Gorge.

2.8.1.1 Mill River

In August 1973, MADEP conducted a fish population survey in the Mill River. Twelve species of fish listed in order of dominance were detected: tesselated darter, largemouth bass, bluegill, yellow bullhead, pumpkinseed, fallfish, and blacknose dace, unidentified cyprinids, brown trout, chain pickerel, redfin pickerel, and yellow perch.

In May 1992, MADPH issued a fish consumption advisory for the Mill River based on fish toxics monitoring data generated by MADEP in 1990. The 1992 advisory stated that children younger than 12 years, pregnant women, and nursing mothers should not eat any fish from the Mill River in Hopedale in order to prevent exposure of developing fetuses and infants to PCB. MADEP further advised the general public to limit consumption of all fish from the Mill River in Hopedale to two meals per month. Although PCB levels were not above the EPA action limit, the fish consumption advisory was issued because of health concerns associated with exposure to the developing fetus and child as well as the concerns associated with long term exposure and potential cancer risks. In addition, mercury concentrations exceeding MADPH action level of 0.5 ppm were detected in fish from Hopedale Pond as well as at a station in the Mill River for the Town of Blackstone, Massachusetts.

2.8.1.2 Peters River

No specific fisheries data was available for the Peters River.

2.8.2 Migratory Waterfowl

The impoundments along the Blackstone River create favorable waterfowl marsh and open water habitats. Mallards, wood ducks, and Canada geese have been nesting in the region as well as rails and marsh birds. The river valley has been served as a migration corridor for green winged teal, pintail, widgeon, mergansers, and buffleheads. In addition, the important black duck has utilized the river and its watershed as a production area. The black duck was recognized as a species of international concern because of the long-term population decline indicated in the Atlantic Coast Joint Venture Plan (September 1994). The dams that created significant favorable waterfowl habitat along the Blackstone River are shown in Table 2-13.

Table 2-13 **Areas of Significant Waterfowl Habitat**

Dam and Location	Habitat Area (acres)
Lackey Pond, Uxbridge, MA	95
Manville Dam, Lincoln/Cumberland, RI	77
Ashton Dam, Lincoln/Cumberland, RI	20
Pratt (Lonsdale) Dam, Lincoln, RI	63
Valley Falls, Central Falls/Cumberland, RI	183

The primary impoundments of interest to the Rhode Island Division of Fish and Wildlife (RIDFW) were those behind Pratt (Lonsdale) Dam and Valley Falls Dam, which were identified as resource areas by the Rhode Island Natural Heritage Program (RINHP). These areas contained substantial space for nesting and migratory waterfowl within a high-density human populace. Maintenance and enhancement of these dams should be continued in order to provide quality waterfowl habitat in Rhode Island.

The Valley Falls marshes, within the municipalities of Lincoln, Cumberland, and Central Falls were considered to be the most valuable wetland wildlife habitat in northern Rhode Island. The marshes were designated as habitat for rare species, which included the rare marsh-nesting birds Least Bittern and Sora Rail. In addition, it has been providing feeding and resting habitat for migratory waterfowl in the spring and fall migration.

The goals of preserving significant waterfowl habitat associated with the Blackstone River could be achieved by (1) protecting, enhancing, and restoring existing important dams (dams that created habitat wetlands) and (2) Restoring, enhancing, or creating additional wetlands. The Pratt Dam and Valley Falls wetland areas were

under consideration for wetland restoration projects along the Blackstone River. The targeted area for Pratt Dam was designated as "the island." Its location has been above the Pratt Dam and east and adjacent to an inactive solid waste landfill in Cumberland. It also occupied the portion of Peterson/Puritan Inc. site, which has been designated as a National Priority List (NPL) site. The Valley Falls targeted area for wetland restoration was at the location of the former Lonsdale Drive-In Theater, which is upstream from the Valley Falls Pond/Marshes. A restoration project at the theatre has been completed by the USACE.

2.9 Pollutant Sources

The Blackstone River has been part of American industrial revolution since 1793, when Samuel Slater constructed Slater Mill in Pawtucket. Slater Mill was the first cotton mill in the United States to use mechanical spinning machines. After the mill opened, mills and mill villages developed rapidly along the Blackstone River. Mill villages included Woonsocket, Blackstone, Millville, Uxbridge, and Millbury. By 1830, there was one dam for every river mile along the main stem and its tributaries.

The number of point source discharges has decreased dramatically in recent years with the construction of treatment plants, advent of National Pollutant Discharge Elimination System (NPDES) in accordance with the Clean Water Act, and reduction in the number of manufacturing facilities in the region. The current number of permitted discharges in Rhode Island within the watershed consists of the following:

- Seventeen minor permitted discharges (Section 2.9.1)
- One major permitted discharge (Woonsocket WWTF) (Section 2.9.2)
- Fifteen permitted CSOs. (Section 2.9.4)
- Stormwater discharges (Section 2.9.5)

These discharges are discussed below along with permitted point source discharges in Massachusetts (Section 2.9.3) and hazardous waste sites (Section 2.9.6).

2.9.1 Minor Permitted Discharges

There are a total of 17 active permitted facilities located in the Rhode Island portion of the watershed. Provided below in Table 2-14 is a listing of the facilities with a brief description of the type of discharge and receiving water. The facilities are located in Figures 2-13A and 2-13B. The locations of the point sources are also shown schematically in Figure 2-8.

- Contact and Cooling Water (9): Nine of the 17 facilities are permitted to discharge contact and non-contact cooling water. The sampling requirements for these facilities are limited to flow, temperature, and pH.
- Discharges including Metals (2): Okonite and Osram Sylvania have permit limits that include metals.
 - Okonite: Manufacturer of insulated wire and cable, located on Martin Street in Cumberland. The RIPDES permit has established limits for flow, temperature, oil & grease, copper, and pH.
 - Osram Sylvania: Osram Sylvania is engaged in the manufacturing of pressed and blown glassware (i.e., receiver tubes, incandescent lights, fluorescent lights, and high intensity glass lamps). Historically, the facility discharged treated industrial waste from the process. However, in 1996 the industrial wastestream was rerouted to NBC sanitary system in Bucklin Point service area, thereby no longer entering the Blackstone River. The permit still requires monitoring of metals (i.e., hexavalent chromium, silver, lead, chromium, cadmium, copper, zinc), arsenic, bioassays, flow, temperature, pH, oil & grease, and TSS.

- Sanitary Wastewater (4): In addition to the Woonsocket WWTF (discussed in Section 2.9.2), there are a total of four permitted discharges of sanitary wastewater in the watershed with Burrillville WWTF having the highest flow of the four.
- Water Treatment Plants (2): Two other discharges that may be significant are the two water treatment plants that are permitted to discharge filter backwash. Filter backwash discharge is inconsistent and highly dependent upon operation of the water plant. It would also suggest a periodic, slug-type discharge of effluent.
 - Pawtucket Water Treatment Plant: The discharge from the Pawtucket plant is resulting from backwash of sand filters used in the purification process. Each of the six filter beds must be backwashed after 48-hours of service. This translates to approximately once per week in the summer and twice per month in the winter. In addition to physical treatment, Pawtucket adds aluminum sulfate and orthophosphate prior to filtration.
 - Woonsocket Water Treatment Plant: The discharge from the Woonsocket plant is from backwash of granular activated carbon (GAC) vessels. Each of the three GAC is backwashed approximately four to five times per week. As part of the treatment process, Woonsocket adds the following: aluminum sulfate, non-ionic polymer, blended phosphate, hydrated lime, and chlorine.

Table 2-14
Summary of RIPDES Permits
Minor Industrial Discharges

RIPDES #	Name	Discharge Type	River
RI0021393	ACS Industries Inc 71 Villanova Street Woonsocket, RI 02895	Non contact cooling water (flow, temperature, pH)	Blackstone River
RI0020451	Air Products & Chemicals, Inc. 1226 Mendon Road Cumberland, RI 02864	Non-contact cooling water and cooling tower blow down (flow, temperature, pH, Cl)	Blackstone River
RI0023426	Ann & Hope Corporate Offices One Ann & Hope Way Cumberland, RI 02864	Non contact cooling water (flow, temperature, pH)	Blackstone River
RI0000124	AT Cross Company One Albion Road Lincoln, RI 02865	Non contact cooling water and stormwater (flow, temperature, pH)	Unnamed Tributary to Crook Fall Brook
RI000056	Atlantic Thermoplastics (former Tupperware) Route 146A North Smithfield, RI	Sanitary wastewater (flow, BOD, TSS, settleable solids, pH, fecal coliform, Cl, bioassay)	Branch River
RI0000485	Blackstone-Smithfield Corp. (former Tupperware) Butler Street North Smithfield, RI 02895	Cooling water (flow, temperature, total phosphorus, pH) Sanitary wastewater (flow, BOD, TSS, settleable solids, pH, fecal coliform, Cl)	Blackstone River
RI0100455	Burrillville Wastewater Treatment Facility 141 Clear River Drive Oakland, RI 02858	Sanitary wastewater (flow, BOD, TSS, settleable solids, fecal coliform , TRC, pH)	Clear River

RIPDES #	Name	Discharge Type	River
RI0023221	Cumberland Engineering Div. John Brown Plastics Trafalgar House 100 Roddy Avenue South Attleboro, MA	Non-contact cooling water (flow, temperature, pH, oil & grease)	Blackstone River
RI0023400	Deblois Oil Company 632 River Street Woonsocket, RI 02895	Stormwater (flow, oil & grease, PAHs, TSS)	Blackstone River
RI0023523	Elizabeth Webbing Mills Co. 521 Roosevelt Avenue Central Falls, RI 02863	Groundwater remediation system (flow, BTEX, MTBE, PAHs)	Blackstone River
RI0021865	Fleet National Bank 670 George Washington Hwy Lincoln, RI 02865	Air-handling condensate (flow, temperature, pH)	Unnamed Tributary to Blackstone River
RI0000019	Narragansett Imaging (Phillips Components) 100 Providence Pike Slatersville, RI 02876	Non-contact cooling water (flow, temperature, pH)	Branch River
RI0020141	Okonite Company 111 Martin Street Ashton, RI 02864	Contact and non-contact cooling water (flow, temperature, oil & grease, copper, pH)	Blackstone River
RI0001180	OSRAM Sylvania Products, Inc. 1193 Broad Street Central Falls, RI	Contact and non-contact cooling water (flow, temperature, pH, TSS, oil & grease, metals, bioassay) Note: The discharge is now entering Bucklin Point through NBC's sanitary system.	Blackstone River
RI0001589	Pawtucket Water Supply Board 120 Mill Street Cumberland, RI 02864	Filter backwash (flow, TSS, pH)	Abbott Run
RI0001627	City of Woonsocket Water Treatment Plant Manville Road Woonsocket, RI 02895	Filter backwash (flow, TSS, pH)	Blackstone River
RI0100129	Zambrano Hospital, Wastewater Treatment Facility Wallum Lake, RI	Sanitary wastewater (flow, BOD, TSS, settleable solids, fecal coliform, Cl)	Clear River

(Source: RIDEM, 2001a)

2.9.2 Major Permitted Discharges

The Woonsocket Regional Wastewater Treatment Facility (WWTF) is located on 11 Cumberland Hill Road in Woonsocket. The plant receives flows from Woonsocket and adjacent communities in Massachusetts (i.e., Bellingham, Blackstone, Millville). In 1999, the City leased the operation of the facility to US Filter. US Filter is also responsible for upgrade of the plant to ensure compliance with effluent limits and to provide nutrients removal. The design capacity of the plant is 16 MGD with an average flow of 9 to 10 MGD. RIDEM has given the facility a rank of "Poor" and found the facility to be deficient in areas of operations and maintenance. It has also been subject of several permit violations in 1998 and 1999. In 1999, RIDEM sought court injunctions against the City due to its failure to comply with a previous consent agreement.

In July 2001, the Wastewater Facility was upgraded to provide denitrification, cyanide destruction, and phosphorous removal. As of September 2001, the facility has been complying with the new permit limit developed as a result of modeling effort from BRI. Treatment consists of primary sedimentation, activated

sludge, biological nitrogen removal, and chemical phosphorous removal. The effluent is further treated with dual media filtration and disinfection.

It should be noted that the significant upgrades to the Woonsocket Wastewater Facility have dramatically changed effluent characteristics. A review of effluent data prior to September 2001 will be of limited use in predicting future impacts to the Blackstone River. The location of the facility is shown in Figures 2-13A and 2-13B.

2.9.3 Massachusetts Facilities

Provided below in Table 2-15 is a listing of permitted point source discharges in the Blackstone River watershed located in Massachusetts.

Table 2-15
Summary of Massachusetts Facilities
Blackstone River Basin - Municipal and Industrial Treatment Plants

	Permittee:	NPDES#	Issuance	Flow	Treatment	Special Notes
	Upper Blackstone WPAD	MA0102369	9/30/1999	56.0 MGD	AWT; NH3N & TP	Under appeal
	Millbury	MA0100650	9/30/1999	1.2 MGD	AWT; NH3N & TP	Plans to connect to UB WPAD
	Grafton	MA0101311	9/30/1999	2.4 MGD	AWT; NH3N & TP	Permit appealed
	Northbridge	MA0100722	9/30/1999	2.0 MGD	AWT; NH3N & TP	
<u>ख</u>	Uxbridge	MA0102440	9/30/1999	2.5 MGD	AWT; NH3N & TP	
<u> </u>	Hopedale	MA0102202	9/20/1999	0.588 MGD	AWT; NH3N & TP	
Municipal	Douglas	MA0101095	9/29/1995	0.18 MGD	Secondary (planning expansion; will be upgraded to AWT)	Will be reissued in 2001
	Upton	MA0100196	9/29/1995	0.3 MGD	AWT; NH3N & TP	Will be reissued in 2001
	Worcester	MAS010002	9/30/1998			Municipal storm water permit
	Worcester	MA0102997	11/8/1990	350 MGD	Disinfection	CSO treatment
	Guilford of Maine, E. Douglas	MA0101538	12/15/1999	1.25 MGD	Biological & sedimentation	Ground water & storm water
	New England Plating, Worcester	MA0005088	2/24/2000	0.20 MGD	Chemical addition; sedimentation for metals removal	Permit under appeal
trial	Wyman Gordon, Grafton	MA0004341	6/30/1997		Sedimentation	Process wastewater, NCCW, stormwater
Industrial	Lewcott Corp., Millbury	MA0028592	9/2/1992			NCCW
	Norton, Co., Worcester	MA0000817	7/29/1975		Temp = 60-90; 7 outfalls	Uncontaminated cooling water
	Coz Chemical, Northbridge	MA0032549	9/29/1995		Contact & non-contact cooling water	Will be reissued in spring 2001
	Riverdale Mills Corporation	MAG250279		0.181 MGD	NCCW	Incomplete application

NCCW = non-contact cooling water

Source: MADEP, 1998

- **Discharges to Peters River:** There are no permitted NPDES discharges on the Peters River. There is one permitted facility that discharges to Mill River (Hopedale WWTF).
- Discharges to Mill River: The Hopedale Wastewater Treatment Facility has an average discharge of 0.95 MGD (permitted flow: 2.5 MGD) of treated wastewater effluent to the Mill River. The treated effluent receives advanced treatment for nutrient removal (nitrification and phosphorus). MADEP has conducted sampling studies upstream and downstream of the Hopedale WWTF and concluded there were no significant water quality concerns detected from the chemical data. However, the segment downstream of the point source discharge (approximately 1-mile) is on alert due to effluent toxicity.

2.9.4 Combined Sewer Overflows

The Narragansett Bay Commission has a total of 15 combined sewer overflows (CSOs) along the Blackstone River. CSOs are a significant source of pathogens. ASA (1992a) concluded that CSOs accounted for 92% of the fecal coliform loadings to the Providence River and 1% of the flow. Provided in Table 2-16 and 2-17 are the predicted overflow volumes and frequencies based on extensive modeling of the combined system (as determined by SWMM).

Table 2-16 summarizes the overflow volume for each CSO to the Blackstone River for five synthetic design storms. Table 2-17 summarizes the annual overflow volumes and frequency of occurrences for each of the CSOs, ranked by order of magnitude. The years 1951 and 1978 were selected as years having the number and magnitude of storm events within the normal range based on statistical analysis of precipitation in the greater Providence Area. Provided in Figure 2-13B is the location of the CSOs. The location of the CSOs are also shown schematically in Figure 2-8.

Table 2-16

Design Storm Model Results for CSOs on Blackstone River
Existing Conditions

Overflow		Overflow Volume (MG)					
	1-Month Storm	2-Month Storm	3-Month Storm	6-Month Storm	12-Month Storm		
OF 101 (B)	0.09	0.21	0.30	0.46	0.63		
OF 102	0.02	0.04	0.05	0.07	0.10		
OF 103	2.55	3.95	4.78	6.19	7.63		
OF 104	0.16	0.29	0.37	0.50	0.61		
OF 105	0.78	1.30	1.61	2.14	2.69		
OF 106	0.32	0.85	1.26	2.05	2.87		
OF 107 (B)	0.00	0.00	0.00	0.00	0.00		
OF 201	0.62	0.99	1.20	1.57	1.94		
OF 202 (B)	0.00	0.01	0.01	0.03	0.04		
OF 203	0.20	0.37	0.48	0.68	0.90		
OF 204 (B)	0.00	0.00	0.00	0.00	0.33		
OF 205	6.51	10.45	12.82	16.86	20.79		
OF 206	0.03	0.09	0.13	0.22	0.31		
OF 207	0.10	0.22	0.30	0.44	0.59		
OF 208 (B)	0.00	0.01	0.01	0.04	0.06		
OF 209	0.01	0.05	0.07	0.15	0.25		
Total	11.39	18.83	23.39	31.40	39.74		

Note: (B) refers to the regulator having been blocked due to low volume or frequency of overflow.

Source: Berger, 1997

The Louis Berger Group, Inc.

Table 2-17

Design Storm Model Results for CSOs on Blackstone River

Existing Conditions

Overflow	-	1951 Simulation	1	1	978 Simulation	
	Overflow Volume (MG)	Number of Events	Total Flow Duration	Overflow Volume (MG)	Number of Events	Total Flow Duration
OF 205	222.2	52	314	182.7	40	311
OF 103	93.9	62	428	76.7	50	367
OF 105	25.9	53	248	20.6	39	242
OF 201	22.2	56	312	18.7	41	288
OF 106	14.6	24	59	11.1	19	63
OF 203	7.3	39	130	5.8	31	156
OF 104	5.6	40	131	4.5	31	156
OF 101 (B)	4.1	29	73	3.2	26	87
OF 207	4.0	35	82	3.1	27	92
OF 206	1.7	23	47	1.3	20	59
OF 204 (B)	1.5	1	1	0.6	1	1
OF 209	0.8	14	22	0.8	15	34
OF 102	0.3	14	16	0.3	13	31
OF 208 (B)	0.2	2	2	0.1	2	10
OF 202 (B)	<0.1	2	2	<0.1	2	2
OF 107 (B)	<0.1	2	2	<0.1	2	2
Total	404.3	NA	NA	329.5	NA	NA

Note: (B) refers to the regulator having been blocked due to low volume or frequency of overflow.

Source: Berger, 1997

2.9.5 Stormwater

In December 2000, RIDEM developed a strategy to develop a watershed-specific permitting approach for the Blackstone River. The primary goal of the study was to identify potential sources of pollutants to the Blackstone River from stormwater runoff. The study identified facilities regulated in Phase I of the RIPDES Stormwater Program (See Table 2-18 for list of facilities permitted in Phase I). It also identified types of facilities that needed further treating due to potential impacts on water quality. The general conclusion was to target industrial uses that are predominant along the main stem: recyclers/auto salvage yards, chemical manufacturers, textile, petroleum storage facilities, and unpermitted storm sewers.

Phase II of the RIPDES Stormwater Program will target cities/towns below threshold population defined in Phase I. It will also target areas of higher population density, which are defined as urban areas. The following communities in the RI portion of the watershed will be required to obtain a RIPDES stormwater permit in Phase II: North Smithfield, Cumberland, Lincoln, Central Falls, Pawtucket, and Woonsocket. In addition, other government agencies such as RIDOT will also be required to obtain a permit.

Provided in Figures 2-13A and 2-13B are the population densities illustrating regions defined as urbanized areas under Phase II of the stormwater program.

As part of the TMDL Study, the following cities and towns were contacted to obtain stormwater mapping: Woonsocket, Cumberland, Lincoln, Pawtucket, and Central Falls. The purpose of the request was to identify stormwater outfalls that may be targeted for sampling.

Table 2-18
Summary of RIPDES Permits
Stormwater Discharges Associated with Industrial Activity

RIPDES #	Name	Address	River	SIC
RIR600142	Bill's Auto Parts, Inc	70 Macondry Street, Cumberland, RI 02864	Blackstone River	5015
RIR100342	Blackstone River Bikeway- RIDEM	Front Street Cumberland to Cumberland/Lincoln RI	Blackstone River	
RIR100316	Blackstone Valley Development	Maple Ridge Dr. Cumberland, RI 02864	Blackstone River	
RIR130278	Bruin Plastics Co., Inc.	P.O. Box 700 Glendale RI 02826	Blackstone River	2295
RIR230058	C.N.C. Int., L.P.	20 Privilege Street Woonsocket, RI 02895	Mill River	2843
RIR100343	Cumberland Crossing, LLC	2001 Mendon Road Cumberland, RI 02864	Blackstone River	
RIR200153	Cumberland Foundry Co., Inc.	310 West Wrentham Road Cumberland, RI 02864	Blackstone River	3321
RIR200034	Fairmount Foundry Inc.	25 Second Avenue Woonsocket, RI 02895	Blackstone River	3321
RIR110351	Laidlaw Transit, Inc-North	468 Comstock Road North Smithfield, RI 02864	Blackstone River	4173
RIR500027	Landfill & Resource Recovery	Oxford Road North Smithfield, RI 02895	Trout Brook	4953
RIR100240	Macklands Realty, Inc.	Curran Road Cumberland, RI 02864	Blackstone River	
RIR600008	Metech International, Inc	120 Mapleville Main Street Mapleville, RI 02893	Chepachet River	5093
RIR130188	Murdock Webbing Co.	27 Foundry Street Central Falls, RI 02863	Blackstone River	2241
RIR110003	Narragansett Imaging	51 Industrial Drive North Smithfield, RI 02896	Branch River	3674
RIR700038	Ocean State Power	1575 Sherman Farms Road Harrisville, RI 02830	Blackstone River	4911
RIR100365	Old Dominion Freight Line, Inc.	Industrial Drive Cumberland, RI 02864	Blackstone River	
RIR120028	Pharmacy Technologies Inc.	666 Park East Drive Woonsocket, RI 02895	Blackstone River	4225
RIR100263	PJC Realty	2130 Mendon Road Cumberland, RI 02864	West Sneech Brook	
RIR230023	Polytop Corporation	110 Graham Drive Slatersville, RI 02876	Branch River	3089
RIR800114	RI Army National Org. Maintenance	Shop #1A (OMS #1A) Woonsocket, RI 02895	Blackstone River	9711
RIR100269	RIDEM-Blackstone River Bikeway	Front Street Lincoln, RI 02865	Blackstone River	
RIR110234	Ryder Student Transportation	#1725 Slatersville, RI 02876	Blackstone River	
RIR230050	Technic Engineered Power Division	300 Park East Drive Woonsocket, RI 02895	Blackstone River	2819
RIR230133	Teknor Apex Company/ Teknor Color Co	20 Industrial Road Cumberland, RI 02864	Blackstone River	3087

RIPDES #	Name	Address	River	SIC
RIR100348	The Savage Living Trust & EAM	Hines Road Cumberland, RI 02864	Blackstone River	
RIR100331	Tiffany & Company	Maple Ridge Drive Cumberland, RI	Blackstone River	
RIR800183	TNT Red Star Express, Inc	Industrial Drive Cumberland, RI 02864	Blackstone Rive	4215
RIR130273	TYTEX, Inc	601 Park East Drive Woonsocket, RI 02895	Blackstone River	2389

(Source: RIDEM, 2001b)

Woonsocket, Central Falls, and Pawtucket have reasonably complete stormwater mapping. Cumberland and Lincoln have limited mapping to recent subdivisions. Both towns pointed out that the majority of stormwater outfalls were roads owned and maintained by RIDOT. In general, RIDOT has good mapping of storm drains on state roads. The date of the information is dependent on the extent of road maintenance on specific state road segments.

2.9.6 Hazardous Waste Sites

The Blackstone River has numerous State Hazardous Waste Sites (Massachusetts and Rhode Island) and USEPA Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites. The CERCLA list is a compilation of records from a nationwide database created to maintain and regulate those sites that USEPA has investigated for suspected or uncontrolled releases of hazardous substances or pollutants. Once a site is placed on the CERCLA list, it may be subjected to several levels of evaluation to determine the severity of the contamination from discovery and preliminary assessment to site inspection, and possibly application of the Hazardous Ranking System. Such a determination would place the site on the National Priority List (NPL) (Table 2-20).

Table 2-19
Summary of State CERCLA Sites in the Blackstone River Watershed (RI Segment)

Name	Street	Town	Description
Boylter Farm Area	Curran Road and Depot Street	Cumberland	CERCLA, Non-NPL
Burrillville Landfill #1	Whipple Avenue.	Burrillville	CERCLA, Non-NPL, Landfill
Burrillville Landfill #2	Route 102	Burrillville	CERCLA, Non-NPL, Landfill
Central Falls Landfill	Adjacent to Valley Falls Pond	Lincoln	CERCLA, Non-NPL
Cumberland Landfill	Albion Road	Cumberland	CERCLA, Non-NPL, Landfill
Dupraw Landfill	Dexter Rock Road	Lincoln	CERCLA, Non-NPL
Glass-Kraft	Railroad Street	North Smithfield	CERCLA, Non-NPL
Glocester Landfill	Chestnut Hill Road	Glocester	CERCLA, Non-NPL, Landfill
H&H Screw Location	George Washington Highway,	Lincoln	CERCLA, Non-NPL
	Route 116		
J M Mills Landfill	Mendon Road	Cumberland	CERCLA, Non-NPL,
			Landfill, Associated with an
			NPL
Lenox Street Well	Mendon Road	Cumberland	CERCLA, Non-NPL,
			Associated with an NPL
Liquid Carbonic	Steel Street	North Smithfield	CERCLA, Non-NPL
Lonsdale Narrows	Off Lonsdale Avenue	Lincoln	CERCLA, Non-NPL
Lonza/Universal Chemical	Martin Street	Cumberland	CERCLA, Non-NPL,
			Associated with an NPL

Name	Street	Town	Description
Manville Well Field	Albion Road.	Lincoln	CERCLA, Non-NPL
McKee's Garage (Former)	1379 Diamond Hill Road	Cumberland	CERCLA, Non-NPL
New England Container	George Washington Highway	Smithfield	CERCLA, Non-NPL, Large
Company			Quantity Generator.
			Transporter
North Smithfield NIKE	Poundhill Road	North Smithfield	CERCLA, Non-NPL
Launcher Area			
Pawtucket Water Supply	Myrtle Street	Cumberland	CERCLA, Non-NPL
Board			
Phillips Components	Providence Pike	North Smithfield	CERCLA, Non-NPL, Large
			Quantity Generator
Woonsocket Transfer	Davidson Road	Woonsocket	CERCLA, Non-NPL
Station			

Table 2-20 **Summary of National Priority List Sites**

Name	Street	Town
Peterson and Puritan	Martin Street	Lincoln/Cumberland
Landfill and Resource Recovery	Oxford Road	North Smithfield
Stamina Mills	Mains Street	North Smithfield
Western Sand and Gravel	Douglas Pike	Burrillville

The CERCLA and NPL sites for Rhode Island are illustrated on Figure 2-14. Provided below is a detailed discussion of each of the four sites listed on the National Priority List. The Peterson Puritan site is of particular interest to this study due to close proximity to the main stem of the Blackstone River. The remaining three sites are each located in the Branch River Watershed. Stamina Mills is located just upstream of Forestdale approximately 4.5 miles from the confluence of the Blackstone River. Western Sand and Gravel and Landfill Resource and Recovery are located upland of Slatersville Reservoir in an unconfined aquifer formation having a saturated thickness of 60 ft and a transmissivity of 8,000 sq. ft/day.

2.9.6.1 Peterson and Puritan Inc.

• *Media:* Soil, debris, groundwater

• Contaminants: VOCs, organics, metals

 Description: Peterson and Puritan site is located in an industrial area adjacent to the Blackstone River in Cumberland and Lincoln at the Martin Street bridge. The site includes several areas: Peterson/Puritan, Pacific Chemical (Lonza and Universal Chemical), JM Landfill, State and Town recreation areas, woodlands, wetlands, Blackstone River (Ashton Dam to Pratt Dam), Blackstone River Canal, and affected municipal well fields in the Town of Cumberland and Lincoln.

During operation, Peterson and Puritan packaged and distributed a variety of aerosol products including perfumes, oven cleaners, pesticides, hairspray, deodorants, and window cleaners. In 1974, there was a release of approximately 6,200 gallons of PCE due to an incident while offloading a rail car to the on-site tank farm. The recorded spill, along with other historical releases of VOCs into catchbasins and manholes is the primary source of soil and groundwater contamination. In 1979, State investigations revealed that VOCs (TCA, PCE) were detected in groundwater at concentrations raging from 27 to 166 mg/l.

Pacific Chemical manufactured general industrial chemicals and specialty chemical materials for use in detergents, cosmetics, agriculture, and food. In 1981, RIDEM investigated on-site septic tanks and leachfields Samples detected the presence of acetone, 2-propanol, toluene, ethyl benzene, and methyl isobutyl ketone. Samples of the wastewater contained high concentrations of arsenic, chromium, nickel, PCE, and xylene. The primary contamination issue was associated with the discharge of acetone and isoproponal to on-site septic tanks and leachfields.

- Remedial Activities: The following remedial activities were proposed (USEPA, 2001):
 - Excavation and disposal of contaminated soils at manholes and catch basins
 - Excavation and removal of contaminated leachfields
 - Installation of soil vapor extraction system to remediate VOCs in the vadose zone
 - Installation of a 14,000 sq. ft. concrete pad in former tank farm to enhance vapor extraction
 - Groundwater extraction and treatment of contaminated groundwater
 - In-situ oxidation to reduce mobility of arsenic in groundwater migrating from leachfields
 - Natural attenuation of PAC contaminated groundwater
 - Environmental monitoring.
- Current Site Status: Construction of the soil vapor extraction system and the groundwater extraction system for the primary source control has been completed in March 1998. The system is currently in full operation and is removing contaminants from the soil and groundwater effectively (USEPA, 2001). Further investigations (i.e., JM Landfill site) are scheduled to begin in 2002. EPA plans to conduct water quality and sediment sampling within the Blackstone River from utility crossing to Pratt Dam. The river reach is approximately 1.5 miles.
- Impact to Blackstone River Water Quality for this TMDL study: Based on the level and type of contamination, the site potentially has a continued direct impact on the Blackstone River. Another primary factor is the site being located adjacent to the main stem of the river. Site reconnaissance has revealed seepage from landfill leachate. Further monitoring is needed to quantify impact of targeted contaminants.

2.9.6.2 Stamina Mills

- *Media:* Soil, sediment, debris, groundwater
- Contaminants: VOCs, PCE, TCE, organics, pesticides, metals (chromium)
- Description: Stamina Mills is located on Main Street in North Smithfield, Rhode Island. The 5-acre site is a former textile weaving and finishing facility. The site is located within the 100-year flood plain of the Branch River. The facility was in operation from 1800 to 1975 when it was completely destroyed by fire. The facility had numerous functions over the years having significant uses of cleaning solvents, acids, bases and dyes for coloring, pesticides for moth proofing, and plasticizers. The waste produced by the Mill was disposed of at an on-site landfill. In 1969, an unknown quantity of TCE was released and contaminated the soil and underlying bedrock aquifer. There is also confirmed evidence that the spill was transported to the Branch River via runoff. The primary contaminants of concern identified in the Record of Decision affecting soil, groundwater, and sediment are VOCs (TCE, PCE), various organic compound, pesticides and metals (specifically chromium).
- Remedial Activities: The following remedial activities were proposed (USEPA, 2001):
 - In-situ vacuum extraction of soil contaminated with trichloroethylene
 - Excavation of approximately 550 cubic yards of landfill waste and sediments from within 100-year flood plain of Branch River
 - Construction of a RCRA C landfill cap

- Installation of leachate collection system
- Groundwater extraction and treatment of VOC contaminated groundwater
- Demolition and installation of impermeable barrier to two raceways
- Demolition and removal of remaining structures
- Grading and vegetating site at conclusion of remedial action.
- Current Site Status: The demolition of the raceway and other remaining facilities was completed in 1992. The two raceways were sealed and backfilled. Construction of a soil vapor extraction system was completed in December 1997 and became operational in May 1998. Excavation and final removal of landfill wastes for off-site disposal were complete in October 1999. The groundwater extraction and treatment system became operation in May 2000 and is anticipated to be operational for ten years.
- Impact to Blackstone River Water Quality for this TMDL study: The remedial action for the Stamina Mills is essentially complete with the exception of continued environmental monitoring. The primary impact to the Branch River was the sluice way, which has since been sealed. Further monitoring for this should be limited too future TMDL work on the Branch River.

2.9.6.3 Western Sand and Gravel

- *Media:* Soil, soil sludge, groundwater
- *Contaminants:* acids, solvents, TCE, PCE, VOCs, benzene, toluene, vinyl chloride, xylene, organics, arsenic, metals (chromium, lead)
- **Description:** Western Sand Gravel is a former 20-acre sand and gravel operation located along the Burrillville and North Smithfield line. The site was in operation from 1953 to 1979 as a sand and gravel operation and later a disposal site for liquid waste. In 1975, approximately 12-acres of the site was used to dispose 480,000 gallons of liquid waste, including chemical waste and septage. The liquid waste was disposed in unlined lagoons and seepage pits. Disposal of liquid waste continued until 1979 when a chemical pit fire forced officials to close operation. The site is located adjacent to Tarklin Brook, which is a tributary to Slatersville Reservoir. A contaminated plume from the unlined lagoons migrated off-site and contaminated the underlying high-yield aquifer. In 1982, EPA removed approximately 60,000 gallons of liquid waste from the twelve unlined disposal lagoons. In 1984, EPA provided alternate water supply to impacted residents and installed controls to minimize further off-site migration of contaminants.
- Remedial Activities: The following remedial activities were proposed (USEPA, 2001):
 - Construction of a RCRA C landfill cap
 - Installation of institutional controls (i.e., fence, signs)
 - Natural attenuation
 - Environmental monitoring (soils, groundwater, surface water).
- Current Site Status: The site is currently environmental monitored to evaluate the effectiveness of natural attenuation, which was originally proposed in 1991. EPA has reviewed the data and has concluded that natural attenuation is at or close to the predicted rate of natural attenuation. In October 2001, a Prospective Purchase Agreement was made between EPA and Supreme Mid-Atlantic Corporation to purchase the 25 acre site. Supreme Mid-Atlantic Corporation has proposed to construct a truck body assembly plant.
- Impact to Blackstone River Water Quality for this TMDL study: The site is far removed from the main stem of the Blackstone River and is thus unlikely to have a significant impact on loads to the Blackstone River. Further monitoring for this should be limited to future TMDL work on the Branch River.

2.9.6.4 Landfill and Resource Recovery, Inc.

- Media: Air, soil, debris, groundwater
- Contaminants: hydrogen sulfide, methane, VOCs
- **Description:** The Landfill and Resource Recovery, located in North Smithfield, consists of a 28-acre landfill and sand and gravel operation. The site has several wetland and perennial streams on the site, which are tributaries to the Slatersville Reservoir. The site began as a sand and gravel operation, and began accepting solid waste for disposal in 1927. There is documented evidence that hazardous waste was co-mingled with solid waste and disposed of on-site. The landfill ceased operation for hazardous waste disposal in 1979 at which time a PVC liner was installed. The landfill continued operation as a solid waste landfill until 1985. Solid waste was placed on top of the liner. In 1985, the owners of the site installed a second synthetic layer with gas vents to control air emissions. The landfill cover eroded into adjacent wetlands. Samples taken within the wetland indicated there was no contamination. Groundwater samples indicated the presence of VOCs, lead, chromium, and arsenic at low levels.
- Remedial Activities: The following remedial activities were proposed (USEPA, 2001):
 - Construction of a new cap layer more consistent with RCRA standards
 - Construction of stormwater controls to control runoff and minimize erosion
 - Installation of a landfill gas collection system with thermal destruction
 - Restoration and remediation of wetlands impacted due to erosion
 - Environmental site monitoring.
- Current Site Status: The construction of remedial facilities at the site is complete. Actual facilities
 constructed consist of a landfill cap, stabilized steep side slopes, and construction of thermal destruction
 system for landfill gases. In addition, institutional controls were installed. Environmental monitoring is
 still being conducted on-site.
- Impact to Blackstone River Water Quality for this TMDL study: The site is far removed from the main stem of the Blackstone River. As such, it is unlikely to have any significant impact on loadings to the Blackstone River. Further monitoring for this should be limited to future TMDL work on the Branch River.

3.0 EXISTING WATER QUALITY DATA FOR BLACKSTONE RIVER WATERSHED

Section 3.0 presents summaries of relevant water quality and related studies for the Blackstone River watershed. The types of data sought included: water quality, sediment quality, biological indicator parameters, and fish tissue. Primary parameters of concern consisted primarily of the following:

- Fecal coliform
- Copper
- Lead
- Nutrients (for the Valley Falls Pond assessment)
- Dissolved oxygen (for the Valley Falls Pond assessment)

However, related "secondary parameters" such as other heavy metals, total suspended solids, enterococcus, and others were summarized as well if the data were readily available. The secondary parameters may provide additional information regarding the processes that affect the primary parameters of concern.

The data were sought for the main stem of the Blackstone River, its tributaries, and for the reservoirs and impoundments in the watershed. Data were also sought for hazardous waste sites as they could impact the water quality in the river if pollutants find pathways to the streams via surface water runoff or groundwater transfer.

A total of 15 water quality, sediment, and biological studies were identified that are relevant for this project. These studies are summarized in Table 3-1. Each study is described in more detail in subsequent sections (Sections 3.1 to 3.15). These descriptions focus on the nature of the studies, locations, frequency, sampling constraints, and other information relevant to the interpretation of the data. Please note that the attached data discussion is limited to general conclusions/discussion presented in the original studies. A more comprehensive analysis of the water quality data, as relevant for the TMDL development, is presented in Section 4 in this volume.

The data of each study were synthesized in Microsoft Excel spreadsheets. Relevant data and graphs of each study are presented in Volume II (Appendices). Each study described within Section 3 has a corresponding Appendix number (e.g., Section 3.1 in Volume I corresponds to Appendix 1 in Volume II, etc.).

Table 3-1 Summary of Water Quality Data Sources in the Blackstone River Watershed

Section, Vol. I	Appendix, Vol. II	Study	Parameters	Matrix	Sampling Period
3.1	1	URI Wet Weather Study (Wright et al., 1991a)	Fecal coliform, TSS, metals, nutrients, PCBs, petroleum hydrocarbon, PAHs	Water	3 Storm Events: October 22, 1988 May 10, 1989 June 13, 1989
3.2	2	Systemwide Modeling for Providence CSO Program (URI, 1992)	Fecal coliform, TSS, metals, nutrients	Water	4 Storm Events: May 29, 1990 June 29, 1990 July 12, 1990 September 22, 1990
3.3	3	Blackstone River 1990, Pollutant Discharges and Water Quality Review (Wright et al., 1991b)	Fecal coliform, TSS, BOD, pH, Pb, ammonia, total phosphorus	Water	Monthly monitoring: 1988 and 1989
3.4	4	Blackstone River Water Quality Study (ASA, 1992b)	DO, temperature, nutrients, TSS	Water	July 9-11, 1991
3.5	\$	Providence - Seekonk Rivers TMDL Study (RIDEM, unpubl. data)	TSS, nutrients, BOD	Water	May to Sep., 1995 May to Nov., 1996
3.6	9	River Rescue Project (Kerr and Lee, 1996)	pH, temperature, TSS, nutrients, dissolved metals	Water	1990 to 1995
3.7	7	URI Watershed Watch, Lakes Monitoring Data (URI, unpubl. data)	Secchi depth, algae density, nutrients, DO, alkalinity, anions, fecal coliform, E. coli	Water	1993 to 2000
3.8	8	RIDEM Chemical Monitoring for Section 305b Assessment (RIDEM, 2000)	Temp., DO, total lead and copper, nutrients, fecal coliform	Water	1991-2000
3.9	6	USGS Water Resources Data (USGS, 2000)	Temp., DO, total metals, nutrients, fecal coliform	Water	1990-1999

Table 3-1 Summary of Water Quality Data Sources in the Blackstone River Watershed

Section,	Appendix,	Céruda	D		
	1 01: 11	Study	rarameters	Matrix	Sampling Period
3.10	10	Water Quality Sampling of Tributaries (NBC, 1997 to 1999)	Fecal coliform	Water	1997 to present
3.11	11	MaDEP Fish Toxics Monitoring (Maietta, 1993)	Metals, PCBs, organics	Fish tissues	1993
3.12	12	Bioassessment Screening of Rhode Island Freshwater Benthic Macroinvertebrates (Gould, 1998, 1999, 2000)	Biodiversity, macrofauna	Aquatic organisms	summers of 1998, 1999, 2000
3.13	13	Sediment Core Study (King, unpubl. data)	Metals, nutrients	Sediment	1988
3.14	14	RIPDES-Permitted Discharges (RIDEM, unpubl. data)	Metals, nutrients, fecal coliform	Water	1997-2001
3.15	15	Blackstone River Initiative	Temp., DO, total metals, nutrients, fecal coliform	Water	1991-1993

3.1 University of Rhode Island - Wet Weather Study

(Wright et al., 1991a)

During 1988 and 1989, the University of Rhode Island conducted a study for the Narragansett Bay Commission in order to assess the impacts of CSO events on the Providence River and upper Narragansett Bay under wet weather conditions. The following tributaries were monitored during the study: Blackstone, Moshassuck, Woonasquatucket, Ten Mile, Pawtuxet, Seekonk, and Providence. URI conducted the study over the course of three storm events in 1988 and 1989.

3.1.1 Sampling

Water quality samples were collected before, after, and throughout the duration of each of the three storms at two or three stations on the Blackstone River. Samples were taken from the following stations (Figure 3-1):

- BRSL: Blackstone River at the state line.
- WSTP: Effluent from the Woonsocket Sewage Treatment Facility (WSTP).
- BRCF: Upper Blackstone River at Central Falls.
- BRSM: Blackstone River, located on the center and upstream side of the Main Street Bridge in Pawtucket just downstream of the Slaters Mill Complex.

Stations BRSL and BRCF were added at the request of the Narragansett Bay Program and RIDEM after the first storm event, in an attempt to better characterize the wet weather contribution from Massachusetts to the Blackstone River in Rhode Island. The characteristics of each of the three storm events are summarized in Table 3-2.

Table 3-2 **Storm Characteristics**

	Storm 1	Storm 2	Storm 3
Date of Event	22-Oct-88	10-May-89	13-Jun-89
Total Rainfall (inches)	0.9	1.94	0.37
Duration (hours)	11	32	9
Peak Intensity (inches/hour)	0.19	0.13	0.08
Start of Storm	00:00h	11:00h	06:00h
Antecendent Dry Period (days)	13.5	4.5	3.5

^{*}Note: Rainfall characteristics are weighted by watershed (reported for the Blackstone watershed)

The rainfall selection criteria were selected in order to isolate the effect of a discrete event to permit the characterization of runoff and the determination of the impact on receiving water quality. The selection criteria for the storm events were as follows:

- Length of antecedent dry period exceeded 5 days
- Minimum duration of rainfall exceeded 6 hours
- Minimum amount of rainfall exceeded 0.5 inches
- Length of dry post-storm period exceeded 5 days

The May storm (Storm 2) was comparatively large with a total rainfall accumulation of almost 2 inches. It should also be noted that Storm 3 failed to meet the selection criteria because a storm event followed only 24 hours later with 0.8 inches of rain; the antecedent dry period was only 3.5 days.

Collection of samples commenced at each station a few hours prior to each storm. Throughout the duration of the storms, samples were collected every three hours for the first 12 hours. For the following 36 hours, samples were collected at four hour intervals. During days 3-5, samples were collected during low tide in conjunction with sampling in the Providence River. The samples were finally analyzed for E.coli, Enterococci, fecal coliform, BOD5, total solids, TSS, VSS, nutrients (nitrate, nitrite, ammonia, phosphates), oil and grease, and total, dissolved, and particulate metals (cadmium, chromium, copper, lead, nickel, zinc).

3.1.2 Data

The data of the dry and wet weather samples are presented in Appendix 1.

_

Source: RIGIS, MASSGIS

File: BW SMPL.apr

May 2002

Figure 3-1 URI WET WEATHER STUDY, 1991

3.2 Systemwide Modeling for Providence Area Combined Sewer System (URI, 1992)

In 1990, URI conducted additional flow and water quality monitoring of CSOs and receiving waters. This project was undertaken in an attempt to provide data calibration and validation to NBC's Systemwide Stormwater Management Model (SWMM) and receiving water quality model. The data were summarized and submitted to NBC on July 24, 1992. The study provides continuous flow monitoring from May through October of 1990. Water quality monitoring was conducted during four storm events.

3.2.1 Sampling

Sampling was conducted at a single station (Figure 3-2):

• *BLSMDN*: Blackstone River, located at Slaters Mill. The station is not influenced by tidal flows. The station location is identical with Station BRSM in Figure 3-1.

The following water quality constituents were measured by the URI study: conductivity, fecal coliform, total suspended solids, nitrite and nitrate, orthophosphate, biochemical oxygen demand, total copper, total lead, and total nickel. The characteristics of each storm event are summarized in Table 3-3.

Table 3-3
Storm Characteristics

	Storm 1	Storm 2	Storm 3	Storm 4
	May 29 to June 2,	June 29 to 30,	July 12 to 16,	September 22 to
Date of Event	1990	1990	1990	24, 1990
Total Rainfall				
(inches)	1.41	0.21	1.56	1.19
Duration (hours)	20	4	22	11
Peak Intensity				
(inches/hour)	0.21	0.09	0.29	0.53
Start of Storm	5/29, 14:00	6/29, 22:00	7/12, 09:00	9/22, 14:00
Antecedent Dry				
Period (days)	8	19	11	5

The selection criteria for the storm events were as follows:

- Length of antecedent dry period exceeded 5 days
- Minimum duration of rainfall exceeded 6 hours
- Minimum amount of rainfall exceeded 0.5 inches
- Length of post-storm dry period exceeded 5 days

Sampling was done before, during, and after each storm event in order to quantify impacts of the storm event. Samples were taken approximately every four hours during the storm after the start of runoff.

3.2.2 Data

The data of the dry and wet weather samples are presented in Appendix 2.

Rhode Island DEM

Source: RIGIS, MASSGIS

File: BW SMPL.apr

May 2002

Figure 3-2 URI WET WEATHER STUDY, 1992

3.3 Blackstone River 1990 – Pollutant Discharges and Water Quality Review (Wright et al., 1991b)

This study, prepared for the Narragansett Bay Commission, is a technical review of available information on water quality issues in the watershed. The original purpose of the study was to identify water pollution control and abatement measures to be undertaken for the protection or restoration of in-stream and downstream uses of the Blackstone River.

3.3.1 Discharge Review

The study reviewed 19 permitted dischargers and 3 draft permits (Table 3-4). Of these, 3 permits had expired and 6 were due to expire before January 1, 1991. Monthly discharge monitoring reports (DMR) for 1988-1989 were reviewed and dischargers were ranked by loadings for BOD, TSS, fecal coliform (FC). The permit design flows totaled approximately 65.4 million gallons per day (MGD) for Massachusetts (MA) and 44.9 MGD for Rhode Island (RI). The data were compared in an attempt to develop an understanding for relative importance of the major point sources.

Table 3-4
Major Pollutant Discharge Elimination System Permits in the Blackstone River Watershed in Massachusetts and Rhode Island

Discharger	State ID	Federal	Expiration Date	Receiving Water	Class
Massachusetts Permits					
Uxbridge WWTF	M-197	MA0102440	12/4/89	Blackstone River	В
UBWPAD WWTF	M-181	MA0102369	10/30/90	Blackstone River	В
Douglas WWTF	M-099	MA0101095	12/10/90	Mumford River	В
Guilford Industries	M-124	MA0001538	8/28/91	Gilbon Brook	В
Northbridge WWTF	M-051	MA0100722	6/30/92	Blackstone River	В
Hopedale WWTF	M-149	MA0102202	7/29/92	Mill River	В
N.E. Plating	M-383	MA0005088	9/29/92	Mill River	В
Grafton WWTF	M-065	MA0101311	9/21/94	Blackstone River	В
Upton WWTF	M -011	MA0100196	9/21/94	West River	В
Millbury WWTF	M-061	MA0100650	9/22/94	Blackstone River	В
Rhode Island Permits					
Central Falls CSO	RI-0100145	None Listed	10/17/88	Blackstone/Moshassuck Rivers	C/B
BVDC WWTF	RI-0100072	None Listed	11/23/88	Seekonk River	SC
Smithfield Corporation	RI-0000485	None Listed	12/9/90	Blackstone River	C
Tupperware Company	RI-0000566	None Listed	12/9/90	Branch River	В
Burrillville WWTF	RI-0100455	None Listed	12/11/90	Clear River	С
Woonsocket WWTF	RI-0100111	None Listed	12/27/90	Blackstone River	C
GTE Products	RI-0001180	None Listed	2/18/91	Blackstone River	C
Okonite Company	RI-0020141	None Listed	7/31/91	Blackstone River	C
Zambarano Hospital	RI-0100129	None Listed	9/21/92	Clear River	C

UBWPAD - Upper Blackstone Water Pollution Abatement District

WWTF - Wastewater Treatment Facility

BVDC - Blackstone Valley District Commission

District Commission; Draft permits under review:

UBWPAD WWTF, Uxbridge WWTF, BVDC WWTF, and City of Worcester CSO Facility

A comparison was made of the Permit Limits and the "Quarterly Noncompliance Reports" (QNRs) of 1988 and 1989 (Table 3-5). The QNRs were provided for Massachusetts by the U.S. EPA, Region 1, and for Rhode Island by RIDEM. The summary is based on monthly samples over the 2-year period; therefore the maximum number of violations is 24 (i.e., 100%).

In general, violations occurred infrequently at most facilities. The most notable exception was the BVDC facility on the Seekonk River; chronic problems existed relative to total suspended solids (TSS), biochemical oxygen demand (BOD), and fecal coliform (FC). Almost all months were in violation. Other violations of significance concerned pH values in MA for four WWTF, and total residual chlorine (TRC) in the Zambarano and Burrillville discharges.

Table 3-5
Summary of Violation Months for Massachusetts and Rhode Island Dischargers during 1988-1989

Facility	TSS	BOD	SS	TRC	pН	FC	Flow	NH3	TP	Pb
Massachusetts Permits										
Grafton WWTF			2	4	5	1				
Guilford Industries	1	1			1					
Millbury WWTF	1	2		2			2			
N.E. Platting					10					
Northbridge WWTF					13					
UBWPAD WWTF	6		2		15	4		3		
Uxbridge WWTF		1		7	18					
Rhode Island Permits										
BVDC WWTF	24	24	23			22				
Burrillville WWTF	3			13	6	3	2		2	
GTE Products	1									4
Okonite Company					2					
Smithfield Corporation							7			
Tupperware Company	2	1			1	1				
Woonsocket WWTF	7	10	3		7	16	3			
Zambarano Hospital	1			23	1	3				

Maximum violations = 24, which is equivalent to the 24 month period in 1988-89.

TSS = Total suspended solids

BOD = 5-day biochemical oxygen demand

SS = Settleable solids

TRC = Total residual chlorine

FC = fecal coliform

NH3 = ammonia

TP = phosphorus

Pb = lead

3.3.2 Data Comparison

In addition to the point source evaluation, the most current water quality data at the time of the studies were utilized to provide snapshots of the Blackstone River's water quality from Worcester to Slaters Mill, in dryand wet-weather conditions. Dry weather studies consisted of the following:

- 1985 study by MA Department of Environmental Quality Engineering for MA river portion (MADEQE, 1985)
- 1985 trace metal and organic surveys in 1985 by University of Rhode Island (Wright, 1988)
- 1987 study for RI river portion (EE-87) for Ocean State Power by Ecology and Environment, Inc. (EEI, 1988)
- 1989 trace metal survey by MADEP (MADEP, 1990)

In addition, the results were compared to the 1988-89 wet-weather study for trace metals and organic compounds in the RI river portion conducted by URI (Wright et al., 1991). This study is discussed in Section 3.1 of this report.

The MADEQE-85 and EE-87 studies measured dissolved oxygen The other studies included analyses of trace metals (cadmium, chromium, copper, lead, nickel, zinc) and polychlorinated biphenyls (PCB). See Appendix 3 for sampling locations of the studies and spatial distribution of concentrations.

3.4 Blackstone River Water Quality Study, 1991

(ASA, 1992b)

During July 9-11, 1991, a study was conducted in the reach of the Blackstone River downstream of a cooling water intake structure for a facility operated by Ocean State Power (OSP). OSP constructed a 500 megawatt combined cycle generating plant in Burrillville, RI. This plant requires up to 4.4 million gallons per day or 6.8 cubic feet per second of water for cooling and process purposes. This water is drawn from the Blackstone River, a short distance upstream of the Sayles Street bridge in Woonsocket, RI. OSP has been required to demonstrate that withdrawal during periods of low flow will not adversely affect river water quality in order to obtain a permit. The study was developed in order to assess and characterize dissolved oxygen levels in the river, along with levels of nutrients and other parameters affecting the DO balance.

3.4.1 Sampling

The study consisted of a total of eight sampling runs carried out over a 48 hour period. Measurements were taken at six hour intervals at 14 stations along the study area shown in Figure 3-3 and in Table 3-6, and also at intermediate points between stations.

Table 3-6
Water Quality Sampling Locations

Station	River Mile above	Location Description
No.	Slaters Mill dam	•
	(miles)	
1	14.1	Center of span, Sayles St. bridge
1a	13.9	East bank, 30 yds below Thundermist dam
2	13.35	North bank upstream side of Bernon St. bridge
3a	12.35	Center of river, downstream side of Hamlet Ave bridge adjacent to fire station
3	12.29	Center of river, 100 yrds upstream of WWTF outfall
4		WWTF, chlorine contact tank spillway
5	11.97	Center of river, 300 yds downstream of Woonsocket WWTF outfall
6	11.67	Center of river, in line with south face of large building on east bank of river
7	11.23	Center of river, adjacent to Woonsocket water treatment plant
8	10.73	Center of river, at bend adj. to Rte 99 overpass on Woonsocket-Cumberland town line
9	10.17	Adjacent to gravel pit, 800 yds downstream of town line
10	9.74	Center of river, 50 yds above Manville dam
10a	6.61	Upstream side of bridge downstream of Manville dam
11	8.19	West bank of river, 50 yds above Albion dam

See Figure 3-3 for locations.

Water samples were collected at river stations 1 to 11 (excluding stations 1a, 3a, and 10a). The sampling depth was 1 m, although at the shallower river stations, samples were collected at a depth of 0.5 m or less. The samples were analyzed for biochemical oxygen demand (BOD), suspended solids, specific conductivity, chlorophyll a, and organic and inorganic nitrogen.

The sampling event constitutes dry weather conditions. The rainfall measured at the T.F. Green Airport in Providence during this time period was as follows:

July 4	0.00"	
July 5	0.03"	
July 6	0.00"	
July 7	0.08"	
July 8	0.00"	
July 9	0.00"	(Sampling)
July 10	Trace	(Sampling)
July 11	0.10"	(Sampling)

3.4.2 Data

The data from this study are presented in Appendix 4.

Figure 3-3: Location of field program sampling stations on the Blackstone River. Distances from Slaters Mill dam at the mouth of the river in Pawtucket is given (in miles) in parentheses. (ASA, 1992b)

3.5 Providence - Seekonk River Total Maximum Daily Load Project

(RIDEM, unpublished data)

RIDEM is currently in the process of developing a TMDL for the Providence and Seekonk Rivers to address hypoxia and nutrient loadings. Monitoring was conducted at numerous locations within the Providence and Seekonk Rivers including its tributaries: Blackstone, Moshassuck, Pawtuxet, Ten Mile, and Woonasquatucket Rivers.

3.5.1 Sampling

The sampling location on the Blackstone River was as follows:

• Slaters Mill Dam: Located in Pawtucket. The station location is identical with Station BRSM in Figure 3-1.

Samples were collected routinely at irregular intervals during the summers of 1995 and 1996. The sampling period for the 1995 survey was from the end of May to the end of September. The sampling period for the 1996 survey was from the beginning of May to mid November. The 1995 data consisted of a 24-hour composite sample taken at approximate one-hour intervals.

Sample analyses consisted of the following:

• Nutrients: nitrate/nitrite, phosphate, ammonia, total nitrogen, total phosphorous, total

particulate carbon, total particulate nitrogen

• Other parameters: BOD5, silicon dioxide, TSS

3.5.2 Data

Provided in Appendix 5 is a summary of data.

3.6 River Rescue Project, Water Quality in Rhode Island's Urban Waters, 1990-1995

(Kerr and Lee, 1996)

The River Rescue Project was a water quality monitoring program conducted between 1990 and 1995 (Kerr and Lee, 1996). Monitoring was conducted at ten stations along five tributaries: Blackstone, Moshassuck, Pawtuxet, Ten Mile, and Woonasquatucket Rivers. The program was developed as a partnership between Citizens Bank, URI Coastal Resource Center, and RI Sea Grant Program.

3.6.1 Sampling

Samples were collected approximately monthly at each sampling location. River Rescue monitored the Blackstone at three locations (Figure 3-4):

- B2: Station located in Blackstone, MA. Sampling was conducted from the upstream side or from the shore just upstream of the Main Street road bridge.
- Blons: Station located at Route 122 in Lonsdale upstream of densely developed portions of the river. Sampling was conducted from midstream from the upstream side of the road bridge.
- B1: Station located at the mouth of the river near Main St. in Pawtucket, RI. Sampling was conducted at mid-flow from the upstream side of the road crossing.

Sample analyses consisted of the following:

- In-situ measurements: pH, water temperature, air temperature, dissolved oxygen, TSS, and hardness
- Nutrients: nitrate/nitrite, ammonia, dissolved inorganic and organic nitrogen, total

dissolved nitrogen, total dissolved phosphorus, dissolved organic phosphorus,

particulate phosphorus, and total phosphorus

• Total metals: cadmium, chromium, copper, lead, and nickel

3.6.2 Data

Provided in Appendix 6 is a summary of the data. The Kerr and Lee report (1996) indicated that the quality of the Blackstone River has improved during the 1990s, especially for concentrations of cadmium and nickel. Comparisons with historical data show decreases in chromium, cadmium, nickel, nitrogen, and phosphorus in conjunction with increases in copper and lead.

Rhode Island DEM

Source: RIGIS, MASSGIS

File: BW SMPL.apr

May 2002

Figure 3-4 RIVER RESCUE STUDY 1990-1995

3.7 URI Watershed Watch, Lakes Monitoring Data, 1993-2000

(URI, unpublished data)

The URI Watershed Watch Program utilizes volunteers to sample various lakes and rivers in several watersheds throughout Rhode Island. The water quality analyses performed by the Watershed Watch provide information on the following parameters: nutrient enrichments (eutrophication), lake acidification, and bacterial contamination. Data are generally available from 1993 to 2000 with a few site exceptions.

3.7.1 Sampling

The following waterbodies in the Blackstone River watershed were monitored (Figure 3-5):

- Pascoag Reservoir
- Spring Lake
- Keech Pond
- Smith and Sayles Reservoir
- Spring Grove Pond
- Slatersville Reservoir
- Valley Falls Pond

The waterbodies were monitored for the following parameters:

• Water Clarity: Monitored weekly utilizing Secchi disk and view tube.

• Algal Density: Monitored bi-weekly.

Dissolved Oxygen: Monitored bi-weekly at a depth of 1 m above bottom.
 Water Temperature: Monitored weekly at the surface and bi-weekly at depth.

• Alkalinity and pH: Analyzed three times per year.

• Nutrients: Total and dissolved phosphorus, ammonia, total and nitrate nitrogen analyzed

three times per year.

• Anions: Analyzed three times per year to assess water hardness and potential impacts of

road salts.

• Bacteria: Fecal coliform and E. coli generally analyzed three times per year to determine

suitability of recreational use and potential contamination of sewage.

3.7.2 Data

Summaries of the data for each of the seven waterbodies are presented in Appendix 7.

3.8 State of the State's Waters- Rhode Island, 2000 Section 305(b) Report (Section III): Stream Sampling Sites for 1991-2000, Chemical Monitoring (RIDEM, 2000)

The Office of Water Resources' (OWR) surface water monitoring program was designed in an attempt to gather state-wide baseline data in conjunction with targeted monitoring information. Data collected is utilized in establishing and reviewing Rhode Island's water quality standards, to measure progress toward achieving water quality goals, and to supply information for use in permit limit development.

3.8.1 Sampling

In 1991, RIDEM developed a cooperative agreement with URI's Civil and Environmental Engineering Department to conduct a study establishing a baseline monitoring program for the rivers of Rhode Island. Approximately twenty-five stations were monitored under this program during 1991, 1993, 1996, 1998, and 1999. Sampling was done on a quarterly (seasonal) basis during these years. Funding problems prevented the development and implementation of a cooperative agreement with URI for this program during 1995 and 1997.

Relevant stations within the project area consist of the following (Figure 3-6):

- Round Top Brook
- Pascoag River
- Clear River
- Abbott Run Brook (Cumberland)
- Run Brook (North Attleboro)

3.8.2. Data

The samples were analyzed for trace metals, nutrients, BOD5, and other parameters. Data are provided in Appendix 8.

3.9 Multiple Station Analyses: Water Resources of the Blackstone River Basin, Massachusetts (USGS, 2000)

The U.S. Geological Survey (USGS) periodically collects water quality samples and data from selected water bodies. These data are published in the USGS's annual Water Resources Data reports (USGS, 2000).

3.9.1 Sampling

The USGS collected and continues to collect water samples from multiple stations within the Blackstone River Basin. Data for two stations are detailed in this report:

- Branch River at Forestdale (Station number 1111500): The station is located 1 mile east of Slatersville, and 1.6 miles upstream from the mouth of the river. The station is located on the left bank of the river, 20 ft upstream from an abandoned bridge site, and 400 ft downstream from Mill Dam at Forestdale.
- Blackstone River at Manville (Station number 1112900): The station is located at Manville Road Bridge, 400 ft downstream from the mill dam at Manville, and 2.5 miles downstream from Woonsocket Sewage Treatment Plant.

The exact station locations are not known; a map with the estimated station locations is presented in Figure 3-7.

3.9.2 Data

Parameters analyzed included temperature, specific conductance, pH, color, DO, coliform, calcium, magnesium, sodium, potassium, nitrate and nitrite, ammonia, phosphorus, aluminum, cadmium, chromium, copper, iron, lead, manganese, mercury, nickel, silver, zinc, phenols, and oil and grease. The data for the Forestdale and Manville stations are presented in Appendix 9.

May 2002

File: BW SMPL.apr

Figure 3-7 USGS STATIONS 1990-1999

3.10 Water Quality Sampling of Tributaries, 1998 to present

(NBC, 1998 to 2001)

NBC has initiated a program to monitor fecal coliform in the tributaries within the NBC service area. The NBC data set provides recent and continued sampling of fecal coliform data. The data set is used primarily by NBC in combination with inspection and maintenance of regulators and tide gates to assure there are no dry weather overflows.

3.10.1 Sampling

The program entails sampling on a weekly basis from 1998 to present. There are two sampling stations on the Blackstone River (Figure 3-8):

- S-2: Lonsdale Avenue (Whipple Bridge), Lincoln/Cumberland, RI
- S-3: Slaters Mill Dam, Pawtucket, RI.

Samples were collected routinely and not driven by specific weather conditions. The samples were separated into dry weather, wet weather, and mixed weather conditions, using T.F. Green Airport rain gage data.

3.10.2 Data

Provided in Appendix 10 is a summary of data.

Rhode Island DEM

Source: RIGIS, MASSGIS

File: BW SMPL.apr

May 2002

Figure 3-8 **NBC WATER QUALITY SAMPLING**

3.11 The Blackstone River, Fish Toxics Monitoring – MADEP (Maietta, 1993)

The Massachusetts Department of Environmental Protection (MADEP) collected, prepared, and analyzed edible fillets of fishes for selected metals, polychlorinated biphenyls (PCB), and organochlorine pesticides as part of an extensive, interstate evaluation of water quality, and biological integrity of the Blackstone River.

This work was performed in order to monitor for gross changes with the potential to occur as a result of the reflooding of parts of the Riverdale Impoundment around 1984. The specific objectives of this project were as follows:

- Collect and analyze fish tissue samples from the Blackstone River Basin to provide data for human health risk assessment, and to further define the fate and transport of contaminants in the aquatic ecosystem.
- Provide fish toxics data for comparison with existing statewide database.

3.11.1 Sampling

Four of the major impoundments on the mainstem of the Blackstone River were chosen for this monitoring effort (Table 3-7). Waite Pond in Leicester, Massachusetts (MA) was chosen as a control site.

Table 3-7

1993 Blackstone River Fish Toxics Monitoring Survey - Sampling Location

Station Name	River Mile	Sampling	Description
	(from	Date	
	Slaters Mill)		
Waite Pond	Control	6/15/93	Waite Pond in Leicester, MA
	Station		(not in Blackstone watershed)
Fisherville Pond	37.0	7/7/93	Fisherville Pond downstream of confluence of the Blackstone
			and Quinsigamond River in Grafton, MA
Riverdale Impoundment	32.0	7/26/93	Riverdale Impoundment on Riverdale Street in Northbridge, MA
Rice City Pond	28.0	7/1/93	Rice City Pond on Hartford Avenue in Uxbridge, MA
Tupperware Impoundment	18.2	6/17/93	Tupperware Impoundment upstream of the Blackstone Gorge in Blackstone River, at RI/MA state line, Woonsocket, RI

Samples were collected during the summer of 1993 by electroshocking. Edible fish fillets were submitted to the laboratory for analyses of selected metals, PCBs, and organochlorine pesticides.

Fish captured for analysis included *Micropterus salmoides* or largemouth bass (5 fish), *Esox niger* or chain pickerel (1 fish), *Ameiurus nebulosus* or brown bullhead (4 fish), *Lepomis macrochirus* or bluegill (5 fish), *Perca Flavescens* or yellow perch (4 fish), and *Catostomus commersoni* or white sucker (3 fish).

3.11.2 Data Collection

Data are summarized for metals, mercury, and PCBs (Tables 3-8 to 3-12).

Table 3-8
Metal Concentrations in Fish Tissue – Summary

Metal	Mean Concentration (mg/kg)	Range (minmax.)	Number of samples below Method Detection Limit		
Arsenic	0.034	< 0.040 - 0.10	28		
Cadmium	0.30	< 0.60 - Not listed	40		
Chromium	0.56	< 0.60 - 2.8	30		
Copper	0.42	< 0.60 - 1.4	31		
Mercury	0.268	0.038 - 1.04	0		
Lead	0.62	<1.0 - 2.2	37		
Selenium	0.27	0.07 -0.65	0		

Note: Forty (40) samples were analyzed.

Table 3-9
Copper Concentrations in Fish Tissue - by Station

Station Name	Range of Concentrations (mg/kg wet weight) (minmax.)
Waite Pond	< 0.03 - 1.4
Fisherville Pond	< 0.03 - 0.8
Riverdale Impoundment	< 0.03
Rice City Pond	< 0.03 - 1.0
Tupperware Impoundment	< 0.03 - 1.0

Table 3-10 Lead Concentrations in Fish Tissue - by Station

Station Name	Range of Concentrations (mg/kg wet weight) (minmax.)
Waite Pond	< 0.05
Fisherville Pond	< 0.05 - 2.2
Riverdale Impoundment	< 0.05
Rice City Pond	< 0.05
Tupperware Impoundment	< 0.05 - 2.2

Table 3-11 **Mercury Concentrations in Fish Tissue - by Station**

Station Name	Mean Concentration of Total Hg (mg/kg)	Range (minmax.)		
Waite Pond	0.817	0.457 - 1.04		
Fisherville Pond	0.195	0.074 - 0.302		
Riverdale Impoundment	0.101	0.058 - 0.156		
Rice City Pond	0.096	< 0.0002 - 0.118		
Tupperware Impoundment	0.207	0.038 - 0.487		

Table 3-12 **PCB Concentrations in Fish Tissue - by Station**

Station Name	Mean Concentration of Total PCB (mg/kg)	Range (minmax.)
Waite Pond	0.09	< 0.089 - < 0.089
Fisherville Pond	0.24	< 0.089 - 0.71
Riverdale Impoundment	1.08	< 0.089 - 2.8
Rice City Pond	2.09	0.24 - 4.4
Tupperware Impoundment	0.87	< 0.089 - 4.7

Mercury in edible fish fillets appeared to be a problem in Waite Pond. The Massachusetts Department of Public Health (MDPH) reviewed the data and in June issued a Public Health Fish Consumption Advisory. Mercury in edible fish fillets did not appear to be a significant problem in the Blackstone River or its impoundments. This may be attributable to the high concentrations of dissolved organics present in the river which can bind mercury or block methylization processes.

MDPH did not advise regarding any of the other metals detected. Arsenic was below method detection in most fish sampled. Arsenic concentrations were well below United States Environmental Protection Agency (EPA) criteria.

PCB, while absent from Waite Pond and at fairly low concentrations in Fisherville Pond, appeared to be a problem further downstream on the Blackstone River. Concentrations increase dramatically between the Fisherville Pond and Riverdale Impoundment. In June 1994, the MDPH issued advisories regarding the PCB contamination. The advisories were issued for Riverdale Impoundment, Rice City Pond, and the Tupperware Impoundment.

The full set of data for the Tupperware Impoundment, which is the impoundment closest to Rhode Island, is presented in Appendix 11.

3.12 Rapid Bioassessment Screening of Rhode Island Freshwater Benthic Macro-invertebrates

(Gould, 1998; Pomeroy, 2000; da Silva, 2000)

Through a contract with RIDEM, Roger Williams University has conducted an annual survey of macrofauna in Rhode Island Waters since 1991. The purpose of the survey is to document baseline freshwater macrofauna yearly in order to adequately monitor aquatic ecosystems and their distribution within Rhode Island.

3.12.1 Sampling

The 1998 sampling program had a total of 45 sampling stations for biological monitoring, encompassing a wide variety of different watershed environments and water quality types. Seven sampling stations were located within the Blackstone River watershed; station locations are identical to stations in Figure 3-6:

- Nipmuc River
- Pascoag River
- Keech Brook
- Clear River
- Abbott Run Brook (Cumberland, RI)
- Abbott Run Brook (North Attleboro, MA)
- Blackstone River

The 1999 and 2000 sampling programs had a total of 43 sampling stations. Sampling stations located within the Blackstone River watershed were the same as those surveyed during the 1998 sampling.

Sampling was done during the following periods:

- Summer of 1998, from mid-July to early August
- Summer of 1999, from June through July
- Summer of 2000, in August.

A hand-held drift net with an opening of 45 cm by 23 cm was utilized for the sampling. It was determined, through experimentation and consultation with other researchers, that three samples of approximately 1.0 m^2 were sufficient to generate suitable specimens indicative of the riffle community in the stream.

3.12.2 Data

Conclusions derived from the surveys are summarized below (following closely the text in the respective reports). For the year 2000 survey, we present the Biological Protocol Ranking only; physical scores were not available for that year. The detailed results of the Biological Protocol Ranking for 1998-2001 are provided in Appendix 12.

3.12.2.1 Nipmuc River-Top Brook

1998: The report concluded that this feeder stream to the Nipmuc River provided an excellent riffle habitat composed of small stone and pebble with a corresponding good macroinvertebrate population just below a large pool within the brook. Non-point sources to the brook include road, septic, and agricultural runoff, although the surrounding conservation land limits contaminated runoff to the brook. Signs of large mussels were present. The Nipmuc River is classified as a 2nd order stream. The physical score for the Nipmuc River

was 92. The Biological Protocol Ranking score was 81% (non-impaired). The survey found three distinct organisms: Gomphus sp., Nigronia sp., and Oecetis sp.

1999: Findings were similar to the survey conducted in 1998. Although the riffle area was relatively shallow (8 cm), diversity was great due to a good flow rate of water through the riffles. The physical score for the Nipmuc River was 88. The Biological Protocol Ranking score was 75% (slightly impaired). The survey found 12 distinct organisms: Nigronia sp., Corydalus sp., Marcostemum sp., Parapsyche sp., Psychomyia sp., Chimarra sp., Chironomus sp., Horse Hair Worm, Stenonema sp. Acroneuria sp., Lanthus sp., and Boyeria sp.

2000: The Biological Protocol Ranking score was 50% (moderately impaired). The survey identified 13 distinct organisms: Nigronia sp., Neohermes sp., Macrostemum sp., Chimarra sp., Sialis sp., Pentaneura sp., Isotomurus sp., Aquatic Worm, Beloneuria sp., Perlesta sp., Stonefly Larvae, Boveria sp., and Water Strider.

2001: This feeder stream to the Nipmuc River provides excellent small stone/pebble riffle with a corresponding good macroinvertebrate population just below a large pool within the brook. A Conservation Area protects surrounding land. Non-point inputs include road, septic and agriculture. In 1998, the dam supporting the pool was upgraded and signs of large mussels were present. Although relatively shallow, there is good flow and diversity continues to be high. The Biological Protocol Ranking score was 63% (slightly impaired).

3.12.2.2 Pascoag River

1998: The report concluded that downstream from the pond and dam, the Pascoag River exhibited well-oxygenated flow. Such conditions would generally lead to a good habitat for macroinvertebrates. However, human activities, such as litter, road runoff, and oil slicks, impacted the river. The river bottom consisted of embedded rocks of many sizes. During 1998 the water levels were moderate and debris in the river was noted. The Pascoag River is classified as a 2nd order stream. The physical score for the Pascoag River was 86. The Biological Protocol Ranking score was 75% (*slightly impaired*). The survey identified five distinct organisms: *Argia sp., Psephenus sp., Hydropsyche sp., Brachycentrus*, and *Stenonema sp.*

1999: Report conclusions were primarily the same as those drawn through the 1998 study. The physical score for the Pascoag River was 87. The Biological Protocol Ranking score was 75% (slightly impaired). The survey identified 10 distinct organisms: Simulium sp., Stenelmis sp., Psephenus sp., Stenonema sp., Argia sp., Lanthus sp., Horse Hair Worm, Aquatic Worm, Macrostemum sp., and Chimarra sp.

2000: The Biological Protocol Ranking score was 75% (slightly impaired). The survey identified 14 distinct organisms: Simulium sp., Tipula sp., Stenelmis sp., Psephenus sp., Stenenema sp., Lestes sp., Corydalus sp., Macrostemum sp., Arctopsyche sp., Chimarra sp., Nvctiophvlax.sp., Mesovelia sp., Aquatic Worm, and Leech.

2001: Downstream from the pond and dam, this urbanized stream exhibits a well-oxygenated flow, which one would expect to be a good habitat for macroinvertebrates. However, human activities impact the river; these include litter, road runoff, and oil slicks. Septic, and other urban runoff is assumed to occur within the stream. Water flow, levels, and diversity are all moderate at this site. The Biological Protocol Ranking score was 69% (slightly impaired).

3.12.2.3 <u>Keech Brook</u>

1998: The report concluded that Keech Brook, located within the George Washington Management Area, is within a well-protected watershed. The flow during 1998 sampling was higher than in previous years. Riffles were composed of cobble and small stone. Keech Brook is classified as a 2nd order stream. The physical score for Keech Brook was 105. The Biological Protocol Ranking score was 50% (moderately impaired). The

survey identified eight distinct organisms: Nirgronia sp., Psepheus sp., Tipula sp., Hemerdromia sp., Isonychia sp., Hastapaerla sp., Stylogomphus sp., and Rhyacophila sp.

1999: The flow recorded during sampling in 1999 was lower than in previous years with a recorded depth of only 7 cm. Sand runoff from the nearby access road had washed into the stream. Only moderate diversity was found within the cobble and small stone riffles. The physical score for Keech Brook was 94. The Biological Protocol Ranking score was 44% (moderately impaired). The survey identified six distinct organisms: Nigronia sp., Marcrostemum sp., Polycentropus sp., Gerris sp., Sialis sp., and Chironomus sp.

2000: The Biological Protocol Ranking score was 63% (slightly impaired). The survey identified twelve distinct organisms: Boveria sp., Cordulegaster sp., Calopteryx sp., Macrostemum sp., Nigronia sp., Tipula sp., Neoperla sp., Beloneuria sp., Stenelmis sp., Pentaneura sp., Chironomus sp., and Water Striders.

2001: Riffles are composed of cobble and small stone. However, its shallow depth and low dissolved oxygen concentration during the sampling season contribute to its relatively low diversity. The Biological Protocol Ranking score was 50% *(moderately impaired)*.

3.12.2.4 Clear River

1998: The report concluded that throughout the summer months, the riffle community within Clear River (Chepachet) is well-defined, associated with moderate size rocks. The largest point sources entering the river are the Burrillville Sewage Treatment plant (located upstream of the sampling station) and non-point sources from roads and suburban developments. The land surrounding the stream has continued to become more urbanized. During sample collection, a strong chlorine aroma was encountered. Road runoff was also observed near the bridge abutment. Diversity was fair. The Clear River is classified as a 4th order stream. The physical score for the Clear River was 86. The Biological Protocol Ranking score was 63% (slightly impaired). The survey identified seven distinct organisms: an unidentified genus from the family Simulidae, Dineutus sp., Arctopsyche sp., Lirceus sp., Potamyia sp., Stenonema sp., and Corydalus cornu.

1999: During the 1999 sampling, both depth (24 cm) and flow were considered good. Stream cover was minimal, and trash was noted in surrounding areas. Diversity at this site was considered very good. The physical score for the Clear River was 90. The Biological Protocol Ranking score was 81% (non-impaired). The survey identified 15 distinct organisms: Right-handed snail, Nigronia sp., Psephenus sp., Stenonema sp., Psephenus sp., Gammarus sp., Simulium sp., Macrostemum sp., Chimarra sp., Psychomyia sp., Tipular sp., Leech, and Dasyheles sp.

2000: The Biological Protocol Ranking score was 69% (slightly impaired). The survey identified 13 distinct organisms: Stenonema sp., Stenelmis sp., Gammarus sp., Aquatic Worm, Simulium sp., Macrostemum sp., Leeches, Lestes sp., Boveria sp., Isotoma sp., Crayfish, Water Strider, and Dobson or Fishfly Larvae.

2001: Stream cover was minimal and some trash was noted. However, diversity at this site was very good and continued to increase for the 2001 sampling season. There was a large amount of sand (approximately 50% of the substrate) noted in the reach this year. The Biological Protocol Ranking score was 63% (slightly impaired).

3.12.2.5 Abbot Run Brook (Cumberland)

1998: Abbot Run Brook exhibited good habitat. The land use surrounding the stream has become more suburbanized with many houses being constructed within the last few years. Sandbars were observed in several areas of the stream, likely due to runoff from the surrounding roads. Abbot Run Brook is classified as a 3rd order stream. The physical score for Abbot Run Brook (Cumberland) was 93. The Biological Protocol

Ranking score was 56% (moderately impaired). The survey identified five distinct organisms: Hetaerina, Beloneuria sp., Agnetina sp., Stenonema sp., and Dineutus sp.

1999: Conditions were similar as during the 1998 survey. The land surrounding the stream had continued to become more urbanized with the appearance of many new houses. Runoff from the surrounding roads continued to be a factor. The physical score for Abbot Run Brook (Cumberland) was 82. The Biological Protocol Ranking score was 50% (moderately impaired). The survey identified six distinct organisms: Marcrostemum sp., Chimarra sp., Beraea sp., Perlesta sp., Nigronia sp., and Chironomus sp.

2000: The Biological Protocol Ranking score was 63% (slightly impaired). The survey identified eight distinct organisms: Macrostemum sp., Chimarra sp., Oligostomis sp., Neohermes sp., Nigronia sp., Corvdalus sp., Heptagenia sp., and Stenonema sp.

2001: This stream is relatively fast flowing providing excellent habitat. The relatively shallow depth and good riffle environment consisting of gravel-pebble substrate provide for a relatively diverse community. Growth of vegetation along the bank continued to expand. The Biological Protocol Ranking score was 50% (moderately impaired).

3.12.2.6 <u>Abbot Run Brook (North Attleboro)</u>

1998: The report concluded that the stream is fast-moving and is providing excellent habitat. The stream is located downstream from the Arnold Mills dam which provides some additional oxygenation. The stream supports a relatively diverse community, due to its shallow depth (10 cm) and a good riffle environment consisting of a gravel-pebble substrate. Non-point sources consist primarily of road runoff. The surrounding land use is primarily low density housing and small farmland. A sandbar developed in the stream during 1998 and vegetation along the bank continues to flourish providing more shade to parts of the stream. Abbot Run Brook is classified as a 3rd order stream. The physical score for Abbot Run Brook (North Attleboro) was 84. The Biological Protocol Ranking score was 81% (non-impaired). The survey identified eight distinct organisms: Nigronia, Dineutus sp., Hydropsyche sp., Chimarra, unident., Simulium, Pisidium sp., and Agnetina sp.

1999: Report conclusions were primarily the same as those drawn in the 1998 study. The depth was found to be 14 cm, and some evidence of silt and a sandbar was found. Growth of vegetation along the bank continued to flourish. The physical score for Abbot Run Brook (North Attleboro) was 80. The Biological Protocol Ranking score was 63% (slightly impaired). The survey identified eight distinct organisms: Perlesta sp., Chimarra sp., Marcrostemum sp., Caddisfly Case, Horse Hair Worm, Nigronia sp., Lirceus sp., and Chironomus sp.

2000: The Biological Protocol Ranking score was 50% (*moderately impaired*). The survey identified nine distinct organisms: *Stenonema sp.*, *Piscicolaria reducta*, *Macrostemum sp.*, *Pisidium sp.*, Horse Hair Worm, *Nigronia sp.*, *Tipula sp.*, *Chironomus sp.*, and Crayfish.

2001: The land surrounding the stream continues to be suburbanized with the appearance of new houses. Runoff from surrounding roads may have contributed to the noted levels of silt in spite of the good flow of this stream. The Biological Protocol Ranking score was 50% (moderately impaired).

3.12.2.7 Blackstone River

1998: The report concluded that the Blackstone River at the station below the Manville Dam is a fifth order stream. The riffle community is mainly composed of boulders to pebbles. Blue-green algae on the rocks were noted at the sample collection site. The river has point and non-point source additives; non-point sources

include agricultural, road, and urban environments. During the summer of 1998 the organisms were more diverse than in previous years. The survey found five distinct organisms: *Corydalus cornutu*, *Hydropsyche sp.*, *Potamyia sp.*, *unident*, and *Stenonema*.

The physical score for the Blackstone River was 92 in a data set which included a low score of 30 for the Woonasquatucket River and a high score of 116 for the Ashaway River. The physical score was based on the following observations and measurements: predominant land use, local erosion, physical characteristics of stream bed (width, depth, velocity), channelization, canopy cover, sediment deposits, and substrate components (inorganic and organic).

The Biological Protocol Ranking was based on Plafkin *et al.* (1989) using the Wood River as a reference station. The score for the Blackstone River was 69% *(slightly impaired)*. A score above 81% would be defined as non-impaired, and a score below 60% would be defined as moderately impaired.

1999: The report concluded that the Blackstone River at the station below the Manville Dam had low diversity. Blue-green algae were noted coating the surface of many of the rocks. Duckweed was present. The presence of trash surrounding the sampling area was also noted. The survey identified six distinct organisms: *Marcrostemum sp., Rhyacophila sp.*, Caddisfly Case, Leech, *Gammarus sp.*, and *Nataraia sp.* The physical score for the Blackstone River was 83. The Biological Protocol Ranking score was 50% (moderately impaired).

2000: The Biological Protocol Ranking score was 63% (*slightly impaired*). The survey identified seven distinct organisms: *Macrostemum sp.*, *Nehalennia sp.*, *Stenonema sp.*, *Nixe sp.*, *Leucrocuta sp.*, Bloodworm Midge, and Fingernail Clam.

2001: Blue-green algae was noted on many rocks, as well as *Lemna* (duckweed). Trash also continued to be noted. The Biological Protocol Ranking score was 50% *(moderately impaired)*.

3.13 Dr. John King, URI: Sediment Core Data, 1988

(unpublished data)

In 1988, Dr. John King of the University of Rhode Island collected cores at several locations on the Blackstone River. The research team usually determined the magnetic susceptibility on all cores from one site, and then chose the best core for trace metals analyses. Magnetic susceptibility is a measure of how magnetizable a substance can become in the presence of a magnetic field. Specifically, it is the ratio of magnetization to magnetic field. Susceptibility values are "dimensionless SI units." The data are still unpublished; permission was obtained from the Dr. King to include the data in this report (John King, pers. comm., 4/9/02).

3.13.1 Sampling

The sediment coring locations included the following two stations (Figure 3-9):

- Tupperware Impoundment: At the Tupperware Impoundment location, the research team determined the magnetic susceptibility of the sediment of two cores in order to identify polluted intervals (Cores TUPP1 and TUPP2). The station was located 10 m upstream of the center of the dam.
- Valley Falls Pond: Only one core was collected for Valley Falls Pond. The station was located in the in the center of the pond, which is located to the west of the mainstem of the Blackstone River.

Samples for both sites were analyzed for metals (cadmium, chromium, copper, iron, lead, manganese, nickel, silver, zinc). In addition, Valley Falls Pond sediment samples were analyzed for carbon, nitrogen and phosphorus.

3.13.2 Data

The data of the study are presented in Appendix 13.

Figure 3-9
URI SEDIMENT SAMPLING (Dr.King)

3.14 RIPDES-Permitted Discharges: Effluent Data, 1997 - 2001

(RIDEM, unpublished data)

There are a total of 17 active permitted facilities located in the Rhode Island portion of the watershed, as described in Section 2.9.1. The following seven facilities discharge constituents of concern for this project (i.e., copper, lead, fecal coliform, nutrients):

- Atlantic Thermoplastics
- Blackstone Smithfield Corporation
- Burrillville Wastewater Treatment Facility
- Okonite Company
- Osram Sylvania Products, Inc (2 outfalls)
- Woonsocket Wastewater Treatment Facility
- Zambarano Memorial Hospital

The location of these facilities is presented in Figures 2-13A and 2-13B. Monitoring data collected as a requirement of the RIPDES permit were available from RIDEM for the period January 31, 1997 to October 31, 2001. These data are unpublished. The summary of the data are presented in Appendix 14.

3.15 Blackstone River Initiative: Water Quality Analysis of the Blackstone River Under Wet and Dry Weather Conditions

(Wright, et al., 2001)

The Blackstone River Initiative (BRI) was organized by United States Environmental Protection Agency (EPA) at the request of the commissioners of the Massachusetts Department of Environmental Protection (MADEP) and the Rhode Island Department of Environmental Management (RIDEM) in 1990. The BRI was an inter-agency, interstate project to monitor and model water and sediment quality of the Blackstone River. The project area extended from the headwaters at the City of Worcester, Massachusetts, to the confluence at Slaters Mill in Pawtucket, Rhode Island. A draft report was published in April 1996 and underwent a regional review by EPA. In November 1997, the Region I EPA Administrator requested a review with the EPA Science Advisory Board (SAB). A second draft in February 1998 was reviewed at a meeting in March 1998 by the SAB. A final report was issued in May 2001.

Objectives of the BRI consisted of the following (Wright et al., 2001):

- Describe the steady state, dry weather water quality conditions in the watershed, including the Blackstone, major tributaries, and major wastewater discharges;
- Measure sediment oxygen demand (SOD);
- Determine the toxicity of ambient water, sediments, and wastewater discharges;
- Calibrate and validate a dissolved oxygen and trace metal models for the river;
- Utilize the models and field data to estimate the relative contribution of dry and wet weather point and non-point pollutant sources;
- Describe the wet weather water quality conditions in the watershed to include the river, major tributaries, and major wastewater discharges;
- Identify and rank the major wet weather pollutant "hot spots" in the watershed;
- Determine the toxicity of ambient water under wet weather conditions and compare the results with criteria based toxicity;
- Determine the relative importance between wet weather non-point and point source pollutant loadings;
- Determine the wet weather loading rate of pollutants, especially nitrogen, to Narragansett Bay; and
- Forecast annual wet weather loading rates.

3.15.1 Sampling

3.15.1.1 Sampling Stations

Data were collected during three dry weather and three wet weather events. Samples were collected at a total of 17 locations along the river, 5 tributaries, and 2 treatment plant outfalls and 1 CSO (Figure 3-10; Table 3-13):

Figure 3-10

Map of Sampling Location (Source: BRI)

Table 3-13
Water Quality Sampling Locations

Dry Weather	Wet Weather	River	Location
Massachusetts	Portion		
	BWW-00	Blackstone	Greenwood St., Worcester, MA
BLK-01	BWW-01	Blackstone	Millbury St., Worcester, MA
BLK-02	BWW-02	Blackstone	McCraken Rd., Millbury, MA
BLK-03		Blackstone	Riverlin St., Millbury, MA
BLK-04	BWW-04	Blackstone	Blackstone St. (Singing Dam), Sutton, MA
BLK-05	BWW-05	Quinsigamond	Millbury St., Grafton, MA
BLK-06	BWW-06	Blackstone	Route 122A, Grafton, MA
BLK-07	BWW-07	Blackstone	Riverdale St., Northbridge, MA
BLK-08	BWW-08	Blackstone	Hartford St., (Rice City Pond), Uxbridge, MA
BLK-09	BWW-09	Mumford	Mendon St., (Rte. 16), Uxbridge, MA
BLK-10	BWW-10	West	Centerville (Off Rte. 16), Uxbridge, MA
BLK-11	BWW-11	Blackstone	Route 122 Bridge, Uxbridge, MA
BLK-12		Blackstone	Route 122 (near USGS Gage), Millville, MA
Rhode Island	Portion		
BLK-13	BWW-13	Blackstone	Bridge St. (State Boundary), Blackstone, MA
BLK-14	BWW-14	Branch	Route 146A, Slatersville, MA
BLK-15	BWW-15	Blackstone	Winter St., Woonsocket, RI
BLK-16	BWW-16	Mill	Route 114, Woonsocket, RI
BLK-17	BWW-17	Peters	Hamlet Ave., (Rte. 122 and 126), Woonsocket, RI
BLK-18	BWW-18	Blackstone	Manville Hill Rd., Cumberland, RI
BLK-19		Blackstone	School St./Albion Rd., Cumberland, RI
BLK-20	BWW-20	Blackstone	Lonsdale Ave., Lonsdale, RI
BLK-21	BWW-21	Blackstone	Main St., (Slaters Mill), Pawtucket, RI

See Figure 3-10 for locations.

The program further included three point sources:

- Station 22: CSO facility in Worchester, MA (wet weather only)
- Station 23: Upper Blackstone Water Pollution Abatement District (UBWPAD)
- Station 24: Woonsocket Wastewater Treatment Facility (Woon-WWTF).

3.15.1.2 Hydrology

The system flow characterization of the Blackstone River was based on data from USGS established sites and additional flow gaging stations for subsequence development of the flow profile. Instream flow measurements were available at nine sites. There were three permanent USGS gaging stations in the watershed:

- Quinsigamond River at North Grafton, MA (upstream of river station 05)
- Branch River at Forestdale, RI (upstream of river station 14)
- Blackstone River at Woonsocket, RI (river station 17).

The USGS also established six temporary gaging stations for this study. These included four on the Blackstone River (river stations 01, 04, 11, and 20) and two on the tributaries (Mumford [station 09] and

Peters River [station 16]). Additional discharge data from other point sources such as industrial discharges were incorporated from the 1990 URI and EPA study. Flows for the dry weather survey are summarized in Table 3-14; flows for the wet weather survey are presented in Appendix 15.

Table 3-14

Summary of Flows (in cubic feet per second) for the 1991 Dry Weather Surveys

USGS Gage Location	7/10/91	7/11/91	July Average	8/14/91	8/15/91	August Average	10/2/91	10/3/91	October Average
Woonsocket	142	132	137	157	146	152	676	595	635.5
Quinsiga- mond River	7.7	6.9	7.3	8.6	8.5	8.6	56	48	52
Branch River	28	24	26	32	29	30.5	110	98	104

3.15.1.3 <u>Dry Weather Sampling</u>

The dry-weather program consisted of three 48-hour surveys in 1991 on the following dates:

Survey 1: July 10-11, 1991
Survey 2: August 14-15, 1991
Survey 3: October 2-3, 1991

Samples were collected at 4 different times during each survey with the exception of dissolved oxygen which was measured 8 times.

3.15.1.4 Wet Weather Sampling

Three storms were sampled on the following dates:

Storm 1: September 22, 1992
Storm 2: November 2, 1992
Storm 3: October 14, 1993.

Precipitation data are summarized in Table 3-15. The total number of samples per station was up to 9 in Storm 1, 14 in Storm 2, and 11 in Storm 3. Toxicity testing was performed on samples representing first flush and peak flow for each station and discharge. Due to the BRI's budget constraints three river stations were deleted from sampling (Stations 03, 12, and 19).

Table 3-15

Precipitation Log of Three Storms for the Blackstone River Wet Weather Studies

Gage Name	Location	Maintained by	Туре	Rainfall in inches		
	•			Storm 1	Storm 2	Storm 3
R1N	Worcester Airport, MA	NWS	1	0.44	0.98	1.3
R2U	Westborough WWTF, MA	URI	1	NA	0.83	0.85
R3U	Millbury WWTF, MA	URI	1	NA	0.77	NA
R4M	Millbury WWTF, MA	WWTF	2	0.66	0.62	NA
R5N	Buffumville, MA	NWS	2	0.63	0.99	1.15
R6N	Northbridge, MA	NWS	2	0.54	0.94	0.69
R7N	West Hill Dam, MA	NWS	2	0.53	0.89	0.9
R8N	Putnam, CT	NWS	2	0.63	0.84	1.15
R9U	Burriville WWTF, RI	URI	1	NA	0.85	NA
R10M	Burriville WWTF, RI	WWTF	2	0.74	NA	0.48
R11N	Woonsocket, RI	NWS	2	0.56	0.86	0.61
R12U	Woonsocket WWTF, RI	URI	1	0.46	0.78	NA
R13M	Bucklin Pt. WWTF, RI	WWTF	2	0.49	NA	NA
R14S	Providence, RI	RIDEM	2	0.51	NA	NA
R15U	Fields Point WWTF, RI	URI	1	0.62	0.76	NA
R16N	TF Green Airport, RI	NWS	1	0.62	0.8	0.27

R1N: R=Rainfall; 1=Station ID; N=National Weather Service (NWS); U=URI; S=State; and M=Municipal; RIDEM=Rhode Island Department of Environmental Management; Type 1=Continuous Recorder; Type 2=Daily Load; NA=Not available.

3.15.2 Data Collection

Samples from the Blackstone River and its tributaries were analyzed for:

- biochemical oxygen demand (BOD5)
- total suspended solids (TSS)
- volatile suspended solids (VSS)
- chloride
- dissolved ammonia (NH3-N)
- dissolved nitrate (NO3-N)
- dissolved ortho-phosphorous (PO4-P)
- total and dissolved metals (cadmium, chromium, copper, lead, and nickel)
- hardness (calcium and magnesium)
- fecal coliform
- E.coli (wet weather only)
- chlorophyll a (dry weather only)
- toxicity.

Field measurements consisted of:

- dissolved oxygen (DO)
- temperature
- pH
- conductivity.

The three point sources (UBWPAD, Woon WWTF, CSO- Worchester) were analyzed for aluminum, cadmium, calcium, chromium, copper, lead, magnesium, nickel, zinc, ammonia, total solids, TSS, total organic carbon, and alkalinity.

Data are presented in Appendix 15.

3.15.3 Water Quality Computer Modeling

The BRI employed two fate and transport models: a DO model and a trace metals model. The DO model was an EPA supported model, QUAL2E. This steady state model simulates DO and all the constituents that impact DO, including CBOD, nutrients, and productivity. The trace metals model was PAWTOXIC, based on QUAL2E, which has been used by the authors in several stream systems in RI. It adopts a very simple but effective approach to trace metal dispersal pattern by considering two simplified equations involving net sediment transport and metal partitioning.

3.15.4 Toxicity Tests

As part of the BRI, three types of toxicity tests were implemented:

- Water Column Toxicity: The Water Column Toxicity test focused on acute and chronic toxicity. The
 testing was performed on water samples collected during, both, dry and wet weather surveys. The
 toxicity tests conducted were the fathead minnow, *Pimephales promelas*, larval growth and survival test
 and the *Ceriodaphnia dubia* survival and reproduction test. The responses of the two organisms were
 statistically compared to the responses of the organisms in laboratory control water.
- Whole Sediment Toxicity: The Whole Sediment Toxicity test was also conducted. The Blackstone River sediments were analyzed twice in 1991 and once in 1993 by the EPA Region I, Office of Ecosystem Protection (ESP). The test species utilized were Chironomus tentans and Hyallela azteca.
- Sediment Pore Water Toxicity Analysis: Pore Water Toxicity analysis was conducted from seven
 Blackstone River sediment stations. The organisms utilized for toxicity analysis were Ceriodaphnia dubia
 and Pimephales promela. Forty-eight hour acute toxicity tests compared organism response in the
 Blackstone River sediment pore water with lab culture water and reference pore water obtained from
 sediments in Gilboa Pond, Grey's Pond, and Lexington Pond.

4.0 WATER QUALITY DATA SYNTHESIS

4.1 Introduction

This section presents a summary of relevant available data for the Blackstone River watershed project area, including the Peters River and Mill River. The focus of the summary is to provide an overall understanding of the water quality in the Rhode Island section of the watershed. The data were specifically examined to provide information toward the goal of developing TMDLs for the following primary parameters:

- Fecal coliform
- Copper
- Lead

Nutrients and related parameters were assessed as they pertain to the water quality of Valley Falls Pond. Aside from these parameters, other key parameters were assessed to a limited extent as they may provide insight into processes that affect the concentrations and distribution of the primary parameters. Generally, other parameters, monitored in the original studies along with the primary parameters of interest, were statistically analyzed and presented in the Appendices.

The data synthesis provides information on the following issues:

- Concentration of parameters in space and time
- Sources for parameters
- Information that could be relevant for potential load reductions
- Data needs for field monitoring (see Section 5)

All tables and graphs for specific parameters are attached at the end of Section 4. Please note that, in order to avoid confusion as a result of the large number of graphs and tables in Section 4, all tables were numbered as *Figures*, rather than as a separate set of tables. However, reference made to tables in appendices in Volume II are labeled as "Table A [followed by the appendix number, followed by the number of the table in the respective appendix]".

It should be noted that the data synthesis in this report is only based on existing data that were collected and published by different sources. In addition, detection limits and analytical methods varied to some extent in the different studies. Our quality control measures were limited to the identification of unexplained outliers in the data sets and obvious reporting inconsistencies. Similarly, some of the statistical averages that were generated in this report are based on a very small amount of available data. The reliability of the statistical averages generated in this report should be compared to the number of points in the data set. The number of data points is reported in appropriate tables in the appendices. In addition, the appendices also include the original data of reviewed studies and should be used for reference in case of questions.

4.2 Methodology

The existing data described in Section 3 were reviewed. The sampling locations of the studies discussed in more detail in the text are listed in Figure 4-1 to 4-3. Individual parameters for which data exist were summarized in Figure 4-4.

The available data consist of the following:

- Surface water quality data from the Blackstone River watershed from regular monitoring studies (independent of weather conditions: Appendices 3 to 6, 8 to 10, and 15) and from targeted stormwater discharge investigations (Appendices 1, 2, and 15).
- Water quality data from the largest reservoirs in the Branch River watershed (Appendix 7).
- Information on RIPDES-permitted point sources such as Woonsocket Wastewater Treatment Facility (Appendix 14).
- Sediment quality data from Valley Falls Pond and Tupperware Impoundment (Appendix 13).
- Fish tissue data (Appendix 11).
- Benthic macroinvertebrate information from field screening during the summer (Appendix 12).

The quality control of the original data consisted mainly of the examination of outliers and inconsistencies. In case of uncertainties based on the data reports, we contacted the researchers involved in the data collection, if possible. These uncertainties included detection limits, analytical methods, analyzed fraction of the samples (e.g., dissolved versus total sample for metals), units (e.g., mg/g versus ug/g), reporting of nutrient component data (mg/l NO3 or NH3 versus mg/l N; mg/l PO4 versus mg/l P), sampling locations, sampling depth, etc.

Statistical analyses were limited to the determination of the mean concentrations and the range (i.e., minimum and maximum concentrations). For bacteriological data, the mean concentrations represent the geometric mean. The goal of the calculation of mean concentrations was to arrive at representative values. Representative values need to incorporate analytical results below the detection limit. Therefore, analyses that resulted in "not detected" were replaced by "<[detection limit]" when the detection limit was known. Values reported as "<[detection limit]" were used as follows:

- In most cases, the actual detection limit was used in the summation for the mean concentrations. The resulting mean concentration was then reported as "<[mean concentration]". For example, for the data string 80, 40, <40, <80, the reported mean concentration was <60.
- In selected cases where using the full value of the detection limit had only a minimal impact on the mean concentration, only 50% of the detection limit value was used in the summation for the mean concentration. For example, for the data string 80, 40, <4, 80, a value of 2 was used for the analytical result <4; the resulting mean was 51.

The waters of the Blackstone River watershed are designated as Class B, B1, or B1 {a} waters (see Section 2.4.3 and Figure 2-9). Water quality data were compared to Rhode Island's water quality criteria for the respective classes, as appropriate; the criteria are listed in Figures 4-5 to 4-7.

The discussed data were separated into the following sections:

- Fecal coliform (Section 4.3)
- Copper (Section 4.4)
- Lead (Section 4.5)
- Nutrients and related Parameters (for Valley Falls Pond) (Section 4.6)
- Total suspended solids (Section 4.7)
- Flow (Section 4.8)
- Biodiversity Impacts (section 4.9)

Data were related to weather conditions to the extent possible to evaluate the effect of dry weather conditions and stormwater discharges. For studies where specific rainfall measurements were not available, rainfall data from T.F. Green Airport were used as reference. Rainfall data relevant for the various studies are included in the respective appendices.

4.3 Fecal Coliform

Fecal coliform data were available from the following sources:

- Regular Monitoring:
 - Narragansett Bay Commission, 1997-2000: Two stations in the lower part of Blackstone River (Appendix 10)
 - USGS, 1990 2000: Regular monitoring at the Branch River between the Slatersville dam and the Blackstone River, and on the Blackstone River at Manville (Appendix 9)
 - *RIDEM, 1991 2000:* Selected tributaries in the watershed (Round Top Brook, Pascaog River, Clear River, Abbot Run Brook) (Appendix 8)
 - RIPDES-permitted discharge data (Appendix 14)
- Stormwater Monitoring:
 - URI, Wet Weather Study 1, 1988-1989: Four stations along Blackstone River (Appendix 1)
 - URI, Wet Weather Study 2, 1990: Slaters Mill station only (Appendix 2)
 - Blackstone River Initiative, 1991-1993: Stations along entire Blackstone River (Appendix 15)

A summary of the mean fecal coliform concentrations from all available studies in the Rhode Island section of the river is presented in Figure 4-8 (means for fecal coliform represent *geometric* means). Data are organized by position in the watershed. These mean concentrations will be discussed in the text below.

4.3.1 Blackstone River

The most continuous data sets for the Blackstone River were collected by the USGS and the NBC for the following stations:

- Manville (USGS Station at Manville, 1990-2000): The mean dry weather fecal coliform concentration was 63 col/100 ml; the mean wet weather concentrations was 514 col/100 ml (Figure 4-8). The dry weather concentrations typically ranged between 20 and 200 col/100 ml; the wet weather concentrations typically ranged between 100 and 2,000 col/100 ml (Figure 4-10).
- Lonsdale Avenue, Lonsdale (NBC Station S-2, 1997 to 2000): This station is located upstream of the CSOs entering the lower Blackstone River in Central Falls. The mean dry weather fecal coliform concentration was 94 col/100 ml; the mean wet weather concentrations was 697 col/100 ml (Figure 4-8). The dry weather concentrations typically ranged between 10 and 1,000 col/100 ml; the wet weather concentrations typically ranged between 100 and 2,000 col/100 ml (Figure 4-11).
- Slaters Mill (Station S-3, 1997 to 2000): Fecal coliform concentrations increased between Lonsdale Avenue and Slaters Mill, possibly as a result of the CSO inflows. The mean dry weather fecal coliform concentration was 215 col/100 ml; the mean wet weather concentration was 2,200 col/100 ml (Figure 4-8). The dry weather concentrations typically ranged between 20 and 2,000 col/100 ml; the wet weather concentrations typically ranged between 100 and 10,000 col/100 ml (Figure 4-12).

Stormwater studies conducted by URI also show an increase in fecal coliform concentrations during wet weather. The mean dry and wet weather concentrations measured in the Rhode Island section of the

Blackstone River were similar to the measurements collected by the USGS and NBC (Figure 4-8). The fecal coliform concentrations typically remained elevated for several days after the storm.

During the Blackstone River Initiative (BRI; Wright et al., 2001), fecal coliform concentrations were collected along the entire Blackstone River (MA and RI sections). One sample run was conducted for fecal coliform during dry weather for each storm event. High dry weather concentrations were measured in the Branch River and Peters River (Figure 4-13), as discussed further below. In the Blackstone River, the highest concentrations were measured at BRI Station 17, possibly as a result of the inflow from Peters River, and at BRI Station 21, conceivably from dry weather CSO discharges from Central Falls and Pawtucket.

BRI wet weather concentrations are averaged for each of the three storms in Figures 4-14 to 4-16. These data reflect the considerable variability in fecal coliform supply to the river, as a function of the rainfall patterns and the nature of the sources. Fecal coliform loading during Storm 1 was concentrated in the upper Blackstone River watershed in Massachusetts and in the Branch River area of the Blackstone River (Figure 4-17). Source rankings computed by Wright et al. (2001) indicate that the Massachusetts segment contributed 69% of the fecal coliform in the Blackstone River (Figure 4-18). The highest load in the Rhode Island section was contributed between Lonsdale Avenue and Slaters Mill with 14%, possibly reflecting the contribution of CSOs.

Regulatory standards for fecal coliform were exceeded some of the time during dry weather sampling and most of the time during wet weather sampling (Figure 4-19).

4.3.2 Mill River

Fecal coliform concentrations were only measured by the BRI during dry weather sampling. The mean fecal coliform concentration was 73 col/100 ml, ranging between 10 and 120 col/100 ml (Figure 4-13).

The land use for the Massachusetts segment of the Mill River is primarily open space with low-density development. The Rhode Island segment of the river is characterized by high-density residential development and industrial/commercial zones. The river flows for 3,200 feet before being conveyed underground to the Blackstone River. In Massachusetts, the Hopedale WWTF is permitted discharge (0.6 MGD) to the Mill River. The Rhode Island segment is subject to several stormwater discharges and is incorporated into an Army Corps flood control project. CNC International is permitted to discharge stormwater associated with industrial activity. Sources of fecal coliform in Massachusetts would be primarily non-point from stormwater and migratory waterfowl in the upstream impoundments. Sources of fecal coliform in Rhode Island would also be due to non-point from stormwater.

4.3.3 Peters River

Fecal coliform data from Peters River are only available from the BRI study. Dry weather and wet weather concentrations were very high during all three storms (Figures 4-14 to 4-16). During the dry weather sampling events, the mean fecal coliform concentration was 567 col/100 ml, ranging between 260 and 1,060 col/100 ml (Figure 4-13). During Storm 2, dry weather concentrations were 46,000 col/100 ml; wet weather concentrations were 56,000 col/100 ml. The high concentrations most likely reflect a leak in a sewer pipe crossing the river (J. T. Gaucher, City Engineer, pers. comm., January 2002); the leak has since been repaired. Therefore, representative fecal coliform data reflecting current conditions are not available for Peters River.

The land use for the Massachusetts segment of the Peters River is medium to medium high density residential development with open space from Franklin State Forrest. The Rhode Island segment of the river consists of urban, high-density development. The river flows for approximately 5,000 feet before being conveyed underground to the Blackstone River. There are no permitted discharges on the Peters River. The Rhode Island segment is subject to several stormwater discharges and is incorporated into an USACE's flood control

project. Sources of fecal coliform in Massachusetts would be primarily non-point from stormwater discharges associated with medium to medium high density development. Sources of fecal coliform in Rhode Island would also be due to non-point from stormwater. The Massachusetts segment of the Mill River is in non-attainment of fecal coliform bacteria

4.3.4 Branch River

Fecal coliform concentrations of the ponds and reservoirs in the Branch River watershed were very low (Figure 4-20). The geometric mean was below 10 MPN/100 ml. The maximum concentration was measured as 60 MPN/100 ml in the Slatersville Reservoir, located closest to the Blackstone River.

The longest fecal coliform record downstream of the reservoirs was obtained at the USGS station in Forestdale (1990-2000). Fecal coliform concentrations were low. The mean dry weather concentration was 19 col/100 ml; the mean wet weather concentration was 69 col/100 ml (Figure 4-8). The wet and dry weather concentrations typically ranged between 5 and 500 col/100 ml (Figure 4-9). The highest wet weather concentration was measured in 1998 with 2,000 col/100 ml.

The BRI measured fecal coliform concentrations in the Branch River at Station 14. The mean dry weather concentration was 280 col/100 ml, ranging between 160 and 220 col/100 ml (Figure 4-13). The mean dry weather concentrations prior to the three storms ranged from 320 to 1,800 col/100 ml (Figures 4-14 to 4-16). The mean wet weather concentrations for each of the three storms ranged from 280 to 2,900 col/100 ml. The highest concentrations during the storm were measured with 6,200 col/100 ml. These concentrations, particularly the dry weather concentrations were higher than the concentrations measured by the USGS (Figure 4-9). The reason for the discrepancy is not known and should be investigated in the sampling program to better define the fecal coliform loading of the Branch River to the Blackstone River.

Fecal coliform concentrations of the tributaries to the Branch River watershed (Round Top Brook, Pascaog River, Clear River) are low. The mean concentrations in all three streams were below 50 col/100 ml, both during dry and wet weather (Figure 4-21). The maximum concentration was measured in Round Top Brook at 3,900 col/100 ml. Given the low concentrations and the fact that the streams are upstream of the Slatersville Reservoir, their effect on the fecal coliform concentration in the Blackstone River is expected to be very small.

4.3.5 Other Tributaries

RIDEM also monitored Abbot Run Brook at two locations. The mean dry and wet weather concentrations in Cumberland were 7 col/100 ml (Figure 4-21). In North Attleboro, the mean dry and wet weather concentrations were 41 col/100 ml. However, the stations were located several miles upstream of the confluence with the Blackstone River. They are therefore not considered representative of the fecal coliform concentration and load entering the Blackstone River.

4.3.6 Woonsocket Wastewater Treatment Plant

Fecal coliform data are available from January 1997 to October 2001. The mean monthly average fecal coliform concentration was 13 col/100 ml, ranging between 1 and 100 col/100 ml (Figures 4-22 and 4-23). The highest monthly average was 108 col/100 ml. The maximum daily concentration was 240,000 col/100 ml. The mean monthly flow was 9.18 million gallons per day (MGD), or 14 cfs.

The mean fecal coliform concentrations of the final effluent from the Woonsocket WWTF of the URI 1988/89 study; Figure 4-8). The mean dry weather concentrations were below 50 col/100 ml; the maximum concentration was 17,000 col/100 ml. The mean wet weather concentrations were generally below 100 col/100 ml; the maximum concentration was 49,000 col/100 ml, however.

It should be noted that the significant upgrades to the Woonsocket Wastewater Facility may have changed effluent characteristics. The upgrades were completed by September 2001. Therefore, the effluent data prior to this date may not reflect present conditions.

4.3.7 CSOs

There are a total of 15 CSOs between Lonsdale Avenue in Lonsdale and Slaters Mill. Fecal coliform concentrations on individual CSOs were not available. However, the fecal coliform concentrations in the CSOs are expected to be on the order of 10,000 to 1,000,000 col/100 ml (Berger, 1997). The fecal coliform loading from CSOs will be addressed during Phase III of the Narragansett Bay CSO Abatement Program. The CSOs capture much of the urban stormwater runoff in this area.

4.3.8 Other Point Sources

Other RIPDES-permitted point sources that are monitored for fecal coliform consist of the following (Figure 4-22):

- Zambarano Memorial Hospital: The hospital is located in the upper Branch River watershed. Concentrations and flow rates are comparatively low. The hospital is too far upstream in the watershed to have an effect on the Blackstone River.
- Burrillville WWTF: The treatment plant is located in the central region of the Branch River watershed, upstream of the Slatersville Reservoir. The effluent discharge rate is approximately 1/10 of the rate discharged by the Woonsocket WWTF. The fecal coliform concentrations are low. The monthly mean concentration was 28 col/100 ml. The highest daily maximum concentration was 300 col/100 ml.
- Atlantic Thermoplastics: The outfall is located on the lower Branch River. The mean monthly fecal coliform concentration was reported as 578 col/100 ml; the maximum reported concentration was 24,000 col/100 ml, which could be the upper detection limit. Flow rates are comparatively low with on average 1,200 gallons per day (or 0.002 cfs).
- Blackstone Smithfield Co: The outfall is located on the Blackstone River, just downstream of the confluence with the Branch River. The mean monthly fecal coliform concentration was reported as 4,980 col/100 ml; the maximum reported concentration was 24,000 col/100 ml, which could be the upper detection limit. Flow rates were comparatively low with on average 3,000 gallons per day (0.005 cfs).

4.3.9 Valley Falls Pond

Fecal coliform concentrations in the Valley Falls Pond were measured three times in Year 2000. The mean concentration was 57 MPN/100 ml; the maximum concentration was 200 MPN/100 ml (Figure 4-20). It is not known if these data represent dry weather or wet weather conditions, as the exact sampling date is still being sought.

4.3.10 Fecal Coliform Sources in the Blackstone River - Summary

Fecal coliform enters the Rhode Island section of the Blackstone River primarily from the following sources:

• Input from Massachusetts: Wright et al. (2001 determined that on average 69% of the total load enters the Blackstone River in Massachusetts during wet weather. Equivalent dry weather load calculations are not available.

- CSO: The CSOs between Lonsdale Avenue in Lonsdale and Slaters Mill appear to have high loadings of fecal coliform as expected.
- Branch River: The Branch River discharges on average 175 cfs/year. This represents roughly 25% of the flow in the Blackstone River at the confluence, based on the mean flow rate of 779 cfs in the Blackstone River at the USGS gage in Woonsocket. Data by the USGS suggest that the coliform contributions are generally low with the exception of two recent wet weather samples (Figure 4-9). Data by the Blackstone River Initiative indicate that coliform concentrations during wet weather from the Branch River are high, however.
- City of Woonsocket: Wright et al. (2001) calculated high fecal coliform loadings from the City of Woonsocket. The total load entering the Blackstone River between BRI Stations 13 and 17 was approximately 9%. The main sources are likely stormwater discharges.
- RIPDES –permitted Discharges: Fecal coliform loads appear to be small, although fecal coliform concentrations were high in the effluent from the Blackstone Smithfield Company.
- Mill River: Dry weather concentrations were within the regulatory standards.
- Peters River: Given that the BRI fecal coliform data from the river were affected by a broken pipe, recent data are not available.

4.4 Copper

Copper data were available from the following sources:

- Regular Monitoring:
 - *USGS*, 1990 2000: Approximately monthly monitoring at the Branch River between the Slatersville dam and the Blackstone River, and on the Blackstone River at Manville (Appendix 9)
 - River Rescue, 1990-1993: Approximately monthly monitoring at the MA/RI state border, Lonsdale Avenue bridge in Lonsdale, and Slaters Mill (Appendix 6).
 - *RIDEM, 1991 2000:* Selected tributaries in the watershed (Round Top Brook, Pascaog River, Clear River, Abbot Run Brook) (Appendix 8)
 - RIPDES-permitted discharges (Appendix 14)
- Stormwater Monitoring:
 - URI, Wet Weather Study 1, 1988-1989: Four stations along Blackstone River (Appendix 1)
 - URI, Wet Weather Study 2, 1990: Slaters Mill station only (Appendix 2)
 - Blackstone River Initiative, 1991-1993: Stations along entire Blackstone River (Appendix 15)
- Sediment cores were collected by Dr. King from URI in 1988 from the Tupperware Impoundment and Valley Falls Pond.
- Fish toxics monitoring in fish tissues in the Tupperware Impoundment (Appendix 11)

Most of the copper data are *total* copper concentrations. Dissolved copper data are limited to data collected by the USGS and the BRI study (Wright et al., 2001). On average, the dissolved fraction of the BRI samples represented 58% of the total copper concentration.

A summary of the mean total copper concentrations from all available water quality studies in the Rhode Island section of the river is presented in Figure 4-24. Data are organized by position in the watershed. These mean concentrations will be discussed in the text below.

4.4.1 Blackstone River

The most continuous data sets for the Blackstone River were collected by River Rescue (RR) and the USGS station in Manville. The total copper concentrations of the two studies generally ranged between 5 and 15 ug/l (Figures 4-26 and 4-27). The dissolved copper concentration at the USGS Manville station averaged 4.9 ug/l (Figure 4-26). The total copper concentrations at the MA/RI border (RR Station B2) and Slaters Mill (RR Station B1) decreased slightly over the 4-year monitoring period (Figure 4-27).

The USGS data were separated by weather conditions during sampling; however, both the total and dissolved copper fractions did not reveal a specific trend (Figure 4-26). Similarly, the River Rescue data did not reflect a clear trend based on weather conditions (Figure 4-28).

Targeted dry weather and stormwater studies were conducted by URI (Appendices 1, 2 and 15):

- Dry Weather: The mean total copper concentrations during dry weather ranged between 7.1 an 14.5 ug/l at stations in the Rhode Island section of the Blackstone River, consisting on average of 58% dissolved copper (Figures 4-29 and 4-30).
- Wet Weather: During wet weather, the total copper concentrations did not show consistent increases from dry weather conditions (Figures 4-32 to 4-34), although copper loads increased due to higher flows. In the Rhode Island section of the river, the highest copper concentrations were measured in the effluent from the Woonsocket Treatment Plant (Figure 4-24).

The BRI study indicated that the primary sources of copper loading are the Upper Blackstone Water Pollution Abatement District (UBWPAD) facility in Worchester, Massachusetts, and resuspended sediments from impoundments (Figures 4-32 to 4-34). Source rankings computed by Wright et al. (2001) indicate that the Massachusetts segment contributed on average 79% of the total copper load to the Blackstone River during dry weather and 75% during wet weather, ranging between 69% and 80% for the 3 storms (Figure 4-35). The UBWPAD contributed 26% on average. The Woonsocket WWTF contributed 5.9%, which is the highest contribution in the Rhode Island section of the Blackstone River.

The hardness in the Blackstone River was low (Figure 4-36). The copper concentrations measured during the BRI study exceeded the hardness-dependent regulatory standards for copper almost all the time, both during dry and wet weather (Figures 4-37 to 4-40).

The mean hardness at the three River Rescue stations ranged from 25 to 30 mg/l. For a hardness of 25 mg/l, the acute criteria for dissolved copper is 4.6 ug/l; the chronic criteria is 3.5 ug/l. Thus, the mean dissolved copper concentration of 4.9 ug/l at the USGS station in Manville slightly exceeded this standard. During the BRI study, the dissolved copper fraction represented 58% of the total copper fraction. Using this fraction, the *total* copper concentrations would exceed the acute criteria at 7.9 ug/l and the chronic criteria at 6.0 ug/l. Accordingly, the copper concentrations measured by River Rescue exceeded the regulatory standards frequently as well.

Copper concentrations in sediments are only available for the Tupperware Impoundment. Copper concentrations were elevated at 530 ug/g in the upper 22 cm of the sediment column, and then decreased sharply to less than 5 ug/kg (Appendix 13). The average copper concentration in Rhode Island soils is 13.6 ug/g with a standard deviation of 28.2 ug/g (RIDEM, 1995).

Copper concentrations in fish tissues were measured in the Tupperware Impoundment, along with other impoundments along the Blackstone River in Massachusetts (Appendix 11). Copper concentrations in the fish tissues from the Tupperware impoundment ranged from <0.03 to 1.0 mg/kg (wet weight).

4.4.2 Mill River

Copper data for Mill River are limited to the BRI study. During dry weather conditions, the mean total copper concentration was 3.7 ug/l, consisting of 30% dissolved copper during the July and August surveys and 72% dissolved copper during the October survey (Figures 4-29 to 4-31). The maximum total copper concentration was 6.6 ug/l. None of the samples exceeded the chronic or acute criteria for dissolved copper (Figures 4-30 and 4-37).

During the three storms of the BRI study, the mean total copper concentrations ranged between 0.8 to 2.9 ug/l (Figures 4-32 to 4-34). The highest total copper concentration measured in the Mill River was 5.6 ug/l. Estimated wet weather concentrations of dissolved copper did not exceed the chronic or acute criteria on average (Figures 4-38 and 4-39).

The total copper load contributed by Mill River to the Blackstone River appears to be small. Wright et al. (2001) calculated the dry weather loading as 0.63% (Figure 4-35). During wet weather, the combined loading of Mill River and Peters River was 0.36%.

4.4.3 Peters River

Copper data for Peters River are also limited to the BRI study. During dry weather conditions, the mean total copper concentrations were very variable between the three surveys. Most of the samples had concentrations between 1.6 and 3.3 ug/l, with the exception of two samples in July 1999, which contained 25 and 37 ug/l of total copper (Figure 4-29). On average, 8% of the samples exceeded the acute and as well as the chronic criteria for dissolved copper, and 33% exceeded the acute criteria (Figures 4-30 and 4-37).

During the three storms, the mean total copper concentrations ranged between 1.8 to 4.9 ug/l (Figures 4-32 to 4-34). The highest total copper concentration measured in the Peters River was 7.3 ug/l. Estimated mean wet weather concentrations of dissolved copper did not exceed the chronic or acute criteria (Figures 4-38 and 4-39).

The total copper load contributed by Peters River to the Blackstone River appears to be small. The dry weather load was calculated by Wright et al. (2001) as 0.53% (Figure 4-35). As mentioned above, the combined loading of Mill River and Peters River was 0.36%.

The Massachusetts segment of the Peters River is in non-attainment for metals, specifically copper. There are no data available to determine if the copper concentrations increase in the Rhode Island segment due to sources in Rhode Island. As discussed in Section 4.3.3, there are no permitted point source discharges to the Peters River. Sources of copper would consist of non-point sources, such as stormwater. Additional sources in Rhode Island may consist of abandoned refuse dump areas adjacent to the river.

4.4.4 Branch River

Copper was measured during the BRI study and by the USGS. Mean total copper concentrations at the USGS station in Forestdale were 2.8 ug/l, although only 5 samples were analyzed; the dissolved copper concentrations averaged 1.5 ug/l and were within regulatory standards (Figure 4-25). During the BRI study, the mean total copper concentrations during dry weather conditions ranged between 3.3 and 5.8 ug/l (Figure 4-29). The mean

dissolved copper concentrations, ranged between 1.4 and 3.1 ug/l (Figure 4-30); on average 33% of the BRI samples exceeded the chronic criteria, and 11% exceeded the acute criteria for dissolved copper (Figure 4-37).

During the three storms, the mean total copper concentrations ranged between 1.0 to 3.1 ug/l (Figures 4-32 to 4-34). The highest total copper concentration measured in the Branch River was 3.8 ug/l. Estimated wet weather concentrations of dissolved copper did not exceed the acute or chronic criteria on average (Figures 4-38 and 4-39).

The copper load contributed to the Blackstone River appears to be small. Wright et al. (2001) calculated the source loading of Branch River as 0.33% (Figure 4-35).

Copper data from the ponds and reservoirs in the Branch River watershed were not located. Mean total copper concentrations from the upper tributaries of the Branch River (Round Top Brook, Pascoag River, Clear River) ranged between 1.4 and 2.5 ug/l; the maximum concentration was 5.7 ug/l (Figure 4-41).

4.4.5 Other Tributaries

Total copper concentrations have been monitored by RIDEM in Abbot Run Brook at two stations since 1991. The mean concentrations at the two stations were below 2 ug/l, with a maximum concentration of 8.4 ug/l (Figure 4-41).

4.4.6 Woonsocket Wastewater Treatment Plant

Total copper monitoring data are available from January 1997 to October 2001 (Appendix 14). The mean monthly total copper concentration was 22.3 ug/l, ranging generally between 10 and 40 ug/l (Figure 4-42 and 4-43). The highest concentration exceeded 200 ug/l. The mean concentration decreased between 1997 and 2001 from generally less than 40 ug/l to less than 20 ug/l.

The copper concentrations in the effluent after completion of the WWTF upgrade in September 2001 are not yet known.

4.4.7 CSOs

Copper concentrations were not available from the outfalls entering the Blackstone River between Lonsdale and Slaters Mill.

4.4.8 Other Point Sources

Other RIPDES-permitted point sources that are monitored for copper consist of the following (Figure 4-42):

- Burrillville WWTF: The treatment plant is located in the central region of the Branch River watershed, upstream of the Slatersville Reservoir. The effluent discharge rate is approximately 10% of the rate discharged by the Woonsocket WWTF. Between 1997 and 2001, the mean monthly total copper concentration was 22 ug/l; the maximum daily concentration was 92 ug/l.
- Okonite Company: Total copper concentrations monitored in the Okonite outfall were very low with a daily maximum of only 0.04 ug/l.
- Osram Sylvania Products: Copper data for the effluent from Osram are limited to daily maximum concentrations. The highest concentration measured was 43 ug/l.

4.4.9 Valley Falls Pond

Copper concentrations in the water column were not available for Valley Falls Pond. Copper concentrations were only available for the sediments. Copper concentrations were elevated at 460 ug/g in the upper 3 feet in the sediment column, and then decreased sharply to less than 12 ug/g (Appendix 13). The average copper concentration in Rhode Island soils is 13.6 ug/g with a standard deviation of 28.2 ug/g (RIDEM, 1995).

4.4.10 Copper Sources in the Blackstone River - Summary

Copper enters the Rhode Island section of the Blackstone River primarily from the following sources:

- Input from Massachusetts: Wright et al. (2001) determined that on average 79% of the total load during dry weather and 75% of the total load during wet weather enters the Blackstone River within Massachusetts. Primary sources are the UBWPAD and possibly resuspension of sediments from impoundments.
- CSO: The CSOs between Lonsdale Avenue in Lonsdale and Slaters Mill may contain high loads of copper, although data do not exist. Wright et al. (2001) computed the load between Lonsdale and Slaters Mill as 4.1% of the total load.
- Branch River, Mill River, Peters River: The contributions of copper by the tributaries appeared to be comparatively small.
- Woonsocket WWTF: The copper concentrations in the final effluent were comparatively high. The load was calculated by Wright et al. (2001) with 5.9% of the total load entering the river.
- RIPDES permitted discharges: Aside from the Woonsocket WWTF, and possibly the Osram Sylvania outfall, other discharges appeared to be minor sources of copper.
- Other sources in the RI section of the River: Aside from the copper loading from Massachusetts and the Woonsocket WWTF, the available data do not identify specific point sources for copper in the Rhode Island section of the river. Uncertain is also the role of resuspension of sediments from impoundments in the Rhode Island section.

4.5 Lead

Lead data were available from the same sources as copper data (see Section 4.4). Most of the lead data are *total* lead concentrations. Dissolved lead data are limited to the BRI study (Wright et al., 2001); on average, the dissolved fraction represented 40% of the total lead concentration. Dissolved lead data were also collected by the USGS between 1996 and 1999.

A summary of the mean total lead concentrations from all available water quality studies in the Rhode Island section of the river is presented in Figure 4-44. Data are organized by position in the watershed. These mean concentrations will be discussed in the text below.

4.5.1 Blackstone River

The most continuous data sets for the Blackstone River were collected by River Rescue (RR) and the USGS station in Manville.

The dissolved lead concentrations at the USGS Manville station ranged between 0.6 and 1.3 ug/l with a mean of 1.0 ug/l (Figure 4-46). There was no relationship between rainfall volume and lead concentration.

The total lead concentrations generally ranged between 2 and 6 ug/l (Figures 4-46 and 4-47). The mean total lead concentrations at the four RR and USGS stations were as follows (Figure 4-44):

- MA/RI border (RR Station B2): The mean dry weather concentration was 3.9 ug/l; the mean wet weather concentration was 6.5 ug/l.
- Manville (USGS station): The mean dry weather concentration was 8.1 ug/l; the mean wet weather concentration was 3.0 ug/l. The dry weather concentration was affected by two high values of 17 and 49 ug/l. Without these two values, the mean dry weather concentration was 4.0 ug/l.
- Lonsdale Avenue (RR Station B_{lons}): The mean dry weather concentration was 2.1 ug/l; the mean wet weather concentration was 8.3 ug/l.
- Slaters Mill (RR Station B1): The mean dry weather concentration was 4.1 ug/l; the mean wet weather concentration was 10.1 ug/l.

In summary, the mean total lead concentrations of the two studies ranged between 2 and 10 ug/l. The mean concentrations measured by River Rescue were significantly higher during wet weather than during dry weather (Figure 4-48). In the USGS data set, dry weather and wet weather concentrations were similar.

Targeted dry weather and stormwater studies were conducted by URI (Appendices 1, 2 and 15):

- Dry weather: The mean total lead concentrations during dry weather ranged between 1.6 and 18.5 ug/l at stations in the Rhode Island section of the Blackstone River (Figure 4-49), consisting of 40% dissolved lead (Figures 4-50 and 4-51). In the Massachusetts section of the river, the highest mean total lead concentration was 100 ug/l at BRI Station 07. Wright et al. (2001) calculated that the Massachusetts section of the Blackstone River watershed contributed on average 92% of the total load to the Blackstone River during dry weather (Figure 4-56). The highest loadings were from the river segments between BRI Stations 04 and 06 with 24% and BRI Stations 06 and 07 with 22%. In the Rhode Island section of the river, the highest total lead loads were from the section between BRI Stations 20 and 21 (Central Falls and Pawtucket) and the section between the BRI Stations 13 to 17 (Woonsocket).
- Wet weather: During wet weather, the total lead concentrations increased considerably from dry weather conditions (Figures 4-52 to 4-54). In the Rhode Island section of the river, the highest total lead concentrations were measured in the effluent from the Woonsocket Treatment Plant, ranging from 2.5 to 31.4 ug/l (Figure 4-44). The major source of lead in the Blackstone River, however, appeared to be the headwaters of the river in Massachusetts. This observation is reflected in the sharp concentration increases during the three storms between BRI Stations 00 and 06 (Figures 4-51 to 5-53). Concentrations were particularly high at the beginning of the storm (Figure 5-55). Wright et al. (2001) calculated that the Massachusetts segment contributed on average 72% of the total lead load during wet weather, ranging between 52% and 90% for the 3 storms (Figure 5-56). The headwaters (upstream of BRI Station 00) alone contributed on average 31%.

Another source identified in the BRI study may be resuspended sediments from Rice City Pond. The total lead concentration increased between BRI Stations 07 and 08 during each of the three storms (Figures 4-52 to 4-55). The average lead loading from the pond was calculated as 14% (Figure 5-56).

In the Rhode Island section of the Blackstone River, the largest sources for lead were calculated by Wright et al. (2001) between BRI Stations 20 and 21 (Central Falls and Pawtucket) with 14%, and between BRI Stations 13 and 17 (Woonsocket) with 4.5%; the likely source is stormwater runoff from densely populated areas.

The mean hardness at the three River Rescue stations ranged from 25 to 30 mg/l. For a hardness of 25 mg/l, the acute criteria for dissolved lead is 13.9 ug/l; the chronic criteria is 0.5 ug/l. The dissolved lead concentrations measured during the BRI and USGS studies exceeded the chronic criteria for dissolved lead almost all the time, both during dry and wet weather (Figures 4-46, 4-50, and 4-57 to 4-60).

During the BRI study, the dissolved lead fraction represented 40% of the total lead concentration. Using this fraction, the *total* lead concentrations would exceed the acute criteria at 34.8 ug/l and the chronic criteria at 1.3 ug/l. Accordingly, the lead concentrations measured by River Rescue exceeded the chronic criteria for lead most of the time as well.

Lead concentrations in sediments are only available for the Tupperware Impoundment. Lead concentrations were elevated at 444 ug/g in the upper 22 cm of the sediment column, and then decreased sharply to less than 5 ug/kg (Appendix 13). The average lead concentration in Rhode Island soils is 33.5 ug/g with a standard deviation of 55.5 ug/g (RIDEM, 1995).

Lead concentrations in fish tissues were measured in the Tupperware Impoundment, along with other impoundments along the Blackstone River in Massachusetts (Appendix 11). Lead concentrations ranged from <0.05 to 2.2 mg/kg (wet weight).

4.5.2 Mill River

Lead data for Mill River are limited to the BRI study. During dry weather conditions, the mean total lead concentration was 5.8 ug/l, although this value was affected by one measurement of 48.8 ug/l during the August 1991 survey (Figure 4-49). Without this value, the mean total lead concentration was 2.0 ug/l. The dissolved lead fraction was 37% of total lead (Figures 4-49 to 4-51). None of the samples exceeded the acute criteria, but 44% of the samples exceeded the chronic criteria (Figures 4-50 and 4-57).

During the three storms, the mean total lead concentrations ranged between 1.6 and 3.0 ug/l (Figures 4-52 to 4-54). The highest total lead concentration measured in the Mill River was 6.1 ug/l. Estimated wet weather concentrations of dissolved lead did not exceed the acute criteria but exceeded the chronic criteria all the time (Figures 4-58 and 4-59).

The total lead load contributed by Mill River to the Blackstone River appears to be small. Wright et al. (2001) calculated the dry weather loading as 0.4% (Figure 4-56). The combined wet weather loading of Mill River and Peters River was determined as 1.1%.

The Massachusetts segment of the Mill River is in non-attainment for lead. There are no data available to determine if the lead concentrations increase in the Rhode Island segment due to sources in Rhode Island. As discussed in Section 4.3.2, there are two permitted discharges to the Mill River: the Hopedale WWTF and CNC International stormwater. Neither facility is required to sample for lead as part of their respective NPDES permit.

4.5.3 Peters River

Lead data for Peters River are also limited to the BRI study. During dry weather conditions, the mean total lead concentration was 5.3 ug/l, consisting of 49% dissolved lead (Figures 4-49 to 4-51). The maximum total lead

concentration was 12.3 ug/l. None of the samples exceeded the acute criteria for dissolved lead, but 92% of the samples exceeded the chronic criteria (Figures 4-50 and 4-57).

During the three storms, the mean total lead concentrations at least doubled from dry weather conditions just prior to the storm. The mean wet weather conditions ranged between 2.8 to 10.6 ug/l (Figures 4-52 to 4-54). The highest total lead concentration measured in the Mill River was 19.0 ug/l. Estimated mean wet weather concentrations of dissolved lead did not exceed the acute criteria but exceeded the chronic criteria all the time (Figures 4-58 and 4-59).

The total lead load contributed by Peters River to the Blackstone River appears to be small. Wright et al. (2001) calculated the dry weather loading as 0.4% (Figure 4-56). As mentioned above, the combined wet weather loading of Mill River and Peters River was determined as 1.1%.

The Massachusetts segment of the Peters River is in non-attainment for lead. There are no data available to determine if the lead concentrations increase in the Rhode Island segment due to sources in Rhode Island. As discussed in Section 4.3.3, there are no permitted point source discharges to the Peters River. Sources of lead would consist of non-point sources, such as stormwater. Additional sources in Rhode Island may be due to abandoned refuse dump areas adjacent to river.

4.5.4 Branch River

Lead was measured during the BRI study and by the USGS. The mean total lead concentration at the USGS station in Forestdale was 1.8 ug/l, although only 5 samples were analyzed; the mean dissolved lead concentration was 0.8 ug/l and the maximum concentration was 1.3 ug/l (Figure 4-45). During the BRI study, the mean total lead concentration during dry weather conditions was 4.2 ug/l; the maximum concentration was 23.5 ug/l (Figure 4-49). The mean dissolved lead concentration during dry weather conditions was 0.9 ug/l; the maximum concentration was 1.5 ug/l (Figure 4-50). None of the dissolved lead concentrations exceeded the acute criteria, but 81% of the concentrations exceeded the chronic criteria (Figure 4-50 and 4-57).

During the three BRI storms, the mean total lead concentrations ranged between 1.0 to 3.0 ug/l (Figures 4-52 to 4-54). The highest total lead concentration measured in the Branch River was 7.8 ug/l. Estimated mean wet weather concentrations of dissolved lead did not exceed the acute criteria, but exceeded the chronic criteria most of the time (Figures 4-58 and 4-59).

The lead load contributed to the Blackstone River appears to be small. Wright et al. (2001) ranked the source loading of the Branch River with 1.4% during dry weather and 1.1% during wet weather (Figure 4-56).

Lead data from the ponds and reservoirs in the Branch River watershed were not located. Mean total lead concentrations from the upper tributaries of the Branch River were 1.4 ug/l in Round Top Brook, 2.2 ug/l in Pascoag River, and 4.7 ug/l Clear River (Figure 4-61). The mean concentrations in Clear River were twice as high as the mean concentration in the Branch River of the BRI study. The concentrations did not differ between dry and wet weather concentrations.

4.5.5 Other Tributaries

Total lead concentrations have been monitored by RIDEM in Abbot Run Brook since 1991. The mean concentrations at the two stations were 3.5 ug/l (Cumberland) and 4.2 ug/l (North Attleboro) (Figure 4-61).

4.5.6 Woonsocket Wastewater Treatment Plant

Total lead monitoring data are available from January 1997 to October 2001 (Appendix 14). The mean monthly total lead concentration was 4.7 ug/l, ranging generally between 1 and 10 ug/l (Figures 4-62 and 4-63). The highest concentration was 44 ug/l. The mean concentrations decreased between 1997 and 2001 from generally less than 10 ug/l to less than 5 ug/l.

During the BRI study, the lead concentration from the Woonsocket WWTF was considerably higher. The mean wet weather concentrations ranged between 15 and 20 ug/l (Figures 4-44, and 4-52 to 4-54). These data, however, are older than the monitoring data from the plant and were also collected over a shorter time period.

The lead concentrations in the effluent after completion of the WWTF upgrade in September 2001 are not yet known.

4.5.7 CSOs

Lead concentrations are not available from the outfalls entering the Blackstone River between Lonsdale and Slaters Mill. The increase in the lead concentration between BRI Stations 20 and 21 during wet weather may be a result of CSO discharges.

4.5.8 Other Point Sources

Other RIPDES-permitted point sources that are monitored for lead consist of the following (Figure 4-62):

- Burrillville WWTF: The treatment plant is located in the central region of the Branch River watershed, upstream of the Slatersville Reservoir. Between 1997 and 2001, the mean monthly total lead concentration was 1.3 ug/l; the maximum daily concentration was 8.0 ug/l.
- Osram Sylvania Products: Lead data for the effluent from Osram are limited to daily maximum concentrations. The concentrations in Osram's outfall 200 were comparatively high reaching up to 123 ug/l.

4.5.9 Valley Falls Pond

Lead concentrations in the water column were not available for Valley Falls Pond. Lead concentrations were only available for the sediments. Lead concentrations were elevated at 465 ug/g in the upper 3 feet in the sediment column, and then decreased sharply to less than 8 ug/g (Appendix 13). The average lead concentration in Rhode Island soils is 33.5 ug/g with a standard deviation of 55.5 ug/l (RIDEM, 1995).

4.4.10 Lead Sources in the Blackstone River - Summary

Lead enters the Rhode Island section of the Blackstone River primarily from the following sources:

- Input from Massachusetts: Wright et al. (2001) determined that on average 92% of the total load during dry weather and 72% of the total load during wet weather enters the Blackstone River within Massachusetts. Primary sources are the headwaters of the Blackstone River and possibly resuspension of sediments from Rice City Pond.
- CSO: The CSOs between Lonsdale Avenue in Lonsdale and Slaters Mill in Central Falls and Pawtucket may contain high loads of lead, although data do not exist. Wright et al. (2001) computed the loading as 14% of the total load during wet weather, based on data from BRI Stations 20 and 21.

- Branch River, Mill River, Peters River: The contributions of lead by the tributaries appeared to be comparatively small. Within the Branch River watershed, the total lead concentrations within the Clear River were on average 3 times higher than the concentrations in the Branch River near its confluence, although the data come from different studies.
- Woonsocket WWTF: The lead concentrations in the final effluent of the BRI study were comparatively high. The load was calculated by Wright et al. (2001) with 4.5% of the total load entering the river. Concentrations in more recent samples collected by the treatment plant as part of the RIPDES monitoring are lower than the concentration during the BRI study, however. Therefore, the lead loading by the WWTF to the river should be reevaluated.
- Other RIPDES—permitted Discharges: Aside from the Woonsocket WWTF, the total lead concentrations from the Osram Sylvania Products Outfall 200 were elevated, and should be evaluated.
- Other sources in the RI section of the River: Aside from the lead loading from Massachusetts and the Woonsocket WWTF, the available data do not identify specific point sources for lead in the Rhode Island section of the river. Wright et al. (2001) calculated loadings of 4.5% to the Blackstone River during wet weather between BRI Stations 13 and 17. This section received discharges from the City of Woonsocket.

4.6 Nutrients and Related Parameters (for Valley Falls Pond)

Valley Falls Pond and the Blackstone River are listed for biodiversity on the 303d list (Table 1-1). Biodiversity impacts are caused by a wide range of factors, such as high metal and organic compound concentrations and low dissolved oxygen concentrations due to low flow conditions and excess nutrient loads. In addition, Valley Falls Pond is listed for phosphorus, nutrients, hypoxia, and excess algal growth.

At this point, very little is known about Valley Falls Pond. The pond appears to be only a few feet deep, although water levels can rise substantially during high flow conditions in the Blackstone River. Its main source of water is the Blackstone River, but it also receives runoff from neighboring urban and high density residential developments (Figure 2-2). It is not known if stormwater drainage pipes enter the pond. The pond includes a number of side arms that appear to become disconnected from the system during low flow conditions.

The pond is eutrophic to hypertrophic (Figure 4-64), particularly in the summer. Causes for its trophic state are likely a combination of high nutrient loading from the river and stormwater runoff, combined with restricted flushing of the pond and high nutrient recycling from the sediment. Available data are limited to three surveys conducted by URI's Watershed team in the year 2000 (Table A7-8 in Appendix 7), and data on nutrients and related parameters from the Blackstone River.

Nutrients and other relevant data from the Blackstone River watershed data were available from the following sources:

- Regular Monitoring:
 - *USGS*, 1990 2000: Weekly to monthly monitoring at the Branch River between the Slatersville dam and the Blackstone River, and on the Blackstone River at Manville (Appendix 9).
 - River Rescue, 1990-1993: Approximately monthly monitoring at the MA/RI state border, Lonsdale Avenue bridge in Lonsdale, and Slaters Mill (Appendix 6).
 - *RIDEM, 1991 2000:* Selected tributaries in the watershed (Round Top Brook, Pascaog River, Clear River, Abbot Run Brook) (Appendix 8).
 - Discharges from the Woonsocket Wastewater Treatment Facility (Appendix 14).

- Providence—Seekonk River Total Maximum Daily Load Project: Approximately weekly monitoring in 1995 and 1996 at Slaters Mill (Appendix 5).
- *URI Watershed Watch, 1993-2000:* Two to four surveys a year of lakes and reservoirs in the Branch River watershed, as well as 4 surveys in Valley Falls Pond in 2000 (Appendix 7).
- Stormwater Monitoring:
 - URI, Wet Weather Study 1, 1988-1989: Four stations along Blackstone River (Appendix 1).
 - URI, Wet Weather Study 2, 1990: Slaters Mill station only (Appendix 2).
 - Blackstone River Initiative, 1991-1993: Stations along the Blackstone River (Appendix 15).
- Sediment cores were collected in Valley Falls Pond by Dr. King from URI in 1988.

4.6.1 Valley Falls Pond

Nutrient data for Valley Falls Pond are very limited. The only available survey data were obtained by Watershed Watch in May, July and October 2000 (URI, unpubl. data). Chlorophyll concentrations were high, reaching over 60 mg/l (Figure 4-64). Total phosphorus concentrations ranged from 0.22 to 0.39 mg/l, dissolved phosphorus concentrations ranged from 0.09 to 0.18 mg/l, nitrate concentrations ranged from 0.24 to 1.23 mg/l, and total nitrogen (one analysis only) was measured at 1.99 mg/l (Figure 4-65 to 4-68). Dissolved oxygen data are not available. The nutrient data and chlorophyll data indicate that the pond is eutrophic, reaching hypertrophic status some of the time (Figure 4-69).

Other nutrient related indicators also clearly show that Valley Falls Pond is eutrophic as has been concluded previously by RIDEM. In comparison to the other ponds and reservoirs measured by Watershed Watch (Branch River watershed; Figures 4-65- 4-69), Valley Falls Pond had several-fold higher nutrient levels. In addition, the bi-weekly chlorophyll data from the year 2001 indicate a highly nutrient-enriched system based on average and maximum levels of chlorophyll and constancy of the bloom conditions (Figure 4-64).

The sediment core data collected by Dr. King (URI, Figure 4-70) are consistent with a highly organic enriched system. The sediments contained 10% (100 ug/mg) carbon by weight suggesting that they contain potentially about 25% organic matter by weight.

It should be noted that the wetland nature of the Valley Falls System (marshes and pond) needs to be considered in any TMDL calculations, since wetlands tend to have higher tolerances to nutrient loads than river or pond areas. However, this important avian resource clearly appears to be beyond its capacity to assimilate additional nutrient loads. In fact, the inorganic nitrogen and phosphorus levels are so high (Figures 4-65 to 4-68) that it is not clear to what extent they are limiting plant growth at certain periods of the year (i.e., other factors may also be playing a role).

While quantitative data are not presently available, it is clear that the nutrient status of Valley Falls Pond is likely controlled primarily by the nutrient levels in the incoming river water and recycling of nutrients from the sediments. In such enclosed systems, the release of nutrients from the sediments during the warmer months can provide a large fraction of the nutrients for algal production (blooms). In addition, the configuration of the Valley Falls Pond system likely enhances organic matter deposition, due to the apparently low flow-through and the configuration of the basin. Enhanced deposition results in higher sediment nutrient releases.

In addition to nutrient recycling from the degradation of organic matter deposited in the sediments, the extent to which Valley Falls Pond becomes hypoxic or anoxic likely controls the rate and magnitude of inorganic phosphorus release. This mechanism results from the typically high retentive capacity of the sediments for ortho-phosphate when the overlying water is oxygenated, and the loss of this capacity when it becomes anaerobic.

Given the configuration and wetland nature of the Valley Falls Pond system, it is possible that it may serve to "improve" the nutrient-related health of the Blackstone River (by removing nutrients).

4.6.2 Blackstone River

Given the interrelationship between nutrient concentrations and related parameters, the data from the Blackstone River are grouped by individual study rather than by parameters to allow for better comparison. Specifically, the data groups consist of the following:

- Data summaries of all studies in the Rhode Island section of the Blackstone River (Figures 4-71 to 4-73)
- USGS study at Forestdale and Manville (Figures 4-74 to 4-85)
- River Rescue at MA/RI border, Lonsdale, and Slaters Mill (Figure 4-86 to 4-92)
- BRI dry weather data (Figures 4-93 to 4-95)
- BRI wet weather data for Storms 1 to 3 (Figures 4-96 to 4-110)
- BRI source loading calculations for nitrate, ammonia, and phosphate (Figures 4-111 to 4-113)
- Woonsocket Wastewater effluent (Figures 4-114 to 4-121)

The closest station to Valley Falls Pond is BRI Station 20 and River Rescue Station B_{lons}. The nutrient data at these stations indicate that the Blackstone River was nutrient-enriched. The data reflected considerable variability, both seasonally and annually. The fact that low nutrient concentrations exist in the river during certain times suggests that the river is restorable.

Nutrient concentrations during wet and dry weather conditions were generally similar. Nutrient loads, however, would have doubled since the flow rates doubled on average (Figure 4-100, 4-105, and 4-110).

The Blackstone River is a significant source for nutrients in Valley Falls Pond. The degree to which it contributes to its eutrophic status cannot be ascertained, however. Data collected by River Rescue and the BRI stem from the earlier 1990s, when the Woonsocket WWTF was still a significant source of nutrients to the river (see Section 4.6.6). Upgrades to the treatment plant may have influenced the concentrations measured by URI Watershed Watch in years 2000 and 2001. In addition, chlorophyll data for the river are not available which would allow direct comparison with Valley Falls Pond.

4.6.3 Mill River

Data are limited to dry weather data from the BRI study. Nutrient concentrations were low for Mill River (Figures 4-71 to 4-73, 4-93 to 4-95). Harris Pond, however, is listed as non-attainment for noxious plants with indications of hypoxia.

4.6.4 Peters River

As for Mill River, nutrient data for Peters River are limited to dry weather data from the BRI study. Nutrient concentrations were also low (Figures 4-71 to 4-73, 4-93 to 4-95).

4.6.5 Branch River

In the ponds and reservoirs of the Branch River watershed, nutrient concentrations were generally low. The mean nitrate concentrations were below 0.04 mg/l for most waterbodies (Figure 4-65). The exception was Slatersville Reservoir with mean nitrate concentrations of 0.16 mg/l; the maximum concentration was 0.21 mg/l, although data are limited. The mean total nitrogen concentrations in the ponds and reservoirs were below approximately 0.50 mg/l (Figure 4-66). The mean dissolved phosphorus concentrations were below 0.006 mg/l

(Figure 4-67). The mean total phosphorus concentrations were below 0.012 mg/l with the exception of the Slatersville Reservoir, which had a mean concentration of 0.020 mg/l (Figure 4-68). Chlorophyll concentrations and Secchi disk depth are only reported for the Slatersville Reservoir. These parameters indicated primarily mesotrophic conditions in the reservoir in the years 1995 and 2000. The conditions became eutrophic a few times during the summer. All other reservoirs upstream of the Slatersville Reservoir were oligotrophic and mesotrophic (Figure 4-69).

Nutrient concentrations in the Branch River downstream of the ponds and reservoirs prior to entering the Blackstone River were generally well below the mean concentrations of Blackstone River, although data are limited (Figures 4-71 to 4-83, 4-93 to 4-95).

4.6.6 Woonsocket Wastewater Treatment Plant

The average annual discharge from the WWTF of 9.17 MGD (Figure 4-114) represents approximately 2% of the average annual flow in the Blackstone River adjacent to the plant (503 MGD; Table 2-3). The nutrient concentration in the WWTF effluent was one to two orders of magnitude higher than the concentrations in the receiving waters, resulting in a discernible increase in nutrient concentrations in the Blackstone River. This increase is reflected, for example, by the sharp increase in the dry weather nutrient concentrations measured during the BRI study downstream of Station 17 (Figures 4-93 to 4-95).

From the data available, the treatment facility prior to 2000 did not appear to nitrify effectively (Fig 4-115 to 4-118). The result was an effluent dominated by ammonium. However, in year 2000, ammonium concentrations indicate efficient nitrification within the facility and a shift to an effluent dominated by nitrate. The immediate effect of this shift would have been a decrease in oxygen demand on the receiving waters.

It also appears that the total nitrogen and phosphorus discharges have declined significantly (Figures 4-119 and 4-120). However, this conclusion is based only on the last two measurements. The record for TSS clearly shows an improved discharge throughout 2001 (Figure 4-122). Taken in total, the improvements in TSS, BOD, nitrogen, and phosphorus discharges during year 2001 are unlikely to be fully reflected in year 2001 environmental monitoring data. This is due to the fact that (a) the nutrient improvements were not fully seen until late in the year and (b) it takes time for the full river system to reach a new balance with the reduced loading rate.

4.6.7 CSOs

CSOs are located downstream of Valley Falls Pond. Furthermore, data on nutrient concentrations in the CSOs were not located but are expected to be high during discharge periods.

4.6.8 Other Discharges

Known other discharges of nutrient sources are limited to RIPDES-permit holders (Appendix 14). Loads are considered small.

4.7 Total Suspended Solids

Total suspended solids (TSS) data are needed for water quality modeling. TSS concentrations in the Blackstone River were generally below approximately 5 mg/l (Figures 4-123 to 4-125). TSS concentrations generally increased during wet weather conditions (Figures 4-123, and 4-126 to 5-128). TSS concentrations of streams in the Branch River watershed were low with on average less than 3 mg/l.

Highest TSS concentrations were measured in the Woonsocket WWTF outfall. The mean dry weather TSS concentrations ranged between 15 and 80 mg/l (Figures 4-122 and 4-123). The highest concentrations were measured by the BRI study with 350 mg/l (Figure 5-127). More recent TSS concentrations in the effluent since the upgrade of the facility are not yet known.

TSS concentrations were also elevated in Peters River during the BRI stormwater studies. These concentrations may be a result of the broken sewer pipe crossing the river.

4.8 Flow

Continuous flow data for the Blackstone River are limited to the U.S Geological Survey station in Woonsocket (see Section 2.4). Other flow measurements were only collected for the URI stormwater studies (Appendices 1, 2, and 15). Flow data for the BRI study are summarized in Figures 4-100, 4-105, and 4-110. During Storm 1, flow rates increased by up to roughly 50%. During Storms 2 and 3, flow rates approximately doubled.

4.9 Biodiversity Impacts

Macroinvertebrate biodiversity data integrate the cumulative impact of stressors that result in habitat degradation and chemical contamination. These data also integrate the effect of short-term variability. However, conditions may not necessarily be symptomatic for the entire river, but could be caused by local conditions due to the limited migration pattern of the studied benthic organisms. The species density is affected by factors such as sediment type, temperature, dissolved oxygen concentration, rainfall / stream flow, organic content, and water chemistry. Stressors include organic loading from point and non-point sources, elevated sediment load.

Blackstone River bioassessments were conducted by Roger Williams University between 1991 and 2001 (Gould, 1998; Pomeroy, 2000; da Silva, 2002). The biomonitoring results for the period 1994 to 2001 generally indicated a moderately to slightly impaired benthic community with the exception of 1995, which was severely impaired (Figure 4-130). The station is located downstream of the Manville Dam, which can impact the instream water quality conditions and consequently the biomonitoring results.

4.9.1 Bioassessment Data

The detailed biomonitoring data of macroinvertebrates for the period from 1998 to 2001 for the reference station (Wood River) and the Blackstone River are summarized in Figure 4-131. The biometric indices were calculated and presented in Figure 4-132. The data allow for the following observations regarding the conditions in the Blackstone River:

- The invertebrate assemblage at the Blackstone River monitoring station was dominated by caddisflies (*Hydropsyche* spp.), which are in the Order Trichoptera. Hydropsyche is one of the most common and abundant caddisflies in North America (McCafferty, 1998). Hydropsyche are classified in the Filtering Collector functional feeding group (Cummins, 1973), and feed by building silken nets that they use to trap suspended food particles. At the family level, Hydropsychidae are classified as moderately tolerant of organic pollution, although there is considerable variation among individual species, with some species very tolerant of organic pollution, and others very intolerant.
- The Scraper and Filtering Collector functional feeding group ratio (USEPA, 1989) was lower in the Blackstone River than at the Wood River reference station. This reflects the dominance of Filterers/Collectors, and specifically Hydropsyche, in the Blackstone River assemblage. Filtering Collectors increase with the increasing presence of filamentous algae and aquatic mosses, and the increasing availability of fine particulate organic matter (FPOM) (USEPA, 1989). Strong empirical

relationships exist between organic enrichment and periphyton biomass (Dodds et al., 2002), thus the dominance by the Filterer/Collector functional feeding group may also be reflective of eutrophic conditions in the Blackstone River during the sampling period.

- The virtual absence of shredders at the Blackstone River monitoring station suggests that particulate matter (leaf litter) inputs are not a dominant food source for invertebrates at this site. Leaf litter inputs influence densities of shredder insects, which are often highest in headwaters, and decrease in larger rivers (Wetzel, 2001). The presence of large numbers of Filterers/Collectors indicated that FPOM may be the dominant invertebrate food source, and may be responsible for the low numbers of shredders present in the Blackstone River compared to the reference site.
- The EPT and Chironomidae abundances ratio (USEPA, 1989) is used as a measure of community balance and as an indicator of environmental stress. Certain species of Chironomidae are tolerant of metal pollution, and may be dominant in habitats exposed to metal discharges where EPT taxa cannot persist; therefore, Chironomidae provide a good indicator of the presence of metal toxicity (Winner et al., 1980). While Chironomidae numbers were higher in the Blackstone River than at the reference site, these differences were small, and may not provide evidence supporting metal toxicity. The EPT/Chironomidae ratio was high; however, this simply reflects the dominance of Hydropsyche.
- The presence of pollution-sensitive Ephemeroptera taxa and the absence of large numbers of other pollution-tolerant species (e.g., Tubificidae, Oligochaeta) may indicate that toxins were not present in lethal concentrations at this site. No Plecoptera taxa, many of which are very intolerant of low oxygen, were present at Blackstone River site, but these taxa were collected in all four years at the reference site.

4.9.2 Potential Stressors

A list of candidate stressors was developed for the Blackstone River and evaluated to determine the primary stressor based on available data. Candidate stressors included organic matter, nutrients, pH, temperature, sediment, and toxics. The evaluation of each candidate stressor is based on the dry and wet weather water quality data, and the Woonsocket WWTF daily monitoring record (DMR); these data are presented elsewhere in this report.

- Organic Matter: Excessive organic matter can lead to low dissolved oxygen concentrations, which may adversely affect the survival and growth of benthic macroinvertebrates. Potential sources of organic matter include wastewater discharges and agricultural runoff. The dissolved oxygen monitoring data indicated that near-saturation dissolved oxygen levels are prevalent most of the time. However, these data do not assess whether these high levels are due to photosynthesis or a result of the dam. In addition, there is no quantification of the total organic carbon (TOC) and dissolved organic carbon (DOC). Available BOD data are not sensitive enough as an accurate measure of organic matter in natural systems such as the Blackstone River.
- Nutrients: Excessive nutrient inputs can lead to eutrophication (algal blooms) and low dissolved oxygen concentrations, which may adversely affect the survival of benthic macroinvertebrates. In particular, dissolved oxygen levels may become low during overnight hours due to plant respiration. Results from various monitoring programs indicated that the dissolved oxygen concentration was relatively high even during summer months. This may be due to the presence of the Manville Dam and the Woonsocket WWTF. A diurnal dissolved oxygen study conducted from July 9-11, 1991 (Appendix 4) indicated that DO remained above 6 mg/l at all of the monitoring sites for all sampling periods. This suggests that there were adequate DO concentrations in the Blackstone River at that time. However, the presence of bluegreen algae, as noted in the biomonitoring reports, suggests potential enrichment and degradation of the water quality conditions. Because blue-green algae forms occur only under eutrophic conditions, their

presence is a strong indication of organic loading in the river. The loading of nutrients by the Woonsocket WWTF was high during the macroinvertebrate sampling period.

- Temperature and pH: Benthic macroinvertebrates require a specific range of temperature and pH to live and grow. Changes in temperature and/or pH may adversely affect their survival. Treated wastewater, contact and cooling water permitted facilities, and urban runoff can potentially alter instream levels of temperature and pH. The Woonsocket WWTF DMR, instream water quality data, and diurnal monitoring at both reference and impaired stations would be adequate to characterize the temperature and pH conditions. Temperature and pH data from the BRI indicate that temperature and pH from the Woonsocket WWTF effluent are not a concern.
- Sediment: Excessive sedimentation can impair benthic communities through loss of habitat. Essentially, excess sediment can fill the pores in gravel and cobble substrate where macroinvertebrates live and grow. Based on the land use and physical characteristics of the Blackstone River watershed, potential sources of sediment at the biomonitoring station include agricultural runoff, urban runoff, forestry operations, construction sites, sand and gravel mining operations, and the Woonsocket WWTF. In addition, instream erosion from an unstable channel and banks may be playing a role if high flows are prevalent. However, information on the relative contribution of the various potential sources for sediment is not available.
- Toxics: Two potential stressors that can cause toxic effects include heavy metals and ammonia. The Blackstone River is on the 303(d) list for copper and lead impairments. Studies have indicated that mayflies are more sensitive than Chironomids to copper exposure levels of 15 to 32 ug/L (Clements et al., 1988). The presence of pollution-sensitive Ephemeroptera taxa and the absence of large numbers of other pollution-tolerant species (e.g., Tubificidae, Oligochaeta) may indicate that toxins were not present in lethal concentrations at this site. However, these stressors may be present at a level to only cause sublethal biological effects (impacts on growth or reproduction) and shift in the macroinvertebrate population. Acute and chronic toxicity testing at the reference station and the Blackstone River would elucidate the impacts of the heavy metals and the ammonia on the macroinvertebrate community.

In summary, it appears that organic loading (nutrients, fine particulate organic matter, etc.) is the primary cause for the impaired macroinvertebrate assemblages. Metals do not appear to be a key stressor, as no lethal toxic effects were observed; there may be sublethal effects, however, which impact the growth and reproduction of the macroinvertebrates.

Figures for Section 4

The figures for Section 4 are grouped as follows:

Figures No.	Subject
4-1 to 4-2	Maps
4-3 to 4-4	Available Data and Stations
4-5 to 4-7	Water Quality Criteria
4-8 to 4-23	Fecal Coliform Data
4-24 to 4-43	Copper Data
4-44 to 4-63	Lead Data
4-64 to 4-121	Data for Nutrients and Related Parameters
4-122 to 4-129	Total Suspended Solids Data
4-130 to 4-132	Macroinvertebrate Data

Rhode Island DEM

Source: RIGIS, MASSGIS

File: BW SMPL.apr

May 2002

Figure 4-1 SAMPLE LOCATIONS RHODE ISLAND SECTION

Figure 4-3

Sampling Locations of Reviewed Studies in Blackstone River Watershed

Appen-		•			Sampling	
š	Study	Author	Station No.	Station Location	Eveni Date(s)	ments
-	Dry/Wet Weather Sampling	University of Rhode Island	BRSL	Blackstone River at MA/RI state line	Oct. 22-26, 1988	
	••••	(Wright et al., 1991)	WSTP	ŧ	May 10-15, 1989	
			BRCF		June 10-16, 1989	
			BRSM	Blackstone River at Slaters Mill		
7	Dry/Wet Weather Sampling	University of Rhode Island	BRSMDN	Slaters Mill	5/29 - 6/2, 1990	
		(URI, 1992)			6/29 - 6/30, 1990	
					7/11 - 7/16, 1990	
67	Blackstone River 1990 -	University of Rhode Island		22 dischargers in BR watershed in MA and RI:	1998 to 1989	
,	d Water Quality	(Wright et al., 1991b)		comparisons with other studies		
4	Blackstone River 1991 -	Applied Science Associates, Inc.	ASA 1	Sayles Street bridge , Woonsocket	July 9-11, 1991	
		(ASA, 1992b)	ASA 1a	30 m below Thundermist Dam	•	
			ASA 2	Bernon Street bridge		
			ASA 3a	Hamlet Avenue bridge		
		******	ASA 3	90m upstream of Woonsocket WWTF outfall		
			ASA 4	Woonsocket WWWTP outfall		
			ASA 5	270m downstream of Woonsocket WWTF outfall		
		•	ASA 6	: :		
			ASA 7	adjacent to Woonsocket Water Treatment Plant		
				Route 99 overpass, Woonsocket-Cumberland town line		
				800m downstream of ASA 8, adjacent to gravel pit	•	
			ASA 10	50 m upstream of Manville Dam		
			ASA 10a	Manville Dam bridge		
			ASA 11	50 m upstream of Albion Dam		
2	nk River	RIDEM	RIDEM	Slaters Mill	May - Sep, 1995	
	••••	i (unpublished data)			May - Nov, 1996	
9	Rhode Island Urban Rivers	River Rescue	B2	Main Street, Blackstone, MA	up to 67 times	
	•••••		Blons	Route 122, Lonsdale, RI	year-round between	
			B1	Main Street, Pawtucket, RI	1990 and 1995	
_	Lakes Monitoring Program	URI Watershed Watch		Pascoag Reservoir	1993 to 2000	(2)
		(URI, unpubl. data)		Spring Lake		
				Keech Pond		
				Smith and Sayles Reservoir		
		••••		Spring Grove Pond	•	
		*****		Slatersville Reservoir		
				Valley Falls Pond		
_∞	Chemical Monitoring	RIDEM		Round Top Brook	1991, 1993	
,	essment	(RIDEM, 2000)		Pascoad River	1996, 1998	
	•••••				1999, 2000	
				Srook (Cumberland)	(3 to 6 times	
				Abbot Run Brook (North Attleboro)	each year)	
6	U.S. Geological Survey	Water Resources Data	l''''	400ft downstream from Mill dam in Forestdale	1/1990 -	
		(USGS, 2000)	USGS-M	Manville Rd. bridge, 2.5 miles downstream from Woon. WWTF	12/1999	
10	Narragansett Bay Commission	Fecal Coliform Monitoring	S-2	Lonsdale Ave (Whipple Bridge), Lincoln/Cumberland	1/1997	
			S-3	Slaters Mill Dam, Pawtucket	to 10/2001	

Figure 4-3

Sampling Locations of Reviewed Studies in Blackstone River Watershed

Com-	ments					
Sampling Event	Date(s)	summer of 1993	summers of 1998 1999 2000	1988	1 1 - 1 - 1 - 1	3 Dry Weather Surveys: July10-11, 1991 Aug. 14-15, 1991 Oct. 2-3, 1991 3 Wet Weather Surveys: Sep.22, 1992 Nov. 2, 1992 Oct. 14, 1993
	Station Location	Fisherville Pond, Grafton,MA Riverdale Impoundment, Northbridge, MA Rice City Pond, Uxbridge, MA Tupperware Impoundment, MA	Nipmuc River - Top Brook Pascoag River Keech Brook Clear River Abbot Run Brook (Cumberland) Abbot Run Brook (North Attleboro) Blackstone River	Tupperware Impoundment Valley Falls Pond	Zambarano Memorial Hospital Burrillville WWTF Atlantic Thrmoplastics Blackstone Smithfield Co. Woonsocket WWTF Okonite Company Osram Sylvania (2 outfalls)	Route 122, Millville, MA Bridge St. (State Boundary), Blackstone, MA Route 146A, Slatersville, MA Winter St., Woonsocket, RI Route 114, Woonsocket, RI Hamlet Ave., (Re. 122 and 126), Woonsocket, RI Effluent, Woonsocket WWTF Manville Hill Rd., Cumberland, RI School St./Albion Rd., Cumberland, RI Lonsdale Ave., Lonsdale, RI Main St., (Slaters Mill), Pawtucket, RI
Station No.	(1)				RIDEM	12 13 16 16 17 17 18 19 19 20 21
	Author	Fish Toxics Monitoring	Bioassessment Screening of RI Freshwater Benthic Macroinvertebrates	Dr. John King, University of Rhode Island	Jata	URI (Wright et al., 2001)
	Study	Massachusetts Department of Environmental Protection	Gould, 1998; 1999; 2000	Sediment Core Data	RIPDES-Permitted Discharges	Blackstone River Initiative
Data Appen-	dix	-	12	13		20

(1) Station names in brackets are names that were assigned during this data synthesis; original studies did not have numbers for these stations. (2) Details of the locations in each reservoir are provided in Table A7-1 in Appendix 7.

Figure 4-4 of Available Data for the Blackstone River Watershed

Q.													lno				T												Ī				/6	7	3				Вас									_	7 2	Z			1 (0 -	1 (0 /				in-s	Mea	Con	Flow	Dry	Fish	Lak	Surf	2				
ner Parameters Hardness	Zinc	Silver	Selenium	Nickel Potassium	Mercury	Manganese	Lead Magasium	Iron	Chromium	Chloride	Cadmium Calciim	Arsenic	rganic Compounds, Dissolved	Zinc	Sodium	Silver	Potassium	Nickel	Marigariese Mercury	Magnesium	Lead	lron	Copper Cvanide	Cobalt	Chromium	Cadmium	Calcium	Arsenic		Phenol	Oil and Grease		Semi-Volatile Compounds (incl. PAHs)	PCBs	Oil Other Owner,	Enterococci	Fecal Streptococci	lotal Coliform	teriological Parameters	Total Organic Carbon	Particulate Phosphorus	Total Dissolved Phosphorus	Dissolved Organic Phosphorus	Total Kjehldahi Nitrogen	Total Nitrogen	Dissolved Inorganic Nitrogen	Dissolved Organic Nitrogen	Vitrate, dissolved	Nitrite, dissolved	otal Suspended Solids	otal Volatile Solids	Total Solids	Chlorophyll	30D	Secchi Depth	Dxygen Saturation	emperature Dissolved Oxygen	Nkalinity	situ Parameters, Solids, BOD, Chlorophyll	an Trophic Status	centrations	v Data	Weather	Tissues / Benthic Macroinvertebrates	e Water Samples	ace Water Samples/Stations	of Ototions		Appendix No		
				•			•		•		•							•			•				•	•		1				•	•	•		•		•						•				• •		•											• •	•	•			• 4	19	988 1989	+	URI: Wet Weathe	er Study
																		•			•		•					1										•											•	•	•			•		•	• •				• •	•	•			• -	<u> </u>	990	2	URI: Wet Weathe	er Study
																					•																	•			•							•		•	•								•		•					•	33 -1	988 1989	ω	URI: Water Quali Review	ity Data
																																			İ	1	¥							•				• •	•	•	•		•	•		•	• •		•		•	•	•			•	1 1	991		ASA: Blackstone Water Quality St	
																																									•			•	•			•	•	•	•			•							•		•			• .		995 1996		RIDEM: ProvSe River TMDL Proj	
																		•		•	•		•		•	•	•								İ						• •	•	•	•	•	• •	•	• •	•		•					•	•	•	•		•		•			•	S 1	990 1994		River Rescue: W Quality	ater
															•											•										•		•				•			•			•					•		•		•	•	•	•	•				•		7	993 2000	7	URI: Lakes Moni	toring
											•			-	•						•	•	•			• •)							1		•		•			•			•				• •		•	•		•	•		•	•	•	•				•			•		991 2000		RIDEM: Chemic (Sect. 305b)	al Monit
	•	• •		• •	•	• (• •		• •	•	• •	•		•	•	• •	• •	•	•	•	•	•	•		•	• •	•			•	•			1			•	•			•			•				•	•			•		•		• •	• (•	•		•		• •			•		990 1999		USGS: W ater Re Data	sources
																																						•		П																					•		• •			•		997 2001	10	NBC: Fecal Coli Monit.	iform
																1	•		•		•				•	•		•				•		•	l																										•			•			1 4	993	11	MADEP: Fish To Monitoring	xics
																																																		t														•			7 1	998 2000	12	Gould: Bioasses Screening for Be Macroinvertebra	enthic
														•		•		•		•	•	•	•		•	•	•								I						•				•																				•		N 1	988	13	Dr. King: Sedim Data	ent Cor
														•		•		•			•		•		•	•					•							•			•			•	•			• •	•	Ī	•			•	•			•	•		• •	•				•		997 2001		RIPDES-Permitt Discharges	ed
•					•		•		• •		•							•			•		•		•	• •										•		•						• •				• •		ŀ	• •		•		•	•	•	•	•		• •	•	• •		•	•	25	991 1993	15	Blackstone Rive	r

Figure 4-5

RIDEM - Class Specific Criteria

Criterion	CLASS B and B1
Dissolved Oxygen	Cold Water Fish Habitat - Dissolved oxygen content of not less than 75% saturation, based on a daily average, and an instantaneous minimum dissolved oxygen concentration of at least 5 mg/l. For the period from October 1st to May 14th, where in areas identified by the RI Division of Fish and Wildlife as cold water fish spawning in areas the following criteria apply: For species whose early life stages are not directly exposed to the water column (i.e., early life stages are intergravel), the 7 day mean water column dissolved oxygen concentration shall not be less than 8 mg/l. for species that have early life stages exposed directly to the water column, the 7 day mean water column dissolved oxygen concentration shall not be less than 6.5 mg/l and the instantaneous minimum dissolved oxygen concentration shall not be less than 5.0 mg/l.
Fecal Coliform Bacteria (MPN/100ml)	Not to exceed a geometric mean value of 200 and not more than 20% of the samples shall exceed a value of 500.
pH (Standard Units)	6.5 - 9.0 or as naturally occurs.
Temperature Increase	The temperature increase shall not raise the temperature of the receiving waters above the recommended limit on the most sensitive receiving water use nor cause the growth of undesirable or nuisance species of biota and in no cases exceed 83 degrees F. Heated discharges into designated coldwater habitats shall not raise the temperature above 68 degrees F outside an established thermal mixing zone. In no case shall the temperature of the receiving water be raised more than 4 degrees F.
Chemical Constituents	a. None in concentrations or combinations that could be harmful to humans or fish and wildlife for the most sensitive and governing water class use, or unfavorably alter the biota, or which would make the waters unsafe or unsuitable for fish and wildlife or their propagation, impair the palatability of same, or impair waters for any other existing or designated use. None in such concentrations that would exceed the Water Quality Criteria and other guidelines.
	b. The ambient concentration of a pollutant in a water body shall not exceed the Ambient Water Quality Criteria and Guidelines for the protection of aquatic organisms from acute or chronic effects, unless the criteria or guidelines are modified by the Director based on results of bioassay tests conducted in accordance with the terms and conditions provided in the RIDEM Site Specific Aquatic Life Water Quality Criteria Development Policy.
Nutrients	a. Average Total Phosphorus shall not exceed 0.025 mg/l in any lake, pond, kettlehole or reservoir, and average Total P in tributaries at the point where they enter such bodies of water shall not cause exceedance of this phosphorus criteria, except as naturally occurs, unless the Director determines, on a site-specific basis, that a different value for phosphorus is necessary to prevent cultural eutrophication.
	b. None in such concentration that would impair any usages specifically assigned to said Class, or cause undesirable or nuisance aquatic species associated with cultural eutrophication, nor cause exceedance of the criterion of (a) above in a downstream lake, pond, or reservoir. New discharges of wastes containing phosphates will not be permitted into or immediately upstream of lakes or ponds. Phosphates shall be removed from existing discharges to the extent that such removal is or may become technically and reasonable feasible.

Figure 4-6
Dissolved Metals Criteria

	Acut	e Criteria (ug/l)	Chro	onic Criteria (ua/l)
	Hardnes	s (mg/l as	CaCO ₃)		ess (mg/l as (
Metal	25.0	35.0	45.0	25.0	35.0	45.0
Aluminum	750.0	750.0	750.0	87.0	87.0	
Antimony	450.0	450.0	450.0	10.0		
Arsenic	360.0	360.0	360.0	190.0		L
Cadmium	0.8	1.2	1.6			
Chromium III	176.3	232.3	285.3	57.2		
Chromium VI	15.0	15.0		10.0		
Copper	4.6	6.3	8.0	3.5		
Lead	13.9	20.3	26.8	0.5		
Mercury	2.1	2.1	2.1	0.012		
Nickel	438.1	582.3	720.3	48.7	64.7	
Silver	0.3	0.6	0.9			
Zinc	35.4	47.0	58.2	32.3	42.9	53.1

^{~ =} no criteria recommendation

Figure 4-7

Criteria for Ammonia

	Acute Criteria (mg/l as N) ¹		Criteria (m mperature	
рН		10.0	<u>15</u> .0	20.0
6.5	48.8	8.9	6.5	4.7
7	36.1	7.9	5.7	4.2
7.5	19.9	5.8	4.2	3.1

¹Ammonia criteria for acute and chronic is based upon

criteria with early life stage absent.

²Chronic ammonia criteria is temperature and pH dependant.

Figure 4-8 Fecal Coliform (colifient) - Data Summary (all studies in Rhode Island Section of Blackstone River)

1 1 1 1 1 1 1 1 1 1	L				L					ľ								
						Station Location	W	an Conc	entration		Mini	num Cor	centratio		Max	mum Co	ncentratio	ç
Functionality Functionalit	NibneqqA stsQ	Station No.	Study Author			OSO/41MM	Dry Weather	mnot& gninuQ			Dry Weather	miojS gnind			Dry Weather		24h After Storm	123134 1104
Four-life ISPS STATE ISPS		L	URI BRI dry		L		73											
Functional Biology 1987	<u></u>		URI BRI wet					-				<u> </u>			,			
14 UN Biller Un 1159 1 1159 1 1159 1 1159 1159 1 1159	6	Forestdale	nsgs	1990-1999	•	Branch River, 400ff downst. of Mill dam in Forestdale	19		69		2		1		200		2,000	
Fig. Fig.	,		URI BRI dry	1991	•	Broad Bive Botto 146A Clotomidle MA	280											
E. B. Fine Fine Control Fig.	2		URI BRI wet	1991-1993	•	בימוניו היספי, הסטיפ ו+סה, טומיפוטעוויפ, ועיה	859	897	572	231	320	130	80	9	1,800	6,000	6,200	2,400
Fig. URIS	9	B2	River Rescue	_		Main Street, Blackstone, MA								_				
1.0 1.0	τ-	BRSL	UR	_		Blackstone River at MA/Ri state line	104	264	510	178	47	38	130	22	230	3,700	2,100	250
15 Fire Fire Were 1991-11993 0	4		URI BRI dry			Opinio C. (Citto Description) Description	73											
15 URI BRI day 1891 9 Pelest River, Winder St., Wiconsocidet, RI Day 1891 9 Pelest River, Route 114, Woonsocidet, RI Day 1891 9 Pelest River, Route 114, Woonsocidet, RI Day 2582 3312 20271 5,015 635 64 460 300 46,000 34,00	2		URi BRI wet	<u> </u>		min bridge of, (State boundary), blackstorie, MA	113	303	363	370	29	20	06	96	270	1,900	1,500	1,900
14 14 15 15 15 15 15 15	15		URI BRI dry	1991	•	Mill Biver Winter St. Woonsonket DI	73											
10 INT BRI MY 1981 Month 1981 Month 1981 Month 2		URI BRI wet	1991-1993	•	IVIIII INVEL, VVIIIGI GL, VVOOLISOCAEI, IVI													
17	4		URI BRI dry	1991	•	Data Data Data 444 Wassang D	267											
17 URI BRI day 1991 9 Hamfet Ave., (Re. 122 and 129), Woornsooket, Re. 122 and 129) 1991 1991 1991 1991 1991 1991 1992	2		URI BRI wet	1991-1993	•	Gigis 1000 114, 4000 1000 11	2,532	3,312	20,271	5,015	63	84	460	300	46,000	79,000		14,000
This parametric para	, r.		URI BRI dry			Hamfet Ave (Rte 122 and 128) Woonsocket RI	303											
1881 Mary 1981	2		URI BRI wet			ימווייני ואיני ורב פוס ובסייני וימי	444	1,242	809	708	110	120	340	150	1,900	12,000	880	5,400
Figure F	£	77	URI BRI dry	1991														
WNTP URI 198B-1989 • Manylie Hill Rd. Cumberland, RI 41 51 422 41 51 42 115 42 115 42 115 42 115 43 120 6	2		URI BRI wet	1991-1993		_	19	80	87	-	5	1	1	1	70	69,000	79,000	1
House Hous	-	WSTP	URI	1988-1989			4	51	10	297	0	0	0	0	16,750	49,000	23,000	36,000
Handle URI BRI dry 1991 9 Manwille Hill Rd. Cumberland, RI Manwille Ri Manwille Hill Rd. Cumberland, RI Manwille Hill Rd. Cumberland, RI Manwille Hill Rd. Cumberland, RI Manwille Hill Rd. Cumberland, RI Manwille Hill Rd. Cumberland, RI Manwille Hill Rd. Cumberland, RI Manwille Hill Rd. Cumberland, RI Manwille Hill Rd. Cumberland, RI Manwille Hill Rd. Cumberland, RI Hill Rd	4		RIDEM	1997-2001		•	13											
Manyile USGS 1901-1903 e Manyile Hill Rd, Cumberland, Ri Lisa 144 156 1154	7.		URI BRI dry				107							_				
Manville USGS 1900-1999 • Composition Manville Composition Manville Composition Manville Composition Manuille	2		URI BRI wet	1991-1993		Manville Hill Rd., Cumberland, RI	147	425	1,153	194	120	59	310	14	220	4,800	10,000	066
URI BRI wtt 1991-1993 Conci St./Albion Rd., Cumberland, Ri Blors River Rescue 1990-1995 Conci St./Albion Rd., Cumberland, Ri Blors River Rescue 1990-1995 Conci St./Albion Rd., Cumberland, Ri Blors River Rescue 1990-1995 Conci St./Albion Rd., Cumberland, Ri Blors River Rescue 1990-1995 Conci St./Albion Rd., Cumberland, River above Central Fails, Pawtucket 101 206 316 258 67 49 77 51 140 770 890 15,000 15	6	Manville	uses	:			63		514		0		43		380		3,400	
Blons Car Det Wet 1991-1993 Car Det	15	19	URI BRI dry						-			1	-			-		
20 URI BRI dry 1991 e Lonsdale Ave., Lonsdale, RI 101 206 316 258 61 48 77 51 140 770 890 S-2 NBC 1991-1993 9 101 206 316 258 61 48 77 51 140 770 890 BRSM URI 1986-1989 9 Blackstone River above Central Falls, Pawtucket 102 632 48 55 63 0 70 720 830 BRSM URI 1986-1989 9 Arious Results 143 230 250 9 21,000 7,200 830 S-3 INB 1987-2000 9 21 1,370 82 68 90 410 10 7,000 7,000 7,000 1,000 7,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000	9	Blons	River Rescue								-	<u> </u>						
S-2 URI BRI wet 1991-1993 94 697 316 256 637 77 690 77 770 890 S-2 NBC 1997-2000 94 637 3 23 24,000 15,000	-	6	URI BRI dry	1991			93					İ	1	 			-	
S-2 NBC 1987-2000 94 697 697 697 697 75,000 75	2	0	URI BRI wet			יייין בטווטספום אלפי, בטווטספופ, או	101	206	316	258	61	48	77	51	140	770	980	1,900
BRSM URI 1988-1989 Care URI 1980-1989 Care URI 1981 Care URI	9		NBC	<u>: </u>			46		697		ဗ		23	<u> </u>	24,000		15,000	
BRSM URI 1986-1989 •	-		URI	1988-1989		one River above Central	102	632	48	394	55	83	0	310		290,000	830	500
BRSMDN URI 1990 •	-	BRSM	URI	<u> </u>			511	1,248	54	184	230	250	6	21	740	19,000	7,200	490
S-3 NBC 1987-2000 • Slaters Mill 216 2,192 15 15 15,000 33,000 93,000 17,000 <	7	BRSMDN	URI	1990			192	1,279	1,370	823	89	96	410	100	820	23,000	31,000	2,100
21 URI BRI dry 1991 - 1993 • • Amon Rescue 1990-1995 • 79 1,186 676 576 676 76 676 76 676 76	5	S-3	NBC			State Mill	215		2,192		15		15		9,300		93,000	
Light Name 1991-1993 ■ TMDL RIDEM 1995-1995 ■ Main Street, Pawtucket, Ri Pawtucket, Ri 79 1,186 676 676 676 1,700 1	4		URI BRI dry	1991			280											
TMDL RIDEM 1995-1996 ● Main Street, Pavtucket, RI Main Street, Pavtucket, RI Main Street Pavtucket, RI	2		URI BRI wet	1991-1993			79	1,186	929	376	19	13	340	90	270	15,000	1,700	650
B1 River Rescue 1990-1995 • Main Street,	က			1995-1996														
	و		_	1990-1995	\exists	treet,					-	,						

Regulatory Standard:
Not to exceed a geometric mean of 200 MPN/100 ml.
Not more than 20% of the samples shall exceed a value of 500 MPN/100 ml.

Figure 4-9

Fecal Coliform Concentration

USGS Station at Forestdale, Branch River

Figure 4-10
Fecal Coliform Concentration
USGS Station at Manville, Blackstone River

Dct-01 to-luc FO-1qA Jan-01 Oct-00 00-lnL Blackstone River, Lincoln/Cumberland (Lonsdale Avenue) Apr-00 ารถ-00 Oct-99 Narragansett Bay Commission 66-Inc Apr-99 ารถ-99 86-toO 86-luc * S-2 Lonsdale Ave, Mixed Weather S-2 Lonsdale Ave, Wet Weather S-2 Lonsdale Ave, Dry Weather 8e-1qA Jan-98 Oct-97 76-luc 76-1qA าลก-97 10,000 1,000 100 9 100,000 Fecal Coliform (col/100 ml)

Fecal Coliform Concentration

Figure 4-11

Figure 4-13

Blackstone River Initiative

Dry Weather Data: Fecal Coliform (col/100 ml)

Station	Blackstone River	Tributary	Location	River Mile	July 10, 1991	Aug. 14, 1991	Oct. 2, 1991	Mean
BLK01	•			45.7	1,800	4,180	3,500	3,160
BLK02	•			43.9	20		20	13
BLK03	•			41.3	580	1,060	20	553
BLK04	•			39.8	2,300	760	300	1,120
BLK05		•	Quinsigamond River	36.7 <i>(2.1)</i>	40	40	40	40
BLK06	•			36.3	900	320	120	447
BLK07	•			31.9	100	80	320	167
BLK08	•			27.8	120	320	160	200
BLK09		•	Mumford River	25.5 <i>(0.6)</i>	300	120	20	147
BLK10		•	West River	24.2 (0.6)	80	80	80	80
BLK11	•			23.2	80	80	140	100
BLK12	•			19.1	80	20	120	73
BLK13	•			16.6	100	80	40	73
BLK14		•	Branch River	17.4 <i>(0.8)</i>	160	220	460	280
BLK15		•	Mill River	13.3 (0.7)	20	80	120	73
BLK16		•	Peters River	13.1 <i>(1.1)</i>	380	1,060	260	567
BLK17	•			12.8	400	150	360	303
BLK18	•			9.9	20	60	240	107
BLK19	•			8.1	120	60	140	107
BLK20	•			3.7	200	20	60	93
BLK21	•			0.2	560	140	140	280

^(*) Value in brackets and italics represents the distance from the confluence of the tributary with the Blackstone River to the sampling station.

Source: Massachusetts Department of Environmental Protection

Figure 4-14

Wet Weather Data - Storm I: Fecal Coliform (col/100 ml)

Blackstone River Initiative (Wright et al., 2001)

	2					Mean C	oncentra	tion		ı	Minimum	Conce	ntratior)		Maximun	n Concer	tration	
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				13,000	5,739	4,360	1,103		ĺ	3,000	2,500	760			18,000	12,000	1,600	
22			•	CSO facility in Worchester			***************************************				······		***************************************	***************************************					
01	•				8,300	13,446	6,905	1,187		***************************************	11,000	5,300	880		***************************************	17,000	9,700	1,600	
23			•	UBWPAD, Worchester	120	92	75	39			7	14	36	***************************************	•••••	2,000	210	43	
02	•	<u> </u>			18	26	17	4			3	7	4	***************************************		1,400	28	5	
03	•	<u> </u>	[***************************************				
04	•				610	931	258	179			360	150	160			1,600	580	200	
05	<u> </u>	•		Quinsigamond River		580													
06	•	ļ			80	566	667	65			330	310	35			980	1,400	120	
07	•	ļ			230	689	343	307			220	300	160			5,300	380	590	
08	•	<u> </u>			110	233	151	173			230	60	150			240	300	200	
09	ļ	•		Mumford River	60	189	161	33			96	54	14			350	360	79	
10	<u> </u>	•		West River															
11	•			,	90	410	144	114			270	80	100			510	280	130	
12	•																		1
13	•	<u> </u>			270	945	507	116			600	390	90			1,900	710	150	
14	ļ	•	ļi	Branch River	1,100	2,932	1,358	890			2,000	280	330			6,000	6,200	2,400	
15		•		Mill River	<u></u>														
16		•		Peters River	5,600	1,384	13,180	693			410	3,100	300			3,800	39,000	1,600	
17	•				420	1,946	607	1,972			510	410	720			8,500	810	5,400	
24	<u></u>	<u> </u>	•	Woonsocket WWTF	5	<1	13	<1			<1	<1	<1			<1	14,000	<1	
18	•	<u> </u>		,	120	100	732	28			59	310	14			140	1,700	58	
19	•																		
20	•				61	144	101	61			48	77	51			270	180	72	
21	•	ļ		Slater's Mill	270	2,511	697	130			180	400	80			11,000	1,700	210	
25			•	Bucklin Point (Seekonk R.)	47	94	81	19			5	39	<1			800	180	350	

Regulatory Standard: Not to exceed a geometric mean of 200 MPN/100 ml. Not more than 20% of the samples shall exceed a value of 500 MPN/100 ml.

Figure 4-15
Wet Weather Data - Storm II: Fecal Coliform (col/100 ml)

Blackstone River Initiative (Wright et al., 2001)

	ď					Mean C	Concentr	ation			Minimum	. Conce	ntratio	,		Maximun	n Concen	tration	
Station No.	<u>o</u>	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				1,700	5,561	856	2,500	1,400		1,800	190			1	9,300	3,000		
22			•	CSO facility in Worchester	400,000	190,000													
01	•				1,700	7,278	2,511	2,500	400		3,500	2,100				13,000	2,900		
23			•	UBWPAD, Worchester	29,000	73,004	70,540	110,000	21,000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12,000	39,000				120,000	100,000		
02	•				15,000	11,472	19,675	31,000	11,000		600	16,000				43,000	28,000		
03	•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				***************************************	,,.										
04	•				9,800	19,972	27,794	17,000	6,300		8,300	16,000				38,000	61,000		
05		•		Quinsigamond River															
06	•	ļ			1,700	10,965	21,182	8,400	1,400		•••••	11,000				38,000	36,000		
07	•	ļ			1,200	2,538	15,522	16,000	4,900		1,200	11,000				5,000	20,000		
08	•	ļ			1,400	1,796	9,908	15,000	4,700		760	3,200				5,000	19,000		
09		•		Mumford River	3	138	145	140	190		60	90	140			350	260	140	
10		•		West River	NA														
11	•	ļ			120	348	3,451	8,800	4,700		250	1,300				680	6,200		
12	•																		
13	•				79	113	651	1,900	2,100		50	230				240	1,500		
14		•		Branch River	320	283	132	60	380		130	80				440	170		
15		•		Mill River										,					
16		•		Peters River	46,000	56,430	30,507		29,000		44,000	26,000		• « • • • • • • • • • • • • • • • • • •		79,000	42,000		
17	•	ļ			110	449	605	1,200	2,000		120	340			·····	1,200	870		
24		ļ	•	Woonsocket WWTF	70	115	2,230	1	10		2	230				69,000	79,000		
18	•	ļ			120	547	900	990	2,100		280	560				960	1,300		ļ
19	•	ļ																	
20	•	ļ			140	171	670	150	840		90	590				390	760		ļ
21	•	ļ		Slater's Mill	96	1,093	522	630	980		60	340			ļ	15,000	800		ļ
25			•	Bucklin Point (Seekonk R.)	110	733	59	240	1,600		140	11	L			3,000	320		

Regulatory Standard:

Not to exceed a geometric mean of 200 MPN/100 ml. Not more than 20% of the samples shall exceed a value of 500 MPN/100 ml.

Figure 4-16 Wet Weather Data - Storm III: Fecal Coliform (col/100 ml)

Blackstone River Initiative (Wright et al., 2001)

	نہ					Mean (Concentr	ation			Minimum	Conce	ntration	,	Maximun	Concent	tration	-
Station No.	Blackstone R.	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	 During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				1,100	8,781	3,933	2,100			930	2,300			52,000	8,200		
22			•	CSO facility in Worchester	į	1,249					40				52,000			
01	•				1,500	7,388	4,113	1,600			2,100	2,600			 16,000	6,700		
23	<u> </u>	ļ	•	UBWPAD, Worchester	30	56	39	190			35	21			 90	120		
02	•	ļ			1,200	1,221	3,388	900			350	2,100			 13,000	8,000		
03	•	ļ													 			
04	•	ļ			210	684	2,070	1,100			20	700			 16,000	4,100		
05	ļ	•		Quinsigamond River											 			
06	•	ļ			420	741	3,298	1,900			140	2,100			 4,100	6,100	***************************************	
07	•				260	546	2,743	2,300			290	1,600			 1,100	5,200		
08		ļ	ļ		130	251	3,047	2,000	***************************************		190	1,900			 310	4,600		
09	ļ	•		Mumford River	34	88	262	82			41	140			 200	430		
10	ļ	•		West River											 			
11	•				110	196	654	1,100			99	200			 330	1,900		
12	•				67	261	145	230			130	90			380	290		
13 14	•	•		Branch River	1,800	870	1,043	230			460	370			 1.300	5,800		
15	 	-		Mill River	1,000	0/0	1,043	230			400	3/0			 1,300	3,000		ļ
16	 	•	ļ	Peters River	63	465	20,717	13,000		ļ	84	460			 1,200	94,000		ļ
17	•	<u> </u>	ļ	I CICIO INVCI	1,900	2,194	613	15,000			550	430			 12.000	880		
24	┼┈		•	Woonsocket WWTF	.,,,,,,,	-,	23			l	4	8			 72,000	36		l
18	•				220	1,404	2,329	260			360	1,400			 4,800	10,000		
19	•														 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	,	
20	•				120	354	465	1,900			120	190			 770	890		
21	•	1	l	Slater's Mill	19	608	851	650	•••••		13	610			6,900	1,200		
25			•	Bucklin Point (Seekonk R.)	1	244	75	40			90	32			900	110		

Regulatory Standard:
Not to exceed a geometric mean of 200 MPN/100 ml.
Not more than 20% of the samples shall exceed a value of 500 MPN/100 ml.

Fecal Coliform Loading for Storm 1, September 22-24, 1992

Table 4-18 Source Rankings by Dry and Wet Load Fecal Coliform

Stat	1					For	aal Calife	orm <i>(1E1</i>	2	da)		Facel	Californ	(9/)	
I N	o. 	ᡖ				re	cai Collic			is)	1	Fecal	Coliform		
		River						Wet L	oaas			ļr	Wet L	oads	
From	То	힏	Tributary	WWTF/CSO	Location	Dry Weather Load	Storm 1	Storm 2	Storm 3	Average - All Storms	Dry Weather Load	Storm 1	Storm 2	Storm 3	Avergaege - All Storms
neadw	00	•					6.73	20.80	11.20			12.40	2.80	29.20	32.69
2	1			•	CSO facility in Worchester			6.34	4.03				0.80	10.50	
00	01(*)	•					7.00	5.41				12.80	0.70		4.68
2	2			•	UBWPAD, Worchester		0.83	336.00	8.51			1.53	45.10	22.20	16.24
01	02	•						226.00	5.08				30.30	13.30	10.55
02 03	03 04	•					0.89	47.90	2.34			1.64	6.40	6.11	3.73
00 1			•		Quinsigamond River	•••••		 				i			
04	06				Quinsigamona (11ve)	•••••	0.35	<u>-</u>				0.64		<u>-</u>	0.22
06	07			•••••		•••••	0.20		1.68			0.64 0.37		4.39	0.22
07	08						0.20	11.90	1.00			0.57	1.60	4.55	0.02
I			•		Mumford River		0.04		0.23	•••••		0.08	0.10	0.60	•
0 1			•		West River	•••••	0.04	0.73	0.23			0.00	0.10	0.00	0.09
08	11	_	<u> </u>		VVESTTUVEI		0.28					0.51			0.18
11	12						0.20			•••••	•••••	0.51			0.10
12	13	•						į.		•••••			ŀ	·····-	
1.			•	_	Branch River		3.29	1.02	0.48			6.05	0.10	1.26	2.46
1			•		Mill River										•••••
1			•		Peters River		3.03	34.30	0.17			5.57	4.60	0.44	4.12
13	17	•				***************************************	11.40					20.90		<u>.</u>	8.73
2	4			•	Woonsocket WWTF		0.65	13.70	2.63	••••••		1.19	1.80	6.87	1.05
17	18	•							1.73					4.52	
18	19	•			,		·····							·····	•••••••
19	20	•						İ	0.26					0.68	
20	21	•					19.80	41.10				36.40	5.50		14.44
Sum o							16.3	655.1	33.1			30.0	87.8	86.3	69.2
					ncl. Mill and Peters Rivers)		38.2	90.1	5.3			70.1	12.0	13.8	30.8
					Totals		54.5	745.3	38.3			100.1	99.8	100.1	100.0

^(*) For Dry weather data, rankings between Segment "00 and 01" include the Segment "Headwater to 00".

Table 4-19 Exceedences of Regulatory Standards - Dry and Wet Weather Surveys Fecal Coliform

		•					Log I	Vlean > 2	00 cc	ol/100	ml					10% of eding 4			ml	
						Dry '	Weat	her		Wet \	V eatl	her	ļ	Dry V	Veath	er		Wet	Weatl	her
Station No.	Blackstone River	Tributary	WWTF/CSO	Location	July 11-13, 1991	Aug. 14-15, 1991	Oct. 2-3, 1991	Total Exceedences (%)	Storm 1: Sep. 22-24, 1992	Storm 2: Nov. 2-5, 1992	Storm 3: Oct. 12-16, 1993	Total Exceedences (%)	July 11-13, 1991	Aug. 14-15, 1991	Oct. 2-3, 1991	Total Exceedences (%)	Storm 1: Sep. 22-24, 1992	Storm 2: Nov. 2-5, 1992	Storm 3: Oct. 12-16, 1993	Total Exceedences (%)
00	•							0.97	•	•	•	100%					•	•	•	100%
22			•	CSO facility in Worchester																
01	•							0%	•	•	•	100%					•	•	•	100%
23			•	UBWPAD, Worchester	2													,	ozerzanieni	
02	•	ļ				ļ	ļ	0%		•	•	67%					OTENTA TAN	•	•	67%
03	•	ļ			•	•		67%			,	,	L						·····	
04	•				•	•	•	100%		•	•	100%					•	•	•	100%
05	ļ	•		Quinsigamond River			<u> </u>	0%				·								,
06	•	ļ			•	•	<u> </u>	67%	•	•	•	100%					•	•	•	100%
07	•	ļ				ļ	•	33%	•	•	•	100%				4)7.1171.1171 4 171.117	•	•	•	100%
08	•	ļ				•	ļ	33%		•	•	67%		179-1X0139-14				•	•	67%
09	ļ	•		Mumford River	•	ļ	ļ	33%	ener one			0%	eregerense,	-university	بمنصيصين		90000000			0%
10	ļ	•		West River				0%				г	2,1,2						,	т
11		ļ				ļ	ļ	0%	70.755.75	•	•	67%					•	•	•	100%
12	•	ļ			 		-	0%	80 7.00 1	37 -			200							
13		ļ <u>.</u>		Db D'			<u> </u>	0%	•	•		67%			11197		•	•	ļ <u>.</u>	67%
14	ļ	•		Branch River		•	•	67%		•	•	100%						•		100%
15	ļ	•		Mill River				0%				4006/							·	4000
16		•		Peters River	-	•	•	100%		•	•	100%					•	•	•	100%
17 24		ļ		Woonsocket WWTF	96	L	•	67%				100%						•		100%
18		ļ		I VVOOIISOCKEL VVVV I F	ļ <u>.</u>	Ĭ	•	0% 33%		•	- 29	67%			···········					670/
19		}			<u>.</u>			0%				L 0/70	ļ							67%
20		ļ				ļ	ļ	33%				67%								67%
21		ļ					ļ	33%		•	•	100%						_		100%
21		1	<u> </u>	<u>L</u>		<u> </u>	<u>: </u>	35%	_	•	•	100%			1 m 1 g	20000		•	•	100%

Figure 4-20 Fecal Coliform Concentration (MPN/100 ml) - Reservoirs

Waterbody		All Years (1993-2000)	1993	1994	1995	1996	1997	1998	1999	2000
PASCOAG RESERVOIR	Mean	4		12	4	2	1	3	2	6
, , , , , , , , , , , , , , , , , , , ,	Minimum	o		9	0	0	0	0	1	<1
	Maximum	15		15	13	7	1	8	4	13
SPRING LAKE	Mean	2	1	5	3	1	4	1	2	2
	Minimum	0	0	1	1	0	0	1	<1	1
	Maximum	36	2	27	29	3	36	2	5	4
KEECH POND	Mean	6	11	12	3	8	2	7	2	5
	Minimum	0	4	2	1	0	0	2	1	<2
	Maximum	64	64	52	15	25	3	22	4	12
SMITH AND SAYLES RESERVOIR	Mean	2	0	2	2	2	0	1	3	4
	Minimum	0	0	1	0	0	0	0	1	<1
	Maximum	17	0	5	4	5	0	1	8	17
SPRING GROVE POND	Mean	3	3	5	4	0	2	6	3	3
	Minimum	0	o	3	3	o	0	0	2	<1
	Maximum	17	14	9	4	0	5	17	4	7
SLATERSVILLE RESERVOIR	Mean	5			8					3
	Minimum	О			0					2
	Maximum	60			60					4
VALLEY FALLS POND	Mean	57								57
	Minimum	25								25
	Maximum	200								200

Note: Mean Concentration is expressed as geometric mean.

Criteria (Class B & B1) Geometric Mean - 200 MPN/100ml 80th Percentile - 500 MPN/100 ml

Figure 4-21
RIDEM Chemical Monitoring of Tributaries, Section 305b

Fecal Coliform Concentrations (col/100 ml)

	,,							
Date	Round Top Brook	Pascoag River	Clear River	Abbot Run Brook (Cumberland)	Abbot Run Brook (North Attleboro)	Dry Weather (1)	Wet Weather (2)	Mixed Weather (3)
12-Mar-91		1	2	1,	4	•		
13-May-91	6	24	120	1	31		1	•
29-Jul-91	80	70	1,700	10	. 80]	•
06-Sep-91	10	100	570	1	130	************	1	•
26-Арг-93	49	21	260	20	390		•	
10-Aug-93	14		170	32	120	•		
27-Dec-93	4	2	4	65	32	•		
11-Mar-96	1	12	1	3	1			•
14-May-96	2	13	16	7	20			•
20-Aug-96	3,900	840	81	4	84	•		
02-Oct-96	8	15	32	3	48		Ī	•
14-Apr-98		12	4	1	11	•	[
05-Aug-98	30	800	68	10	100	•		•••••••
26-Oct-98	13	66	15	6	19	•	[••••
20-Jan-99	2	2	5	2	88			•
19-Mar-99	1	4	4	1	27	•		••••••
10-Jun-99	19	51	110	27	110	•		
19-Aug-99	150	510	40	14	140	•	····	
12-Oct-99	11	64	110	130	200			•
15-Mar-00	3		10	3	20			•
30-May-00	5	32	90	10	56	•		
18-Sep-00	7	73	29	60	110			•
11-Dec-00		2	6	7	4			•
St	atistical Sur	mmary - Al	I Samples	<u> </u>				
Count	20	21	23	23	23	•	•	•
Geometric Mean	12	26	30	7	41	•	•	•
Minimum	1	1	1	1	1	•	•	•
Maximum	3,900	840	1,700	130	390	•	•	•
	atistical Sur	mmary - Di	y Weather	•				
Count	9	10	11	11	11	•		
Geometric Mean	22	36	22	7	41	•		
Minimum	1	1	2	1	4	•		
Maximum	3,900	840	170	65	140	•		
Statistic	al Summary	y - Mixed a	nd Wet We	eather				
Count	11	11	12	12	12		•	•
Geometric Mean	7	19	40	6	40	1	•	•
Minimum	1	2	1	1	1	T	•	•
Maximum	80	100	1,700	130	390	·········· †	•	•

ND = Not detected

(1) Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day.

(2) Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or rainfall of more than 1.0" on days 2 and 3 prior to sampling.

(3) Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Figure 4-22

RIPDES-permitted Point Sources Fecal Coliform (col/100 ml)

Data Period: January 31, 1997, to October 31, 2001

		i	Т	<u> </u>	<u> </u>	<u></u>	Г		_	Г	Т	<u> </u>		Ī
	Osram Sylvania Products (Outfall 200)													
(Jm O	Osram Sylvania Products (Outfall 001)													
(MPN/10	Okonite, Co.													
ntration	Moonsocket WWTF		13	2	108			2	80,038		4,818	2	240,000	
m Conce	Blackstone Smithfield Co.		4,981		24,000									
Fecal Coliform Concentration (MPN/100 ml)	Atlantic Thermoplastics		578		24,000		930	2	24,000		930	2	24,000	
Feca	Burrillville WWTF		28	2	149		75	3	300		149	8	300	
	IssiiqzoH Isinom9M onsisdmsZ		4	0	99		22	0	1,100		22	0	1,100	
	Osram Sylvania Products (Outfall 200)		330,000		670,000						530,000	310,000	1,820,000	
	Ostam Sylvania Products (Outtall 001)		580,000	460,000	710,000									
	Okonite, Co.		80,000	30,000	140,000						150,000	60,000	250,000	
(gallons per day)	Woonsocket WWTF		9,180,000	5,230,000	13,520,000				—					
Flow (gall	Blackstone Smithfield Co.		2,992	2,400	4,608									
_	eoitesiqomrəriT otinsitA		1,200	268	2,988								—	
	Burtillville WWTF		830,000	640,000	1,220,000						80,000 1,100,000	700,000		
	IsingsoH Isinom9M onsisdmsZ	_	20,000	30,000		ge				E	80,000	40,000		
		Monthly Mean	Average	Minimum	Maximum	Weekly Average	Average	Minimum	Maximum	Daily Maximum	Average	Minimum	Maximum	

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit.

0.510

0.896 0.710 1.096

0.124 0.046 0.216

8.076 20.877

0.005 0.004 0.007

0.002

1.282 0.988 1.884

0.077

Average Minimum Maximum

Monthly Mean

Flow (cfs)

Data Source: Rhode Island Department of Environmental Management

Figure 4.23
Woonsocket Wastewater Treatment Facility - Effluent
Fecal Coliform Concentration

Figure 4-24

Total Copper (ug/l) - Data Summary (all studies in Rhode Island Section of Blackstone River)

	Storm	111				2.3				14.1		4.5		3.0	,	13.4	74.0	ř			11.8						14.9			72.7	9.8	П		9.9	
ation	19JJ 48h	1	ļ			_												<u>.</u>																_	
Concentration	1911A After M1012	111				2.9	20.6			14.7		2.8		3.8	,	11.8	7 70				15.3	11.0			ر د		15.4			15.0	14.2			10.9	
-:	mıot& gninu	1				3.8				11.7	*	5.6		7.3	,	14.0	0.70	5			13.6						10.7			14.8	79.4			10.6	
Maxin	Dry Weather	15.5		3.0	7.4	2.9	24.5		20.3	13.0	6.8	1.7	37.4	9,4	26. c	10.0	4 70			13.3	12.5	18.0	12.4		4.0	10.6	9.8				14.2		12.4	8.8	
_	19th After Storm					0.7				6.5		0.5	1	1.7	,	6.8	7 90	20.7		-	6.5			1		_	5.6			8.8	5.3			8.8	
Concentration	m1of2		<u></u>			1.0	0.5			8.3	***************************************	0.5		1.5		0.0	3 /	, ,	-		9.0	0.			· ·		6.9			8.6	4.0			6.7	
Š	19HA dter]	ļ			0	-		***************************************	3.3		0.0		0.5	ļ		7.4	ŧ			4	εÿ			٥		4.5			n	5.1			0	
	mrot& gninu					0										4.					4													5	
	Dry Weather	8.8		2.0	1.8	2.2	2.5		8.1	6.1	0.2	1.6	7.6	2.2	0 0	8.0	000	7.50		6.5	8.5	1.0	6.8		0.0	4.8	6.9			8.1	6.0		6.4	5.1	
_	18th After m1ot2	111				1.6				-		1.8	(2.0	,	10.0	7 07	† •			10.0						10.6			13.3	7.5			11.5	
Concentration	24h After Storm	'II	-	2.0		1.8	3.5		,	11.0		4.	, i	2.7	i	9.3	47.0	P.			11.8	7.6			4 .		1.0			12.1	9.2			8. 8.	
92.03	During Storm	1	<u></u>			2.0	·			8.3		1.7	ì	3.7		8. 8.	9 7 9	;	22.3		9.4				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	9.8			11.6	11.7			9.8	
Mean		4.2		2.8	4.4	2.6	8.9		11.7	9.0	3.7	9.	4.	3.6	9.7	9.3	-	2	-	0.0	1.1	9.3	9.8	- 1). (7.9	8.7			1.2	9.4		8.5	7.4	
į	Dry Weather	4	1	i i					-	-	- 1		- 1	- 1		- !	ų	7		1	-			- 1'	-	į		- 1	ı	_	,				
			<u> </u>	9																					-							<u> </u>	<u> </u>	<u> </u>	_
Station Location	AAAA ILICOO	VFT - 107 107 - 10	Koute 122, Miliville, MA	Branch River, 400ft downst. of Mill dam in Forestdale		חומוים ויאיפין ואסמים ואסלי סימים איווים, זאיט	Main Street, Blackstone, MA	Blackstone River at MA/Rt state line			Mill River, Winter St., Woonsocket, RI	***************************************	Peters River, Route 114, Woonsocket, RI	444444 4444444444444444444444444444444	Hamlet Ave., (Rte. 122 and 126), Woonsocket, RI			Effluent, Woonsocket Sewage Treatment Plant		***************************************	Manville Hill Rd., Cumberland, RI		School St /Albion Rd Climberland Rl		****	Lonsdale Ave.: Lonsdale: RI			Blackstone River above Central Falls, Pawtucket		COLOR	Sparage Mill	Olater's Mill		
Station Location	Tributary WWTF/CSO	VI	KOUTE 122, MIIIVIIIE, MA	Branch River, 40	o rough Divor		Main Street, Blackstone, MA				Mill River, Winter St., Woonsocket, RI		Peters River, Route 114, Woonsocket,	**************************************	le. 122 and 126), Woonsocket,		•	•	•	***************************************	-					Lonsdale Ave. Lonsdale. Ri			r above Central Falls, P.			Signature Mill	Odders Will		
		CON CHICAGO	Moute 122, Milly	Branch River, 40	o rough Divor	•	Main Street, Bla	● Blackstone River	Bridge St. (State	•	Mill River, Winte	•	Peters River, Route 114, Woonsocket,	•	Hamlet Ave., (Rte. 122 and 126), Woonsocket,	•		•		***************************************	Manville Hill Rd.,		School St /Albion	•		- Lonsdale Ave	•	•	Blackstone River above Central Falls, P.		•	•			1995-1996
	Tributary	•	Koute 122, Milly	Branch River, 40	o rough Divor		Main Street, Bla	Blackstone River	Bridge St. (State		Mill River, Winte	693	Peters River, Route 114, Woonsocket,	• • • • • • • • • • • • • • • • • • •	Hamlet Ave., (Rte. 122 and 126), Woonsocket,	•	1991	•		⊨	-	န္တ	School St /Albion	•	GRA1-0881	- Lonsdale Ave	1991-1993	•	Blackstone River above Central Falls, P.	1988-1989	1990	1997-2000 • Sloters Mill	1991 • OldtelS Willi	1991-1993	1995-1996
	Blackstone R	1991	Moute 122, Milly	1990-1999 • Branch River, 40	1991 • Pranch Divor D.	1991-1993	r Rescue 1990-1995 • Main Street, Bla	1988-1989 ● Blackstone River	1991 • Bridge St. (State	1991-1993	1991 Mill River, Winte	1991-1993	1991 Peters River, Route 114, Woonsocket,	1991-1993	Hamlet Ave., (Rte. 122 and 126), Woonsocket,	1991-1993		1988-1989	1997-2001	⊨	!l wet 1991-1993 ● Manville Hill Rd.,	1990-1999	1991 School St /Albion	1991-1993	┪	1991 • Lonsdale Ave	•	1997-2000	1988-1989 • Blackstone River above Central Falls, P.	URI 1988-1989 ●		1997-2000	•	wet	_
	Year(s) of data collection Blackstone R	URI BRI dry 1991 ●	. 1991-1993 • Koute 122, Milly	1990-1999 • Branch River, 40	1991 • Pranch Divor D.	URI BRI wet 1991-1993 ●	River Rescue 1990-1995 • Main Street, Bla	1988-1989 ● Blackstone River	1991 • Bridge St. (State	1991-1993	1991 Mill River, Winte	URI BRI wet 1991-1993	1991 Peters River, Route 114, Woonsocket,	1991-1993	Hamlet Ave., (Rte. 122 and 126), Woonsocket,	1991-1993	1991	1988-1989	RIDEM 1997-2001	URI BRI dry 1991	URI BRI wet 1991-1993 ● Manville Hill Rd.,	1990-1999	1991 • School St /Albion	URI BRI wet 1991-1993 •	ם	URI BRI dry 1991 • Lonsdale Ave. L	URI BRI wet 1991-1993 ●	NBC 1997-2000 ●	URI 1988-1989 • Blackstone River above Central Falls, P.			1997-2000	URI BRI dry 1991 ●	URI BRI wet	TMDL RIDEM 1995-1996 ●

	ວັ	Criteria (ug/l)	(l/(
	for	for Hardness	SS
Dissolved Copper	/gm)	(mg/l as CaCO 3)	(٤0
Criteria	25	35	45
Acute Criteria	4.6	6.3	8.0
Chronic Criteria	3.5	4.6	

Figure 4-25

Copper Concentration

USGS Station at Forestdale, Branch River

Figure 4-26

Copper Concentration

USGS Station at Manville, Blackstone River

Figure 4-27 **Total Copper Concentration**(Kerr and Lee, 1996)

Figure 4-28

River Rescue Project, 1990-1995 (Kerr and Lee, 1996)

Total Copper for all Sampling Events

		1	All nples		,	Wet We	eather(*)			Dry W	eather	
					e day ainfall	and	ne day) 1 day rainfall	o	l day nly rainfall		t days r rain	4 day	e than /s after ain
Station No.	Station Location	Count	Total Copper (ug/l)	Count	Total Copper (ug/l)	Count	Total Copper (ug/l)	Count	Total Copper (ug/l)	Count	Total Copper (ug/l)	Count	Total Copper (ug/l)
	Blackstone River, Main Street, Blackstone, MA	39	9.4	2	12.2	5	13.5	3	8.8	9	8.5	22	8.9
B _{lons}	Blackstone River, Lonsdale Avenue	15	10.3	0	•••	4	14.9	3	6.2	2	8.3	5	10.7
B1	Blackstone River, Main Street, Pawtucket	47	9.4	1	7.4	5	13.0	3	6.5	7	10.6	29	7.7

NOTE:

^(*) Rainfall is defined as 0.25" or more on a given day. Rainfall data are from the RI Airport.

Figure 4-29 Blackstone River Initiative (Wright et al., 2001)

Dry Weather Sampling: Total Copper Concentration (ug/l)

BLK01		نــ				Total Cop	per Conc	entration	s		Di	ssolved	Copper	Fractio	n
BIKOD	Station No.	Blackstone R.	Tributary	Location	Run #1	Run #2	Run #3	Run #4	MEAN	Average Hardness	Run #1	Run #2	Run #3	Run #4	MEAN
BLK03					15.00									16%	329
BLK06											74%			93%	82 85
BLK06											70%			71%	73
ILROY			•	Quinsigamond R.							**,-*,**,**,**				7
ILKOB		•					17.20						98%	71%	72
BLK09		•									35%				36
ILK10				Mumford Diver							104			13%	40 2
SLK11														0%	3
BLK13		•												30%	31
SILK14	LK12	•				11.60	8.80	11.40	10.93	45.04	61%	45%	92%	40%	60
BILK15		•			8.80								50%	33%	46
SLK16														1%	20
SLK14														4% 5%	31 41
SILK18		•	-	I CIGIO INVEL										25%	39
SIACO		•													96
Section Sect		•			7.50	6.80	9.10				51%	47%	73%	76%	62
August 1991 Survey 3LK01														49%	53
SECO	LK21	•		Slaters Mill	6.70	8.60	8.50	6.70	7.63	43.55	51%	43%	60%	57%	53
SECO	ugust 1	991	Surv	ΑV											
BLK02		•	July	<u></u>	9.90	7.60	11.50	10.101	9.781	65.41	64%	70%	52%	89%	69
BLK06		•						22.00	25.10	55.15				92%	87
SERICE Quinsigamond R. 2,10 3,40 3,20 1,00 2,43 44,17 5% 9% 78%		•		,,,,,	28.30	22.40		22.70			79%			84%	83
LILCOB														84%	85
SEKOP				Quinsigamond R.										10% 73%	25
SLK08				·>>>>										76%	79 66
BLK90		•		»»»»								**************		65%	57
BLK11			•	Mumford River										8%	19
BLK12			•	West River			*******************	***************	**************					79%	46
BLK13				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										45%	47
Birch Branch River 3.40 2.50 2.10 5.20 3.30 16.85 44% 92% 86% Birch Mill River 4.60 3.30 0.20 6.60 3.68 21.18 35% 50% Birch Peters River 3.10 2.60 2.85 28.41 16% Birch 7.30 6.00 7.40 8.30 7.25 29.66 74% 53% 58% Birch 9.10 8.70 9.40 12.40 9.90 35.39 71% 79% 73% Birch 9.10 8.70 9.40 12.40 9.90 35.39 71% 79% 73% Birch 9.10 8.70 9.40 12.40 9.90 35.39 71% 79% 73% Birch 9.10 8.80 9.30 10.60 9.00 9.43 38.72 89% 59% 52% Birch 9.10 11.70 12.40 8.10 9.98 37.59 69% 57% 52% Birch 9.10 11.20 4.30 8.90 11.60 9.00 47.98 48% 63% 97% Birch 9.10 14.80 9.10 18.80 19.50 16.05 52.91 74% 75% 72% Birch 9.10 14.80 19.50 16.05 52.91 74% 75% 72% Birch 9.10 14.80 19.50 16.05 52.91 74% 75% 72% Birch 9.10 14.80 15.20 14.60 13.78 46.90 49% 95% 71% Birch 9.10 17.30 13.50 12.40 15.30 13.73 44.96 55% 69% 71% Birch 9.10 16.40 14.40 17.80 17.13 44.96 55% 69% 71% Birch 9.10 16.30 21.00 14.30 18.90 33.16 54% 33% 36% Birch 9.10 16.30 21.00 14.30 18.90 33.16 54% 33% 36% Birch 9.10 16.30 21.00 14.30 13.90 33.16 54% 33% 36% Birch 9.10 16.30 21.00 14.30 13.90 33.16 54% 33% 36% Birch 9.10 16.30 21.00 14.30 13.90 33.16 54% 33% 36% Birch 9.10 16.30 21.00 14.30 13.90 33.16 54% 33% 36% Birch 9.10 16.30 21.00 14.30 13.90 33.16 54% 33% 36% Birch 9.10 16.30 21.00 14.30 13.90 33.16 54% 33% 36% Birch 9.10 16.30 21.00 14.30 13.90 33.16 54% 33% 36% Birch 9.10 14.80 9.20 9.20 9.20 12.00 27.98 52% 61%		<u> </u>												54%	67
BLK15				Branch Divor										51% 29%	56 63
SILK16												92.70		29%	29
Section Sect		•••••			3.10		V:						00 /0	88%	52
BLK19		•			·	6.00	7.40					53%	58%	47%	58
Section Sect		•		,,,,,										46%	68
Sale Sale		•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											75
Dictober 1991 Survey Sirvey	<u>.</u>		Slatore Mill									****************	62%	65	
BLK01	LNZI	Ť		Siaters Will	1.70	11.70	12.40	0.10]	9.90]	37.59	09%	5/%	32%	65%	61
ILKO2	ctober	1991	Sur	vey											
BLK03		•												41%	62
ILK04				······										82%	82
LK05 ■ Quinsigamond R. 1.40 1.20 1.30 2.90 1.70 39.59 57% 100% 92% LK06 ■ 16.90 8.40 15.20 14.60 13.78 46.90 49% 95% 71% LK07 ■ 17.30 13.50 12.40 15.70 14.73 44.77 76% 55% 69% LK08 ■ 19.90 16.40 14.40 17.80 17.13 44.96 55% 69% 71% LK09 ■ Mumford River 5.20 2.10 2.80 5.30 3.85 13.63 38% 38% 36% LK10 ■ West River 1.60 1.70 2.30 9.30 3.73 17.57 94% 59% 43% LK11 ■ 16.30 21.00 14.30 18.90 17.63 33.24 65% 29% 56% LK12 ■ 13.00 15.50 14.00 13.10 13			ļ	***************************************										75% 93%	74 78
ILK06			•	Quinsigamond R										86%	84
LK07 ● 17.30 13.50 12.40 15.70 14.73 44.77 76% 56% 69% LK08 ● 19.90 16.40 14.40 17.80 17.13 44.96 55% 69% 71% LK09 ● Mumford River 5.20 2.10 2.80 5.30 3.85 13.63 38% 38% 36% LK10 ● West River 1.60 1.70 2.30 9.30 3.73 17.57 94% 59% 43% LK11 ● 16.30 21.00 14.30 18.90 17.63 33.24 65% 29% 56% LK12 ● 13.00 15.50 14.00 13.10 13.90 33.16 54% 32% 78% LK13 ● 12.90 12.30 20.30 12.50 14.50 31.65 56% 48% LK14 ● Branch River 4.20 3.90 4.10 4.07 11.54 86% 97% LK15 ● Mill River 2.70 2.80 6.80 1.80 3.53 18.83 74% 64% LK16 ● Peters River 2.90 3.30 1.60		•	·····	Jan Jan Li										68%	71
Mumford River 5.20 2.10 2.80 5.30 3.85 13.63 38% 38% 36%	LK07	•												77%	70
Mathematical Nation Mathematical Nation		•				16.40			17.13		55%	69%	71%	57%	63
LK11 • 16.30 21.00 14.30 18.90 17.63 33.24 65% 29% 56% LK12 • 13.00 15.50 14.00 13.10 13.90 33.16 54% 32% 78% LK13 • 12.90 12.30 20.30 12.50 14.50 31.65 56% 48% LK14 • Branch River 4.20 3.90 4.10 4.07 11.54 86% 97% LK15 • Mill River 2.70 2.80 6.80 1.80 3.53 18.83 74% 64% LK16 • Peters River 2.90 3.30 1.60 2.60 29.14 86% 64% LK17 • 9.80 19.80 9.20 9.20 12.00 27.98 52% 61%														58%	43
LK12 ■ 13.00 15.50 14.00 13.10 13.90 33.16 54% 32% 78% LK13 ■ 12.90 12.30 20.30 12.50 14.50 31.65 56% 48% LK14 ■ Branch River 4.20 3.90 4.10 4.07 11.54 86% 97% LK15 ■ Mill River 2.70 2.80 6.80 1.80 3.33 18.83 74% 64% LK16 ■ Peters River 2.90 3.30 1.60 2.60 29.14 86% 64% LK17 ■ 9.80 19.80 9.20 9.20 12.00 27.98 52% 61%				west River											65
LK13 • Branch River 12.90 12.30 20.30 12.50 14.50 31.65 56% 48% LK14 • Branch River 4.20 3.90 4.10 4.07 11.54 86% 97% LK15 • Mill River 2.70 2.80 6.80 1.80 3.53 18.83 74% 64% LK16 • Peters River 2.90 3.30 1.60 2.60 29.14 86% 64% LK17 • 9.80 19.80 9.20 9.20 12.00 27.98 52% 61%			ļ	·····										35% 52%	46 54
LK14 ● Branch River 4.20 3.90 4.10 4.07 11.54 86% 97% LK15 ● Mill River 2.70 2.80 6.80 1.80 3.53 18.83 74% 64% LK16 ● Peters River 2.90 3.30 1.60 2.60 29.14 86% 64% LK17 ● 9.80 19.80 9.20 9.20 12.00 27.98 52% 61%	-												10%	47%	50 50
LK15 ● Mill River 2.70 2.80 6.80 1.80 3.53 18.83 74% 64% LK16 ● Peters River 2.90 3.30 1.60 2.50 29.14 86% 64% LK17 ● 9.80 19.80 9.20 9.20 12.00 27.98 52% 61%			•	Branch River			20.00							44%	76
LK16							6.80	1.80						78%	72
LK17 ● 9.80 19.80 9.20 9.20 12.00 27.98 52% 61%			************	***************************************									······		75
LK18 ● 13.30 8.80 7.40 10.90 10.10 28.22 45% 93% 76%	LK17	•			9.80				12.00	27.98			61%	66%	60
							7.40				45%			54%	67
LK19 ● 7.20 7.40 10.00 8.90 8.38 29.32 61% 72% 58%							10.00				61%	72%	58%	67%	65
LK20 ● 4.80 7.50 8.90 7.07 29.49 LK21 ● Slaters Mill 6.40 6.80 9.90 8.50 7.90 30.35 95% 78% 57%		*********		Clatera **"								<u></u>	<u></u>	85% 68%	85 75

Sta	tistics - a	ıll 3 Surv	evs
Mean	Mini- mum	Maxi- mum	Dissolved Copper Fraction
9.4	4.3	15.0	54%
25.7	12.5	49.8	84%
24.6	9.1	45.8	80%
22.2	11.0	29.0	79%
2.2	1.0	5.4	39%
20.2	8.4	29.6	74%
18.3	12.4	22.8	57%
26.2	14.3	53.8	53%
4.4	1.3	11.0	21%
8.5	1.0	41.0	38%
18.8	14.2	25.7	41%
12.4	8.8	15.5	60%
11.7	8.1	20.3	51%
4.4	1.8	7.4	53%
3.7	0.2	6.8	44%
7.4	1.6	37.4	56%
9.7	6.0	19.8	52%
10.0	6.5	13,3	77%
8.6	6.8	12,4	67%
7.9	4.8	10.6	68%
8.5	6.4	12.4	63%

Mean 58%

Figure 4-30

Blackstone River Initiative (Wright et al., 2001)

Dry Weather Sampling: Dissolved Copper Concentration (ug/l)

Statistics of all 3 Surveys

6.8

0.1 8.0 7.6 7.0 0.1 0.1 5.1 4.6

2.8 0.1 0.1 0.1 1.8 3.7 3.2 26.6 24.9 2.5 20.6 13.1 17.7 3.1 3.5 11.6 11.3

8.1 3.8 3.1 14.7 7.2 10.3 6.9 7.8 6.7

5.0 21.4

18.8

17.6 0.8

14.6

14.6 10.0 11.3 0.7 1.1 7.5 7.3

5.7 2.1 1.2 3.1 4.6

6.8

		rve	<u> </u>						Γ_			Exc	cee	dan	ces						
	River									4cut	e Cr	iteria	3	C	hror	ic C	rite	ria		æ	Ē
Station No.	Blackstone F	Tributary	Location	Run #1	Run #2	Run #3	Run #4	Mean	Run #1	Run #2	Run #3	Run #4	Mean	Run #1	Run #2	Run #3	Run #4	Mean	Average Hardness	Acute Criteria	Chronic Criteria
BLK01	•	ļ		6.10	1.90	3.00	1.40	3.10	ļ						<u></u>				73.9	12.80	8.77
BLK02 BLK03	-	ļ		37.10	27.20 22.10	26.40 25.20	26.90 21.40	29.40 22.90		•	:		•		•	•	•		66.4 59.9	11.56 10.50	7.99 7.33
BLK04	+-	ł		19.90	20.40	19.90	19.50	19.93		:	÷	•		•	:	•	•		66.8	11.64	7.33 8.04
BLK05		•	Quinsigamond R.	0.10	0.10	0.10		0.10		ļ									52.2	9.23	6.52
BLK06	•	ļ		15.10	14.50	16.90	14.40	15.23	•	•	٠	٠	•	•	٠	٠	٠	•	60.3	10.56	7.36
BLK07 BLK08		ļ		7.90 7.50	8.60 8.30	10.20	7.00	8.25 8.25		ļ	•			•	•	•	•	-	56.0 54.0	9.85 9.52	6.91 6.70
BLK09	<u> </u>	•	Mumford River	0.10	0.10	0.10	0.10	0.10		ļ				<u>*</u>	Ť	···	¥	-	19.2	4.61	3.47
BLK10		•	West River	1.30	0.10	0.10	0.10	0.40		ļ							*******		21.9	4.61	3.47
BLK11	•	ļ		5.10	6.40	8.50	7.60	6.90		ļ	٠				٠	٠	٠	•	45.7	8.14	5.82
BLK12 BLK13	•	-	-	7.30 5.20	5.20 4.10	8.10	4.60	6.30	<u> </u>		•	_	ш	•		٠		•	45.0	8.03	5.74
BLK14		•	Branch River	1.20	2,90	7.10	2.80 0.10	4.80 1.40	 	•					•	٠			40.4 14.9	7.25 4.61	5.23 3.47
BLK15	·	•	Mill River	3.10	0.10	2.20	0.10	1.38		ļ					ļ			·····	24.5	4.61	3.47
BLK16		•	Peters River	14.70	2.60	4.60	0.10	5.50	·					•				•	35.7	6.45	4.71
BLK17		ļ		4.50	2.90	7.20	1.80	4.10	ļ	ļ				ļ		٠			40.3	7.23	5.23
BLK18 BLK19		 		3.80	3.70 3.20	10.30 6.60	5.40	7.00 4.75	 	ļ	•			ļ	ļ	•	•		41.3 41.3	7.39 7.40	5.33 5.33
BLK20	•	ļ		3.70	3.70	5.20	2.90	3.88		ļ	 					Ť	<u>.</u>		42.1	7.54	5.42
BLK21	•		Slaters Mill	3.40	3.70	5.10	3.80	4.00		ļ									43.6	7.78	5.58
August 1	991	Sur	vev																		
BLK01	•			6.30	5.30	6.00	9.00	6.65									٠		65.4	11.41	7.90
BLK02 BLK03		ļ		23.20	20.50	23.60	20.30	21.90	*****	•	٠		•		٠	•	•		55.2	9.71	6.83
BLK04		ļ		22.40 24.90	18.00 18.20	26,60 22,10	19.10 19.20	21.53 21.10		•	:	•		*	•	•	•	•	55.2 54.3	9.72 9.58	6.83
BLK05	·	•	Quinsigamond R.	0.10	0.30	2.50	0.10	0.75		ļ									44.2	7.88	5.65
BLK06	•	ļ		18.50	20.60	20.00	18.00	19.28	٠	٠	٠	٠	•	*	٠	٠	٠	•	51.3	9.07	6.42
BLK07 BLK08	•			10.80	10.20	12.50	12.40	11.48	•	٠	٠	. •	•	.	٠	٠	•	•	48.0	8.52	6.06
BLK09		•	Mumford River	15.00 0.10	10.30 0.50	17.70 0.90	16.40 0.10	14.85 0.40	•	•	٠	•	•	.	•	•			43.8 16.8	7.82 4.61	5.61 3.47
BLK10	·	•	West River	0.10	0.30	3.50	2.70	1.65		ļ				ļ		٠		······	18.4	4.61	3.47
BLK11	•			6,00	7.20	11.60	6.40	7.80		٠	٠		•	•	•	•	•	•	35.6	6.43	4.70
BLK12	•			7.20	11.30	8.80	5.80	8.28	٠	٠	٠		•	·	٠	٠	٠	•	34.5	6.25	4.58
BLK13 BLK14	•	•	Branch River	6.00	5.10	8.10	4.10	5.83	•		٠			<u>.</u>	٠	٠	•	•	30.2	5.51	4.08
BLK15		-	Mill River	1.50 1.60	2,30 0.20	1.80 0.10	1.50 0.10	1.78 0.50	·					ļ	ļ				16.9 21.2	4.61 4.61	3.47 3.47
BLK16	·	•	Peters River	0.50			2.30	1.40						ļ			•••••		28.4	5.20	3.87
BLK17	•			5.40	3.20	4.30	3.90	4.20	٠					•		٠		•	29.6	5.40	4.01
BLK18	•			9.50	6.70	5.50	6.00	6.93	٠	٠		٠	•	•	٠	٠	٠	•	32.7	5.93	4.36
BLK19 BLK20	-	ļ		6.50 7.80	6.90 5.50	6.90 5.50	5.60	6.77 6.10	:	•	٠		•		•	•			35.4	6.39	4.67
BLK21	-		Slaters Mill	5.30	6.70	6.40	5.30	5.93			-			<u>-</u>	:	•		•	38.7 37.6	6.96 6.77	5.05 4.92
October '	1004	· · · ·			· •••-								_	_	<u> </u>	<u>`</u>		ائنا		<u> </u>	
BLK01	•	<u> </u>	Vey	5.40	2.70	8.60	4.80	5.38			٠	_ 1	\neg			٠			48.0	8.52	6.06
BLK02	•	ļ		12.30	8.80	15.40	14.50	12.75	•		٠	٠	•	•	٠	٠	+	•	53.9	9.51	6.70
BLK03		ļ		12.50	6.80	13.60	14.60	11.88			٠	•	•	٠	٠	٠	•	•	52.9	9.34	6.59
BLK04 BLK05	•	•	Quinsigamond R.	12.30 0.80	5.60 1.20	13.50 1.20	15.80 2.50	11.80 1.43			•	•	•	•	ļ	•		•	49.3	8.74 7.11	6.20
BLK06	•	- <u>-</u> -	Comorganiona R.	8.20	8.00	10.80	10.00	9.25			•	•		•	٠	•		•	39.6 46.9	7.11 8.34	5.14 5.94
BLK07	•			13.10	7.60	8.60	12.10	10.35	•		٠	•	•	•	٠	٠	•	•	44.8	7.98	5.71
BLK08	•	ļ <u></u>		11.00	11.30	10.20	10.20	10.68	٠	٠	٠	٠	•	٠	٠	٠	٠	•	45.0	8.01	5.73
BLK09 BLK10	ļ	•	Mumford River West River	2.00	0.80	1.00	3.10	1.73	ļ						ļļ	ļ			13.6	4.61	3.47
BLK10 BLK11	•	.	VVCSL KIVEF	1.50 10.60	1.00 6.10	1.00 8.00	6.60	1.17 7.83		•	•	•	•	•	•	•	•		17.6 33.2	4.61 6.03	3.47 4.43
BLK12	•	·····		7.00	5.00	10.90	6.80	7.43	•		Ť	÷	-	•	٠	÷	÷	•	33.2	6.03	4.43
BLK13	•			7.20	5.90		5.90	6.33	•	٠		٠	•	•	٠		٠.	•	31.7	5.76	4.25
BLK14	ļ	•	Branch River	3.60	3.80		1.80	3.07						٠	٠				11.5	4.61	3.47
BLK15 BLK16	. 	•	Mill River	2.00	1.80		1.40	1.73				[]			18.8	4.61	3.47
BLK16 BLK17	•	•	Peters River	2.50 5.10	2.10	5.60	6.10	2.30 5.60	ļI			-	•					-	29.1	5.32	3.96
BLK18	-			6.00	8.20	5,60	5.90	6.43	•	•	•		•	-	•	•		•	28.0 28.2	5.12 5.17	3.82 3.85
BLK19	•			4.40	5.30	5.80	6.00	5.38			٠	•	•	•	•	j		•	29.3	5.36	3.98
BLK20	•			3.40	4.20	<u>.</u>	7.60	5.07				•			٠		٠	•	29.5	5.39	4.00
BLK21	•		Slaters Mill	6.10	5.30	5.60	5.80	5.70	•		٠	•	•	•	٠	٠	٠	•	30.4	5.53	4.10

Dry Weather Sampling: Particulate Copper Concentration (ug/l)

July 1991 Survey	July	1991	Survey
------------------	------	------	--------

July 1331								
Station No.	Blackstone River	Tributary	Location	Run #1	Run #2	Run #3	Run #4	MEAN
BLK01	•			8.9	4.8	3.9	7.3	6.23
BLK02	•		***************************************	11.7	11.5	3.4	1.9	7.13
BLK03	•				6.9	0.4	5.4	7.13 4.23 7.25 1.27 6.95
BLK04	•			8.4	5.5	7.0	8.1	7.25
BLK05		•	Quinsigamond River	1.2	1.5	1.1		1.27
BLK05 BLK06 BLK07 BLK08	•			14.5	7.2	0.3	5.8	6.95
BLK07	•			14.9	14.2			14.55 26.05 7.22 18.73 15.58
BLK08	•			37.5		4.1	46.8	26.05
BLK09 BLK10 BLK11		•	Mumford River	10.9	9.1	6.5	2.4	7.22
BLK10		•	West River	39.7	1.3	10.6	23.3	18.73
BLK11	•	·		10.6	16.6	17.0	18.1	15.58
BLK12	•			4.6	6.4	0.7	6.8	4.63
BLK13	•			3.6	5.8	7.0	5.7	5.53 5.70 2.42 11.30 5.83
BLK14		•	Branch River	6.2	4.2		6.7	5.70
BLK15 BLK16 BLK17		•	Mill River	1.7		2.1	2.3	2.42
BLK16		•	Peters River	10.2	0.3	32.8	1.9	11.30
BLK17	•			4.5		5.8	5.5	5.83
BLK18	•				7.5	0.4		3.95
BLK19	•			3.7	3.6	2.5	1.7	3.95 2.88
BLK20	•			3.2	5.0	2.5	3.0	3.42
BLK21	•	l	Slaters Mill	3.3	4.9	3.4	2.9	3.63

Statistics	- all :	3 survevs

	·	
	Mini-	Maxi-
Mean	mum	mum
4.3	0.3	8.9
4.3	1.7	11.7
4.3	0.4	6.9
4.6	1.1	8.4
1.1	0.0	3.1
5.6	0.3	14.5
8.5	3.1	14.9
14.9	4.1	46.8
3.6	1.2	10.9
6.8	0.1	39.7
11.3	5.7	18.1
5.1	0.7	10.5
5.4	3.5	7.0
2.7	0.1	6.7
2.1	0.0	6.5
4.4	0.2	32.8
4.2	1.9	7.5
3.7	0.4	7.5
2.7	1.7	4.2
2.9	1.0	5.1
3.3	0.3	6.0

August	1991	Survey
ruguer		

August 10		,					
BLK01	•		3.6	2.3	5.5	1.1	3.13
BLK02	•		3.6	3.4	4.1	1.7	3.20
BLK03	•		5.9	4.4	4.2	3.6	4.53
BLK04	•		4.1	3.0	4.2	3.6	3.73
BLK05		 Quinsigamond River 	2.0	3.1	0.7	0.9	1.67
BLK06	•		7.0	1.7	6.0	6.5	5.30
BLK07	•		9.3	3.1	9.4	4.0	6.45
BLK08	•		21.8	5.7	12.2	8.8	12.13
BLK09		 Mumford River 	1.2	2.4	1.2	1,2	1.50
BLK10		 West River 	0.9	1.2	1.3	0.7	1.02
BLK11	•		10.3	7.1	8.8	7.8	8.50
BLK12	•		4.6	0.9	6.0	5.0	4.13
BLK13	•		4.8	3.5	5.4	4.0	4.43
BLK14		Branch River	1.9	0.2	0.3	3.7	1.52
BLK15		Mill River	3.0	3.2	0.0	6.5	3.18
BLK16		Peters River	2.6			0.3	1.45
BLK17	•		1.9	2.8	3.1	4.4	3.05
BLK18	•		0.9	4.0	2.3	7.1	3.58
BLK19	•		2.6	1.8	2.5		2.30
BLK20	•		1.0	3.8	5.1	3.4	3.33
BLK21	•	Slaters Mill	2.4	5.0	6.0	2.8	4.05

October 1991 Survey

October 13	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	uivey					
BLK01	•		5.8	1.6	0.3	6.8	3.63
BLK02	•		1.8	3.7	1.8	3.0	2.58
BLK03	•		4.3		5.2	•	4.18
BLK04	•		2.2		2.8	1.1	2.88
BLK05		 Quinsigamond River 	0.6	0.0	0.1		0.23
BLK06	•		8.7	0.4	4.4	4.6	4.53
BLK07	•		4.2	5.9	3.8	3.6	4.38
BLK08	•		8.9	5.1	4.2	7.6	6.45
BLK09		 Mumford River 	3.2	1.3	1.8	2.2	2.13
BLK10		 West River 	0.1	0.7	1.3		0.70
BLK11	•		5.7	14.9	6.3	12.3	9.80
BLK12	•		6.0	10.5	3.1	6.3	6.48
BLK13	•		5.7	6.4		6.6	6.23
BLK14		 Branch River 	0.6	0.1		2.3	1.00
BLK15		Mill River	0.7	1.0		0.4	0.70
BLK16		 Peters River 	0.4	0.2			0.30
BLK17	•		4.7		3.6	3.1	3.80
BLK18	•		7.3	0.6	1.8	5.0	3.67
BLK19	•		2.8	2.1	4.2	2.9	3.00
BLK20	•			1.4		1.3	1.97
BLK21	•	Siaters Mill	0.3	1.5	4.3	2.7	2.20

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled; Avg = Average value of all runs considered; SD = Standard deviation; + Range & -Range = 95% Confidence interval.

Figure 4-32
Wet Weather Data - Storm I: Total Copper (ug/l)

	T	Т	Γ.												· · · · · · · · · · · · · · · · · · ·	···			
	ين					Mean (Concen	tration		N	linimun	n Conc	entratio	n	N	laximur	n Conc	entratio	n
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				6.0	6.2	5.7	3.0			4.8	1.3	2.4			7.4	11.3	3.6	
22	·		•	CSO facility in Worchester						***************************************									
01	•	Ì			7.1	8.8	6.4	3.1		***************************************	1.3	4.7	2.8			14.8	8.4	3.4	
23			•	UBWPAD, Worchester	68.2	68.7	52.5	52.3			60.1	47.5	48.9			74.1	58.6	55.7	
02	•				41.8	15.9	6.9	33.0			1.8	2.2	24.2			42.7	11.7	41.7	
03	•	<u> </u>	<u> </u>																
04	•	ļ	ļ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	43.6	50.7	27.4	26.4			38.6	24.7	24.4			69.1	30.0	28.3	
05		•	ļ	Quinsigamond River	1.1	2.8	1.2	0.9			2.2	1.0	0.8			3.2	1.5	1.0	
06	•	<u> </u>	ļ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	30.2	41.1	30.5	23.6			38.1	25.2	23.0		.,	43.9	40.2	24.1	
07	•	ļ	ļ		23.1	22.7	25.8	24.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		21.0	23.9	22.9			23.8	28.3	26.6	
80	•	ļ	ļ,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	23.9	35.8	24.7	27.0			29.4	19.2	23.8			45.8	29.3	30.1	
09		•	ļ	Mumford River	2.9	1.9	1.3	1.5			1.1	1.1	1.1			2.6	1.6	1.8	
10		•	ļ	West River	2.0	2.5	1.9	1.3			1.4	1.3	1.1			4.3	3.0	1.5	
11	•	ļ	ļ		15.5	19.2	15.4	17.9			17.2	13.7	17.4		***************************************	21.8	19.0	18.4	
12	•			<u></u>															
13	•	ļ	ļ		13.0	10.9	10.6	11.0			10.4	10.3	10.0			11.7	11.0	12.0	
14		•	ļ	Branch River	2.9	3.1	2.5	2.1		,	2.7	2.1	1.9			3.8	2.9	2.3	<u> </u>
15		•	ļ	Mill River	1.6	1.7	1.7	1.8			1.3	1.3	1.8			2.2	2.8	1.8	
16		•	ļ	Peters River	4.6	4.9	3.1	1.8			2.1	2.7	1.7			6.6	3.7	1.9	<u></u> j
17	•	ļ	ļ		10.0	11.6	9.3	10.2			10.4	7.8	9.5			12.6	11.8	10.8	
24		ļ	•	Woonsocket WWTF	33.2	54.5	26.4	49.3			23.5	22.2	48.9			71.2	32.4	49.7	
18	•	ļ	ļ		12.5	11.2	12.9	10.5			10.1	11.1	10.0			12.3	15.3	11.0	
19	•	ļ	ļ										ļ			ļ			
20	•	ļ	ļ		9.4	9.7	10.9	11.5		ļ	9.4	10.0	11.4			10.3	11.7	11.6	
21	•	ļ	ļ		8.8	9.8	9.3	13.9		ļ	9.1	8.6	11.1	->>>		10.6	10.5	16.6	
25	1	L	•	Bucklin Point (Seekonk R.)	15.7	21.8	19.5	17.5			19.2	17.4	16.0			26.5	22.5	18.9	

	Criteria (ug/l)								
Dissolved Copper	(mg/l as CaCO ₃)								
Criteria	25	35	45						
Acute Criteria	4.6	6.3	8.0						
Chronic Criteria	3.5	4.6	5.7						

Figure 4-33
Wet Weather Data - Storm II: Total Copper (ug/l)

	αź					Moon (Concen	tration		Minimum Concentration					Maximum Concentration					
Station No.	Blackstone F	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	[During Storm	24h After Storm	48h After Storm	72h After Strom	
00	•				3.0	9.9	3.9	4.6	3.7		3.6	2.8	4.0			22.7	4.6	5.2		
22	********		•	CSO facility in Worchester	15.0	17.5	.,.,				13.0				***************************************	22.0				
01	•				8.1	15.2	6.2	3.0	4.4	·····	7.9	4.4	2.8		***************************************	22.9	10.0	3.1		
23			•	UBWPAD, Worchester	17.9	15.6	18.8	17.1	14.0		13.0	15.6	16.3			19.1	22.0	17.9		
02	•				15.2	18.9	10.7	8.2	8.4		10.9	7.1	7.5			27.0	16.1	8.9		
03	•											 	<u> </u>	<u> </u>						
04	•	<u> </u>			10.9	29.9	12.0	7.1	7.2		11.6	8.4	5.7			60.6	18.0	8.5		
05	ļ.,	•		Quinsigamond River	1.5	2.1	1.4	1.4	1.0		1.0	0.8	1.0	<u></u>		4.1	2.0	1.8		
06	•	<u></u>		,,,,,	13.0	21.6	13.6	10.1	8.9		12.9	10.3	9.7			50.8	18.0	10.5		
07	•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	13.2	13.8	14.9	11.3	12.6	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12.7	12.0	9.3			15.8	16.5	13.3	••••	
08	•	ļ		.,,.	14.0	18.6	20.1	14.5	10.1	ļ	14.7	15.5	12.2			33.0	25.6	16.7	*****	
09		•		Mumford River	2.3	1.1	1.2	1.4	0.9		0.7	1.0	1.3			1.4	1.3	1.5		
10		•		West River	1.0	1.1	1.1	1.5	1.4	ļ	0.9	0.6	1.1			1.4	1.7	1.9		
11	•	ļ			12.5	12.5	21.1	11.8	9.8		9.0	13.4	7.5			22.0	41.3	16.1		
12	•	<u> </u>	L.																	
13	•	ļ	<u> </u>		7.8	7.3	10.6	9.5	12.1	,,,	6.3	8.3	6.5			8.5	13.3	12.4		
14		•		Branch River	2.2	1.9	1.8	1.6	2.3		1.7	1.5	1.5			2.3	2.1	1.6		
15		•		Mill River	1.7	1.9	1.2	2.9	1.7		1.0	0.8	1.2			5.6	1.5	4.5		
16		•		Peters River	3.9	4.0	2.6	1.9	1.7		2.0	1.6	1.7			7.3	3.8	2.1		
17	•	ļ	ļ		8.0	8.0	8.7	8.8	9.5		6.8	7.0	6.8			9.2	10.5	10.8		
24			•	Woonsocket WWTF	40.6	33.0	35.4	26.3	NA		7.4	4.6	26.1	_,,,,,,,,,,,		55.7	61.9	26.5		
18	•	ļ	<u> </u>		8.5	8.8	10.3	9.8	11.1		7.4	9.0	7.7			10.2	12.0	11.8		
19	•	<u> </u>	<u> </u>									ļ				<u> </u>				
20	•		<u> </u>		6.9	7.5	9.9	7.3	8.9		6.7	6.9	5.6			9.8	11.4	8.9		
21	•	ļ	<u> </u>		5.1	6.6	8.4	9.8	9.2	.,,	5.0	6.7	8.8	.,,,		8.2	10.9	10.7		
25		ĺ	•	Bucklin Point (Seekonk R.)	20.5	45.5	31.7	42.9			16.9	24.2	32.3			87.2	37.0	<i>53.4</i>		

Dissolved Copper	Criteria (ug/l) (mg/l as CaCO 3)								
Criteria	25	35	45						
Acute Criteria	4.6	6.3	8.0						
Chronic Criteria	3.5	4.6	5.7						

Figure 4-34
Wet Weather Data - Storm III: Total Copper (ug/l)

	<u> </u>					-													
	S.		0			Mean (Concen	tration		N	linimun	n Conc	entratio	n	M	laximur	n Conc	entratio	n
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				0.9	22.9	3.6	3.4			3.7	2.8	2.7			44.0	4.9	5.2	
22			•	CSO facility in Worchester		27.9			9.7		9.7				***************************************	67.1			
01	•				3.5	19.2	11.1	6.8	***************************************	***************************************	1.2	3.1	2.8			30.4	21.4	17.9	***************************************
23			•	UBWPAD, Worchester	30.0	26.9	25.7	40.2			22.4	24.0	25.7			32.2	29.1	71.1	
02	•			·	11.8	32.0	14.2	13.2			13.3	13.2	12.2			42.0	15.7	13.9	
03	•	ļ					******************************			.,,,,,,,,,									l
04	•	ļ			11.6	21.3	13.3	11.4			6.5	5.8	9.8	,		36.0	22.0	12.5	
05		•		Quinsigamond River		1.2	0.6	0.7		 ,,	1.0	0.5	0.6		İ	1.4	0.7	0.8	
06	•	ļ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7.2	17.7	20.7	11.6			8.0	12.3	8.7			28.0	35.8	15.2	
07	•				14.2	17.2	21.3	14.3	14.7	<u> </u>	10.5	17.9	10.2			24.0	30.2	17.9	
08	•	ļ			7.0	10.6	42.8	15.3	14.2		6.4	20.4	11.3			17.9	97.0	19.7	
09	<u> </u>	•		Mumford River			1.0	1.5	1.9			0.5	1.2				1.6	1.7	
10		•		West River	0.7	1.4	1.0	0.7	1.7	<u> </u>		0.6	0.5				1.5	0.9	
11	•	ļ			6.9	10.0	26.5	17.8	13.7	<u> </u>	6.4	13.5	12.1			14.0	41.2	25.1	
12	•							170.											
13	•			***************************************	6.1	6.7	11.7	13.0	4.1	<u> </u>	3.3	9.2	12.2		<u> </u>	9.5	14.7	14.1	
14	<i>.</i>	•		Branch River		1.0	1.2	1.2				1.0	0.7				1.3	1.5	
15	ļ	•		Mill River	1.6	1.5	1.3	0.8	1.3			0.5	0.5				2.6	1.0	
16	ļ	•		Peters River	2.2	2.0	2.5	2.2	1.3		0.5	1.5	1.7		<u> </u>	3.2	3.8	3.0	
17	•	ļ			9.9	9.7	9.9	10.9	11.6		4.7	9.2	9.5		ļ	14.0	10.6	13.4	
24	ļ	ļ	•	Woonsocket WWTF	97.1	76.2	81.8	72.6		<u>.</u>	72.2	75.8	71.1			84.0	84.7	74.3	
18	•	ļļ			12.2	8.1	12.2	9.6			4.4	11.0	6.5			13.6	13.7	11.2]
19	•	ļ																	
20	•			,	9.8	8.4	12.1	13.0			4.5	10.5	10.9			10.7	15.4	14.9	
21	•			40-40-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	8.4	9.3	8.7	10.9			9.0	7.3	9.8			9.6	9.9	12.5	
25			•	Bucklin Point (Seekonk R.)	9.9	11.1	11.7	12.9			4.5	8.2	12.4			16.0	15.3	14.0	

	Criteria (ug/l)								
Dissolved Copper	(mg/l as CaCO ₃)								
Criteria	25	35	45						
Acute Criteria	4.6	6.3	8.0						
Chronic Criteria	3.5	4.6	5.7						

Figure 4-35 Source Rankings by Dry and Wet Load Total Copper

	tion o.						Total Co	opper (p	ounds)			Total	l Copper	(%)				
		River						Wet L						Wet Loads				
From	То	9	Tributary	WWTF/CSO	Location	Dry Weather Load	Storm 1	Storm 2	Storm 3	Average - All Storms	Dry Weather Load	Storm 1	Storm 2	Storm 3	Avergaege - All Storms			
neadw.	00	•					1.79	9.60	40.10			2.75	7.42	22.30	10.90			
2	1			•	CSO facility in Worchester		1.27	0.79	3.77		ľ	1.95	0.61	2.10	0.70			
00	01(*)	•						0.50			4.82		0.39		0.79			
2	2			•	UBWPAD, Worchester		30.70	15.60	33.90		27.91	47.10	12.10	18.90	26.20			
01	02	•						6.01	22.40				4.65	12.50	5.71			
02 03	03 04	•					13.50	21.70		•••••	2.72 0.26	20.60	16.80		12.60			
0	5		•		Quinsigamond River	••••••	0.04	0.18	0.13		0.83	0.06	0.14	0.07	0.09			
04	06	•				••••••••••••					6.54							
06	07	•							7.50		2.77			4.18	1.39			
07	80	•					4.20	13.30	29.60		13.60	6.44	10.30	16.50	11.10			
0	9		•		Mumford River		0.50	1.00	0.25	******************************	2.78	0.77	0.77	0.14				
1	0		•		West River		0.60	0.29	0.08	***************************************	1.42	0.92	0.22	0.04	0.68			
80	11	•						20.70			13.40		16.00		5.37			
11	12	•																
12	13	•									2.36				••••••••••			
1-	4		•		Branch River		0.38	0.14	0.51		3.84	0.58	0.11	0.29	0.33			
1	5		•		Mill River		0.12	0.30	0.03		0.63	0.18	0.23	0.02	0.36			
1			•		Peters River		0.14	0.48	0.09		0.53	0.21	0.37	0.05	0.30			
13	17	•					4.30		17.80		0.00	6.59		9.92	5.52			
2	4]]	•	Woonsocket WWTF		4.10	5.44	12.70		5.04	6.29	4.21	7.07	5.88			
17	18	•]					17.40			4.37		13.40		4.50			
18 19	19 20	•					3.61		10.70		0.41	5.53		5.99	3.85			
20	21	•						15.90			5.80		12.30		4.12			
	f Rank						52.6	89.7	137.7		79.4	80.6	69.4	76.7	75.5			
Sum o	f Rank	ings	- R	I (ir.	ıcl. Mill and Peters Rivers)		12.7	39.7	41.8		20.6	19.4	30.6	23.3	24.6			
					Totals		65	129	180		100	100	100	100	100			

^(*) For Dry weather data, rankings between Segment "00 and 01" include the Segment "Headwater to 00".

Figure 4-36

Wet Weather Data - Storms I to III: Hardness (mg/l CaCO3)

	ج						TORM					TORM Concen				_	TORM I		
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				55.2	35.0	36.3	48.9		43.7	33.6	33.8	37.0		45.0	25.0	30.0	32.5	
22			•	CSO facility in Worchester						10.2	33.2				5.0	5.0		<u> </u>	
01	•				66.7	49.8	47.2	60.9		82.9	40.1	39.3	42.0		57.4	32.5	31.8	35.0	
23	<u> </u>		•	UBWPAD, Worchester	48.7	48.7	41.0	52.7		53.0	43.6	36.7	46.0		35.0	27.5	27.5	22.5	
02	•	ļ	<u> </u>		62.4	58.9	46.4	57.2		62.9	41.9	38.2	44.9		49.9	29.1	26.2	30.0	
03	•	ļ	ļ														•••••		***************************************
04	•	ļ	ļ		59.2	51.4	48.1	51.4		51.7	44.5	32.7	41.8		40.0	19.1	22.5	30.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
05	ļ	•	<u> </u>	Quinsigamond River	48.2	47.1	47.4	47.8		48.4	46.8	44.7	46.1		45.0	35.0	32.5	31.8	
06	•		ļ		54.9	53.1	49.3	46.3		49.9	47.7	32.5	41.4		40.0	28.3	22.5	30.6	
07	•	ļ	ļ		58.4	52.4	52.6	49.3		48.9	48.6	36.5	35.0		37.5	30.8	26.8	28.1	
08	•	ļ		,,,,,	48.9	46.5	50.5	47.9		48.7	45.3	39.7	32.5		40.0	31.6	25.0	24.3	
09		•		Mumford River	16.7	16.6	16.4	16.5		18.3	14.9	11.3	10.6		17.5	15.0	16.9	13.7	
10		•		West River	20.5	19.8	19.7	20.5		15.6	17.7	15.9	15.8		25.0	22.5	22.5	20.6	
11	•	ļ			43.5	39.7	41.1	43.3		36.2	31.7	29.5	23.0		37.5	30.0	29.3	26.2	
12	•																		
13					38.0	34.9	34.1	35.6		27.3	26.3	23.9	25.1		37.5	27.5	29.3	27.5	
14	ļ	•	.,	Branch River	11.0	10.3	10.3	10.7		10.9	10.1	8.7	9.1		12.5	12.5	13.7	11.2	
15		•	••••••	Mill River	19.2	18.2	18.5	18.4		21.3	20.6	19.3	20.3		32.5	22.5	20.0	19.4	
16		•		Peters River	26.0	20.1	19.0	23.0		25.6	22.2	20.0	20.3		25.0	22.5	22.5	20.6	
17		ļ			38.5	32.4	33.2	33.2		29.9	27.5	25.7	29.3		32.5	29.1	28.7	26.8	
24	ļ		•	Woonsocket WWTF	21.0	20.6	32.8	49.9		24.4	25.3	23.8	20.8		17.5	11.7	10.0	5.0	
18					41.0	39.0	35.1	34.5		30.9	29.6	25.6	28.2		32.5	26.6	27.5	27.5	
19																			
20		ļ			40.2	39.6	39.5	39.0		32.1	31.9	26.8	26.4		32.5	26.6	27.5	27.5	
21					39.0	39.5	38.6	40.6		31.7	32.1	28.4	25.9		30.0	25.0	27.5	89.9	
25		oxdot	•	Bucklin Point (Seekonk R.)	36.7	38.6	26.1	33.5		36.2	44.7	50.4	46.9		52.4	24.1	31.2	39.3	1

Table 4-37 Exceedences of Regulatory Standards - Dry Weather Surveys Dissolved Copper

Data: Blackstone River Initiative (BRI) (Wright et al., 2001) BRI concentrations were compared to RI Regulatory Standards

							Criteria eather	1	(Chronic Criter			
Station No.	Blackstone River	Tributary	WWTF/CSO	Location	July 11-13, 1991	Aug. 14-15, 1991	Oct. 2-3, 1991	Total Exceedences (%)	July 11-13, 1991	Aug. 14-15, 1991	Oct. 2-3, 1991	Total Exceedences (%)	
00	•									_			
22			•	CSO facility in Worchester						••••••			
01	•				0%	0%	25%	8%	0%	25%	25%	17%	
23			•	UBWPAD, Worchester	0%	0%	0%	0%		••••••••••			
02	•				100%	100%	75%	92%	100%	100%	100%	100%	
03	•				100%	100%	75%	92%	100%	100%	100%	100%	
04	•				100%	100%	75%	92%		100%	75%	92%	
05		•		Quinsigamond River (*)	0%	0%	0%	0%	0%	0%	0%	0%	
06	•				100%	100%	50%	83%	100%	100%	100%	100%	
07	•				0%	100%	75%	58%	100%	100%	100%	100%	
08	•				25%	100%	75%	67%	100%	100%	100%	100%	
09		•		Mumford River	0%	0%	0%	0%	0%	0%	0%	0%	
10		•		West River	0%	0%	0%	0%	0%	25%	0%	8%	
11	•				25%	50%	100%	58%	75%	100%	100%	92%	
12	•				25%	75%	75%	58%	50%	100%	100%	83%	
13	•				0%	50%	100%	50%	25%	100%	100%	75%	
14	ļļ	•		Branch River	33%	0%	0%	11%	33%	0%	67%	33%	
15	ļļ	•		Mill River	0%	0%	0%	0%	0%	0%	0%	0%	
16	ļ	•		Peters River	25%	0%	0%	8%	25%	0%	0%	8%	
17	•				0%	25%	67%	31%	25%	50%	100%	58%	
24	ļ		•	Woonsocket WWTF				***************************************					
18	•				50%	75%	100%	75%	50%	100%	100%	83%	
19	•				0%	100%	50%	50%	50%	100%	100%	83%	
20	•		ļ		0%	25%		19%		100%		56%	
21	•				0%	0%	75%	25%	0%	100%	100%	67%	

	Criteria (ug/l)				
		· Hardn I as Ca			
Dissolved Copper Criteria	25	35	45		
Acute Criteria	4.6	6.3	8.0		
Chronic Criteria	3.5	4.6	5.7		

Figure 4-38

Wet Weather Data: Exceedence of Dissolved Copper (*) - Acute Criteria

	Ť									15					1	:			
٠						Concer	l: tration	T	STORM II: Mean Concentration						TORM Concer		.		
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•	Π									1					•		1	12682
22	 	ļ	•	CSO facility in Worchester				:::::::::::::::::::::::::::::::::::::::				 	 					***************************************	11.68
<u></u>	•									 -		 	 			-			973
23	ļ <u>.</u>	······	•	UBWPAD, Worchester			•					-		***************************************		-			
02	•	ļ		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		ļ				} <u>-</u>		-	ļ <u>.</u>			-			
03	•	ļ			411111111111111111111111111111111111111	177,177													
04	•	ļ			•	•	•							111111111111111111111111111111111111111		•			
05	†	•		Quinsigamond River	ļ <u>.</u>	ļ	ļ <u>.</u>			 	······	 	ł			ļ <u>.</u>	ļ <u>.</u>	ļ <u></u>	
06	•			gameigamera ravoi		•		•	- 2	 	•	-	ł				•		
07	•			***************************************	•								ł		•				
08	•	•••••			•	•	•	•		1						-			**************************************
09	†	•		Mumford River						l		ļ	ļ	.,,,,,	ļ <u>-</u>	ļ <u>.</u>	ļ	-	
10	†	•	*******	West River						ļ		†·····	·····		·····	 	***************************************		
11	•				•	•	•	•		•	•	•	•			•		•	
12	•															ļ			
13	•				•			<u>-</u>	1111111111			•	•				•	•	1 1 1 2 N
14	†	•	•••••	Branch River		••••••						ļ	ļ				<u>-</u>	<u></u>	
15	†	•		Mill River									ļ						
16	1	•		Peters River							·····	1						***************************************	2 . K : D
17	•					•						•		***************************************		•	•	•	
24	•		•	Woonsocket WWTF	•	•	•	•		•	•	•	•		•	•	•	•	S
18	•						•					•	•		•		•	•	
19	•																	2827263	
20	•		,									•	··········		***************************************		•	•	
21	•		,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			***************************************	•				······	•			•	ļ		
25			•	Bucklin Point (Seekonk R.)	•	•	•	•		•	•	•	•			•	•	•	

(*) Note:	The total lead concentrations were compared to the dissolved lead
τ	egulatory standards of Rhode Island by assuming a constant concentration
	of 40% dissolved lead in the total lead samples

lacksquare	The mean concentration exceeded the regulatory criteria.
•	The mean concentration did not exceed the regulatory criteria.
1111	No samples were analyzed

	Criteria (ug/l)							
Dissolved Copper	, , ,	Hardne as Ca0						
Criteria	25	35	45					
Acute Criteria	4.6	6.3	8.0					
Chronic Criteria	3.5	4.6	5.7					

Figure 4-39

Wet Weather Data: Exceedence of Dissolved Copper (*) - Chronic Criteria

	Т		П		Γ					1					1				
	يم						TORM Concer	ाः ntration	1			TORM Concer		ı			TORM Concer		ı
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•										•	1				•			3
22	1		•	CSO facility in Worchester			7.77		***************************************	•	•				1	•			
01	•							1		i	•	1	•			•	•	***************************************	
23			•	UBWPAD, Worchester	•	•	•	•	***************************************	•	•	•	•	.,	•	•	•	•	
02	•	<u> </u>			•	•		•		•	•	•			•	•	•	•	
03	•	<u> </u>		,															
04	•	ļ			• .	•	•	•			•	•			•	•	•	•	
05	ļ	•		Quinsigamond River															
06	•	ļ			•	•	•	•		•	•	•	•	1.5111		•	•	•	
07	•	ļ			•	•	•	•		•	•	•	•		•.	•	•	•	vx :
08	•	ļ			•	•	•	•		•	•	•	•			•	•	•	
09	ļ	•		Mumford River				ļ	1 211							<u> </u>	ļ		
10	ļ	•		West River													<u> </u>		
11	•	ļ;			•	. •	•	•			•	•	•			•	•	•	
12	•	L			111111			1 1 1 100		11111111			11781						458
13		ļ	ļ		•	•	•	•		•	•	•	•			•	•	•	
14	ļ	•		Branch River															
15	ļ	•		Mill River											[
16	ļ	•		Peters River	ļ			***************************************		ļ									*************
17						•		•		•	•	•	•		•	•	•	•	
24	ļ <u>.</u>			Woonsocket WWTF		•		•		•	•	•	•		•	•	•	•	
18		ļ	ļ			•	•	•	ļ	•	•	•	•				•	•	
19		ļ	ļ					ļ	ļ	ļ					444			ein Sz	
20	•	ļ			ļ	•	•	•			ļ		•		•	•	•		
21		ļ		Bucklin Doint (Control D.)		•	•	•				•	•			•	•		
25	<u> </u>	<u> </u>		Bucklin Point (Seekonk R.)	•	•	<u> </u>		. 69 667		•	•	•			•	•	•	

(*) Note:	The total lead concentrations were compared to the dissolved lead
n	egulatory standards of Rhode Island by assuming a constant concentration
c	of 40% dissolved lead in the total lead samples.

•	The mean concentration exceeded the regulatory criteria.
	The many concentration did not evened the recolleter coits in
	No samples were analyzed.

	Criteria (ug/l)							
Dissolved Copper	for (mg/l							
Criteria	25	35	45					
Acute Criteria	4.6	6.3	8.0					
Chronic Criteria	3.5	4.6	5.7					

Figure 4-40

Acute Copper Violations for Storm 2, November 2-5, 1992. White Denotes No Violations

Figure 4-41
RIDEM Chemical Monitoring of Tributaries, Section 305b

Total Copper Concentration (ug/l)

	_							
Date	Round Top Brook	Pascoag River	Clear River	Abbot Run Brook (Cumberland)	Abbot Run Brook (North Attleboro)	Dry Weather (1)	Wet Weather (2)	Mixed Weather (3)
12-Mar-91	0.30	2.80	1.80	1.00	0.70	•		
13-May-91	1.10	3.10	3.90	3.50	5.30			•
29-Jul-91	1.70	4.60	4.90	2.20	0.60			•
06-Sep-91	2.70	1.90	5.50	0.70	0.40			•
26-Apr-93	0.80	1.10	1.40	1.80	1.10		•	
10-Aug-93	0.20		4.50	1.10	1.40	•		···
27-Dec-93	1.40	5.70	0.50	2.80	2.00	•	l'''''	1
11-Mar-96	1.60	2.10	1.10	4.00	1.10		<u> </u>	•
14-May-96	1.50	3,10	1.80	1.30	1.40		[•
20-Aug-96	3.70	4.20	4.00	1.30	3.30	•	[
02-Oct-96	1.40	2.50	0.50	1.30	0.50		-	•
14-Apr-98	0.90	3.30	0.90	1.30	1.20	•	······	······
05-Aug-98	2.10	2.90	3.00	1.60	2.80	•	***************************************	
26-Oct-98	1.00	1.80	2.10	1.30	1.30	•		
20-Jan-99	0.90	0.90	1.90	0.90	1.00		***************************************	•
19-Mar-99	ND	1.17	ND	0.95	ND	•		· · · · · · · · · · · · · · · · · · ·
10-Jun-99	1.15	2.09	2.93	2.05	1.24	•		
19-Aug-99	ND	1.64	2.10	0.91	1.17	•	***************************************	
12-Oct-99	ND	1.49	1.35	ND	ND		••••••••••	•
15-Mar-00		1.25	3.88	3.44	2.80			•
30-May-00		1.20		8.36	6.73	•		1
18-Sep-00		1.00	3.21	1.16			***************************************	•
11-Dec-00		1.55	1.85	0.82	0.87			•
St	atistical Su	mmary - Al	Samples	5				
Count	19	22	21	22	20	•	•	•
Geometric Mean	1.40	2.34	2.53	1.99	1.85	•	•	•
Minimum	0.20	0.90	0.50	0.70	0.40	•	•	•
Maximum	3.70	5.70	5.50	8.36	6.73	•	•	•
St	atistical Su	nmary - Di	ry Weathe	r				•
Count	8	10	9	11	10	•		
Geometric Mean	1.34	2.68	2.43	2.06	2.18	•	***************************************	
Minimum	0.20	1.17	0.50	0.91	0.70	•	*	1
Maximum	3.70	5.70	4.50	8.36	6.73	•		
Statistic	al Summar	y - Mixed a	nd Wet W	eather				
Count	8	12	12	11	10		•	•
Geometric Mean	1.46	2.05	2.61	1.92	1.51		•	•
Minimum	0.80	0.90	0.50	0.70	0.40		•	•
Maximum	2.70	4.60	5.50	4.00	5.30		•	•

ND = Not detected

⁽¹⁾ Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day.

⁽²⁾ Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or rainfall of more than 1.0" on days 2 and 3 prior to sampling.

⁽³⁾ Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Figure 4-42

RIPDES-permitted Point Sources Total Copper (ug/l)

Data Period: January 31, 1997, to October 31, 2001

	Osram Sylvania Products (Outfall 200)										13.87	0.01	43.00						
	Osram Sylvania Products (Outfall 001)																		
(Okonite, Co.										0.02	0.02	0.04						
per (ug/l	Moonsocket WWTF		22.33	6.90	64.30						45.26	13.00	206.30						
Total Copper (ug/l)	Blackstone Smithfield Co.													:					
	Atlantic Thermoplastics																		
	Burrillville WWTF		22.38	6.30	74.30						32.07	9.00	91.60						
	IsingsoH Isinom9M onsisdmsZ													_					
	Osram Sylvania Products (Outfall 200)		330,000		670,000						530,000	310,000	1,820,000				0.510		1.035
	Osram Sylvania Products (Outfall 001)		580,000	460,000	710,000												0.896	0.710	1.096
	Okonite, Co.		80,000	30,000	140,000						150,000	000'09	250,000				0.124	0.046	0.216
Flow (gallons per day)	Woonsocket WWTF		9,180,000	5,230,000	13,520,000										(cts)		14.175	8.076	20.877
Flow (galle	Blackstone Smithfield Co.		2,992												Flow (cfs)		0.005	0.004	0.007
	Atlantic Thermoplastics		1,200	268	2,988			•									0.002	0.000	0.005
	Burrillville WWTF		830,000		- 11			-			1,100,000		2,580,000				1.282	0.988	1.884
	Zambarano Memorial Hospital		50,000	30,000	70,000	ige				E	80,000	40,000	90,000			_	0.077	0.046	0.108
		Monthly Mean	Average	Minimum	Maximum	Weekly Average	Average	Minimum	Maximum	Daily Maximum	Average	Minimum	Maximum			Monthly Mean	Average	Minimum	Maximum

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit.

Data Source: Rhode Island Department of Environmental Management

Figure 443
Woonsocket Wastewater Treatment Facility - Effluent
Total Copper

Figure 4-44

Total Lead (ug/l) - Data Summary (all studies in Rhode Island Section of Blackstone River)

uo	1911A d84 m1012					1.7				13.3		3.8		6.8		9.6		22.8				9.6						9.6			13.2				7.2		٦
Concentration	mrotS					2.8				14.4		5.1		8.3		12.4		26.7				2.6	0			7.		9.4			9.7				10.9		.5
	24h After					ω.	O			4		7		0		80						က	5.			21		0			2	0					20.
Maximum	mnot& gninuQ					2				G		9		19.0		44		30.0				8						Ġ.			15.	22			20.2		
Мах	Dry Weather	19.8		3.0	23.5	1.3	7.0		41.2	5.1	48.8	7.4	12.3	5.4	14.8	5.3		31.4			29.8	4.2	49.0	7.2		2.7	5.5	4.1			11.1	4.5		5.1	3.7		11.3
on	18h After m1o12					0.8				3.2		0.8		2.0		1.5		10.5				1.3						1.8			5.4	1.0			3.0		
Concentration	24h After m1oj2					6.0	4.7			3.4		0.8		1.5		3.3		2.5				3.6	1.0			1.6		2.8			3.9	1.2			3.0		3.6
um Con	m1ot& gni1u0					0.2				1.3		1.0		2.9		2.6		3.2				2.5						2.7			2.5	1.7			2.7		
Minimum	Dry Weather	2.9		1.0	1.0	1.1	1.6	-	6.2	2.7	1.0	0.9	1.2	1.3	3.7	2.4		9.4			3.2	2.6	2.0	2.0		1.4	0.1	2.2			2.5	1.5		0.1	3.1	,	0.8
	Storm				<u> </u>	1.				7.4		1.9		3.3	_	5.2		14.7	_			5.1	-					5.0			8.4	2.7			5.5	_	_
ation	19JA 48					1.6				7		2.1		4.7		5.3						5.5						5.2			7.8				0		
Concentration	24h After m1o12			1.0		<u> </u>	6.5			9								14.4					3.0			8.3									5.		10.1
Mean Cor	During Storm					2.2				3.7		2.6		7.2		11.5		18.3				4.1						4.0			7.9	4.4			8.6		
M	Dry Weather	9.6		1.8	4.2	1.2	3.9		14.2	3.9	5.8	3.1	5.3	2.9	9.9	3.8		20.0		4.7	7.4	3.5	8.1	4.2		2.1	3.0	3.2			5.7	2.8		3.7	3.5		4.1
	Station Location	O	Koute 122, Millville, MA	Branch River, 400ft downst. of Mill dam in Forestdale	Described Direct Description (1978)	Branch River, Koute 146A, Statersville, MA	Main Street, Blackstone, MA	Blackstone River at MA/RI state line	Bridge St. (State Boundary) Blackstone MA	Diluge St. (State Doullualy), Diackstolle, MA	Mill River Winter St. Woonsocket RI	INTERIOR OF TAXABLE OF	Deters River Boute 114 Woonsocket Rt		Hamlet Ave. (Rts. 199 and 198) Woonsacket RI	"Traitilet Ave.; (Tive: 122 alid 120), woolsocket, Tri		Effluent Woonsocket Sewage Treatment Plant	<u> </u>			Manville Hill Rd., Cumberland, RI		School St /Albion Rd Cumberland RI	מנוסס סליטים מנויי סקווסס מומיים					Blackstone River above Central Falls, Pawtucket			States Mill				Main Street, Pawtucket, RI
	WWTF/CSO Tributary			•	•	•					•	•	•	•			•	•	•	•	1		_			_										-	_
	Blackstone R.	•	•				•	•	•	•		~		~	•	•			_	_	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
u	Year(s) of data collectio	1991	1991-1993	1990-1999	1991	1991-1993	1990-1995	1988-1989	1991	1991-1993	1991	1991-1993	1991	1991-1993	1991	1991-1993	1991	1991-1993	1988-1989	1997-2001	1991	1991-1993	1990-1999	1991	1991-1993	1990-1995	1991	1991-1993	1997-2000	1988-1989	1988-1989	1990	1997-2000	1991	1991-1993	1995-1996	1990-1995
	Study Author	URI BRI dry	URI BRI wet	nses	URI BRI dry	URI BRI wet	River Rescue	URI	URI BRI dry	URI BRI wet	URI BRI dry	URI BRI wet	URI BRI dry	URI BRI wet	URI BRI dry	URI BRI wet	URI BRI dry	URI BRI wet	URI	RIDEM	URI BRI dry	URI BRI wet	nses	URI BRI dry	URI BRI wet	River Rescue	UR! BRI dry	URI BRI wet	NBC	URI	URI	URI	NBC	URI BRI dry	URI BRI wet	\dashv	River Rescue
	Station No.	ç	71	Forestdale	7.	<u>+</u>	B2	BRSL	4,5	2	ž,	2	16	2	17	-	24	; [WSTP	RIPDES	18		Manville	19	2	Blons	ç	3	S-2	BRCF	BRSM	BRSMDN	S-3	2	7	TMDL	2
	51aD Appendix ه	,	0	6	ń	<u>.</u>	ဖ	τ-	7,	2	15	2	ž,	2	ñ	2	<u>1</u>	2	-	4	15	!	6	7.	2	ဖ	r.	2	10	-		2	9	7	2	2	9

for Hardness Dissolved Lead (mg/l as CaCO ₃) Criteria 25 35 45 Acute Criteria 13.9 20.3 26.8 Chronic Criteria 0.5 0.8 1		Ç	Criteria (ug/l)	3/I)
(mg/l as CaCO ₃ 25 35 4 13.9 20.3 0.5 0.8		for	Hardne	SS
25 35 4 13.9 20.3 a 0.5 0.8	Dissolved Lead	l/gm)	as CaC	(°)
13.9 20.3 a 0.5 0.8	Criteria	25	35	45
a 0.5	Acute Criteria	13.9	20.3	
	Chronic Criteria	0.5	0.8	1

Figure 4-45 **Lead Concentration**USGS Station at Forestdale, Branch River

Figure 4-46

Lead Concentration

USGS Station at Manville, Blackstone River

Figure 4-47
Total Lead Concentration
(Kerr and Lee, 1996)

Figure 4-48

River Rescue Project, 1990-1995 (Kerr and Lee, 1996)

Total Lead for all Sampling Events

Concentrations

00170	entrations												
		All Samples		* -	,	Net We	eather(*) .			Dry W	eather	
					e day infall	and	ne day) 1 day rainfall	01	day nly ainfall		l days rain	4 day	e than s after
Station No.	Station Location	Count	Total Lead (ug/l)	Count	Total Lead (ug/l)	Count	Total Lead (ug/l)	Count	Total Lead (ug/l)	Count	Total Lead (ug/l)	Count	Total Lead (ug/l)
B2	Blackstone River, Main Street, Blackstone, MA	38	4.5	2	5.5		6.5		9.3		3.3		3.9
B _{lons}	Blackstone River, Lonsdale Avenue	15	3.7	0		4	8.3	3	1.9	2	3.2	5	2.1
B1	Blackstone River, Main Street, Pawtucket	46	5.4	1	5.2	5	10.1	3_	4.2	7	7.9	28	4.1

NOTE:

(*) Rainfall is defined as 0.25" or more on a given day. Rainfall data are from the RI Airport.

Figure 4-49

Blackstone River Initiative (Wright et al., 2001)

Dry Weather Sampling: Total Lead Concentration (ug/l)

					Total Le	ad Conce	ntrations			Ī	Dissolve	d Lead	Fraction	ņ
ion	Blackstone R.	Tributary	,	<u> </u>	#5	¥	#	Z.	Average Hardness	#1	7,	#3	#	z
Station No.	Ba	[윤	Location	Run #1	Run #2	Run #3	Run	MEAN	Aver	Run #1	Run #2	Run #3	Run	MEAN
3LK01	•			5.00	3.90	1.40	7.20	4.38	73.94	38%	13%	50%	15%	29
3LK02	•	ļ		3.50	3.20	1.30	4.00	3.00	66.35	17%	3%	85%	75%	45
BLK03 BLK04	•	 		3.50 3.00	2.90 4.10	1.00 8.80	3.30 5.00	2.68 5.23	59.91 66.81	11% 3%	17% 10%	24%	73% 4%	34 10
3LK05		•	Quinsigamond R.	0.90	1.90	1.90	2.80	1.88	52.23	11%	5%	5%	82%	26
3LK06	•			58.70	118.00	2.80	13.00	48.13	60.27	10%	80%	93%	15%	50
3LK07 3LK08	•	· 		16.70 23.60	274.00 16.90	98.40 4.80	12.90 32.50	100.50 19.45	55.95 54.00	10% 8%	2% 18%	5% 88%	40% 3%	14 29
3LK09	<u> </u>	•	Mumford River	1.10	3.30	7.90	2.80	3.78	19.16	82%	6%	11%	25%	31
3LK10		•	West River	3.40	2.20	3.60	29.60	9.70	21.89	24%	55%	44%		41
3LK11 3LK12	-			9.20 5.10	15.80 19.80	53.30 2.90	32.00 6.10	27.58 8.48	45.74 45.04	13% 55%	23%	6%	11%	14
BLK13	•			12.40	10.30	18.20	15.70	14.15	40.42	12%	13%	90% 12%	93% 5%	79
3LK14		•	Branch River	23.50	1.60	1.00	2.00	7.03	14.88	1270	94%	80%	10%	61
BLK15	ļ	•	Mill River	1.70	1.00	46.55	1.70	1.47	24.54	47%			24%	35
BLK16 BLK17	•	•	Peters River	9.40 3.70	3.50 4.00	12.30 4.50	8.90 4.70	8.53 4.23	35.74 40.34	61% 14%	37% 3%	28% 51%	16% 9%	35 19
3LK18	•	<u> </u>		4.30	3.20	3.40	4.20	3.78	41.27	14% 5%	3%	59%	2%	17
BLK19	•	ļ		2.20	2.00	2.50	2.50	2.30	41.32	5%	5%	32%	12%	13
BLK20 BLK21	•		Slaters Mill	2.70	1.70 3.30	1.60 4.90	1.60 3.40	1.63 3.58	42.14	140/	007	94%	6%	50
DLINZ I			Siaters Willi	2.70	3.30	4.90	3.401	3.58	43.55	11%	3%	33%	15%	15
August	1991	Surv	еу											
3LK01	•	ļ		4.60	54.30	19.70	5.70	21.08	65.41	54%	8%	23%	74%	
BLK02 BLK03		ļ	••••••	4.80 3.50	6.70 8.30	18.70 25.70	3.70 3.20	8.48 10.18	55.15 55.20	65% 34%	36% 39%		68% 38%	56 37
BLK04	•	·		13.40	4.70	6.90	2.50	6.88	54.34	30%	39% 85%	96%	60%	61
BLK05		•	Quinsigamond R.		8.30	6.20	0.50	5.00	44.17		40%	34%	20%	31
BLK06	•	ļ		9.20	17.00		6.70	10.97	51.31	78%	70%		58%	69
BLK07 BLK08	•	ł		11.70 25.60	13.00 20.40	32.00 37.20	6.40 18.80	15.78 25.50	47.96 43.83	49% 51%	88% 46%	66% 66%	72% 59%	69 55
3LK09		•	Mumford River	1.10	6.10	5.10	1.00	3.33	16.84	36%	80%	63%	10%	47
3LK10		•	West River		4.80	6.30		5.55	18.44			73%		73
3LK11 3LK12	•	ļ		11.40	11.00	26.90	7.80	14.28	35.61	37%	84%		55%	59
BLK13	÷			6.50 8.20	19.20	13.40 41.20	5.70 6.20	11.20 18.53	34.53 30.22	34% 67%	82%	45%	53% 13%	53 40
3LK14	<u>.</u>	•	Branch River	2.80	2.50	1.90	3.10	2,58	16.85	43%	52%	47%	35%	44
3LK15		•	Mill River	2.10	48.80	1.10	4.10	14.03	21.18	52%	İ	18%	5%	25
3LK16		•	Peters River	2.90	2.00	3.90	8.00	4.20	28.41	59%	40%	44%	54%	49
BLK17 BLK18				5.00 6.60	4.50 4.50	5.80 4.60	10.20	6.38 5.65	29.56 32.66	30% 83%	29% 58%	26% 76%	19%	28
3LK19	•	••••••		3.90	7.20	5.80	6.60	5.88	35.39	64%	69%	88%	2%	59 56
3LK20	•	ļ		3.50	3.40	5.00	0.10	3.00	38.72	66%	12%	42%	100%	55
3LK21	•		Slaters Mill	3.80	4.90	5.00	0.10	3.45	37.59	76%	45%	14%	100%	59
October	1991	1 Sur	vev											
BLK01	•	<u> </u>		2.60	4.30	6.00	7.60	5.13	47.98	15%	21%	48%	18%	26
BLK02	•	[2.60	3.30	4.80	3.90	3.65	53.94	35%	39%	42%	69%	46
BLK03 BLK04	•	ļ		2.70	2.90	9.70	4.70	5.00	52.91	11%	21%	14%	30%	19
SLK05		•	Quinsigamond R.	3.90 2.10	3.50 1.40	4.90 0.80	4.30 1.10	4.15 1.35	49.31 39.59	62% 33%	46% 50%	39% 50%	53% 91%	50 56
BLK06	•			8.30	7.70	33.60	6.30	13.98	46.90	28%	30%	50 70	27%	28
SLK07	•	ļ		9.80	6.70	8.80	7.00	8.08	44.77	62%	43%	31%	47%	46
BLK08 BLK09	•		Mumford River	10.20 2.40	7.70	8.60	13.10	9.90	44.96	36%	000/	29%	44%	37
LK10		-	West River	4.60	5.10 2.90	4.90 3.20	4.30 2.40	4.18 3.28	13.63 17.57	100% 52%	22% 31%	20% 53%	14% 38%	39 43
3LK11	•			8.50	13.10	9.40	8.00	9.75	33.24	61%	14%	36%	23%	33
SLK12	•			7.40	10.90	10.80	7.60	9.18	33.16	91%	14%	57%	22%	46
BLK13	•		Propeb Di	8.20	9.70	14.40	6.90	9.80	31.65	37%	19%	26%	20%	2
BLK14 BLK15		•	Branch River Mill River	6.80 3.30	1.30 1.20	1.50 2.30	1.80 1.20	2.85 2.00	11.54 18.83	760/	92% 67%	47% 17%	17%	52
LK16		•	Peters River	2.50	3.40	1.20	5.00	3.03	29.14	76% 84%	56%	100%	42% 8%	50 62
BLK17	•			11.30	6.60	4.40	14.80	9.28	27.98	83%	15%	32%	16%	36
3LK18	•			9.60	6.50	4.70	29.80	12.65	28.22	32%	26%	23%		27
LK19 LK20	•			3.70	4.40	3.60	5.70	4.35	29.32	59%	34%	31%	25%	37
LK21	-		Slaters Mill	3.80 5.10	3.90	5.50 3.00	4.40	4.40 3.93	29.49 30.35	24%	26%	42%	39% 41%	32 41

Sta	tistics - a	all 3 Surv	eys
Меап	Mini- mum	Maxi- mum	Dissolved Lead Fraction
10.2	1.4	54.3	27%
5.0	1.3	18.7	49%
6.0	1.0	25.7	30%
5.4	2.5	13.4	43%
2.7	0.5	8.3	38%
24.4	2.8	118.0	49%
41.5	6.4	274.0	43%
18.3	4.8	37.2	40%
3.8	1.0	7.9	39%
6.2	2.2	29.6	52%
17.2	7.8	53.3	35%
9.6	2.9	19.8	60%
14.2	6.2	41.2	25%
4.2	1.0	23.5	53%
5.8	1.0	48.8	37%
5.3	1.2	12.3	49%
6.6	3.7	14.8	28%
7.4	3.2	29.8	35%
4.2	2.0	7.2	35%
3.0	0.1	5.5	46%
3.7	0.1	5.1	38%

Figure 4-50

Dry Weather Sampling: Dissolved Lead Concentration (ug/l)

Statistics of all 3 Surveys

0.4 0.1

0.3 0.1 0.1

1.7 1.6 0.9 0.1 0.8 1.2

0.8

0.2 0.2 0.4

0.1

0.1 0.1 0.1

2.1 1.9 1.3 2.3 1.1 12.4 6.3 6.9 1.4 1.9 4.0 4.8

2.4 0.9

0.7

2.2 1.9 1.9 1.7 1.2 4.5 3.1 3.2

6.6 3.3 94.8 21.0 24.5 4.9 4.6 9.2 15.7

5.5

1.5 2.5 5.7 9.4 5.5 5.1 2.3 2.9

	1 Su		Ī			-							eed								_
	tone River	2								Acute	e Cn	iteria		С	hron	ic C	ritei	ria	SS	Acute Criteria	Chronic Criteria
Station No.	Blackstone	Tributary	Location	Run #1	Run #2	Run #3	Run #4	Mean	Run #1	Run #2	Run #3	Run #4	Mean	Run #1	Run #2	Run #3	Run #4	Mean	Average Hardness	Acute (Chroni
BLK01	•	ļ		1.90	0.50	0.70	1.10	1.05						٠					73.9	46.42	1.
BLK02 BLK03	•	 		0.60 0.40	0.10	1.10	3.00 2.40	1.20	ļ								•		66.4	41.20	1.
BLK04	-	ł		0.40	0.50	0.60 2.10	0.20	0.98 0.70	ļ							•	•		59.9 66.8	36.82 41.52	1.
BLK05	ļ	•	Quinsigamond R.	0.10	0.10	0.10	2.30	0.65				·······	[•		52.2	31.63	1.
3LK06	•			5.60	94.80	2.60	2.00	26.25		٠				٠	٠	•	٠	•	60.3	37.06	1.
BLK07	•	ļ		1.60	5.80	4.70	5.20	4.33						٠	٠	•	٠	•	56.0	34.13	1.
SLK08		ļ <u>. </u>	Mumford Divor	1.80	3.00	4.20	0.90	2.48						*	•		ļ		54.0	32.82	1.
BLK09 BLK10	}	•	Mumford River West River	0.90 0.80	0.20 1.20	0.90 1.60	0.70	0.68 1.20						•	•	•	•	•	19.2 21.9	13.88 13.88	0. 0.
BLK11	•	<u>-</u>	VVOSCINIVOI	1.20	3.70	3.40	3.60	2.98						•	•	•	•	•	45.7	27.30	1.0
BLK12	•	ļ		2.80	1	2.60	5.70	3.70	,,					٠	-	•	٠	•	45.0	26.83	1.0
BLK13	•	I		1.50	1.30	2.10	0.80	1.43						٠	٠	٠		•	40.4	23.79	0.9
BLK14		•	Branch River		1.50	0.80	0.20	0.83							٠	•	ļ	•	14.9	13.88	0.
BLK15 BLK16	 	•	Mill River Peters River	0.80 5.70	1.30	3.40	0.40 1.40	0.60 2.95	ļ				.	•	٠	•	ļ <u>.</u>	•	24.5	13.88	0.
BLK17		ļ <u></u>	Lereis Livei	0.50	0.10	2.30	0.40	0.83	ļ								•	•	35.7 40.3	20.73 23.73	0.0
3LK18	•	†		0.20	0.10	2.00	0.10	0.60	••••							•	ļ	·	41.3	24.34	0.
3LK19	•			0.10	0.10	0.80	0.30	0.33									1		41.3	24.38	0.9
BLK20	•	ļ				1.50	0.10	0.80][•		ļ	42.1	24.92	0.9
BLK21	•	<u> </u>	Slaters Mill	0.30	0.10	1.60	0.50	0.63								•			43.6	25.85	1.0
August 1	991	Sur	VAV																		
BLK01	•	l I	l I	2.50	4.50	4.50	4.20	3.93				-т	\neg	•	•	•	•	•	65.4	40.56	1.:
BLK02	•	ļ		3.10	2.40	7,00	2.50	2.67						٠	•		٠	•	55.2	33.59	1.
BLK03	•			1.20	3,20	***************************************	1.20	1.87							٠			•	55.2	33.63	1.3
ILK04	•			4.00	4.00	6.60	1.50	4.03						٠	٠	•	٠	•	54.3	33.05	1.
BLK05		•	Quinsigamond R.		3.30	2.10	0.10	1.83							• [•		•	44.2	26.26	1.0
BLK06	•	ļ		7.20	11.90	12.80	3.90	8.95						•			•	•	51.3	31.01	1.
BLK07 BLK08	•	ļ		5.70 13.00	11.50 9.40	21.00 24.50	4.60 11.00	10.70 14.48						•	•	÷	*	•	48.0 43.8	28.77 26.03	1.
BLK09	<u>.</u>	•	Mumford River	0.40	4.90	3.20	0.10	2.15							•	•			16.8	13.88	0.
BLK10		•	West River		2.80	4.60	1.30	2.90	******						٠	•	•	•	18.4	13.88	0.
BLK11	•	[4.20	9.20		4.30	5.90						٠	٠		٠	•	35.6	20.65	0.0
3LK12	•	_		2.20	15.70	6.00	3.00	6.73				_	_	٠	٠	٠	٠	•	34.5	19.95	0.
BLK13	•		Bronch Divor	5.50	1 20	0.00	0.80	3.15						•			•	•	30.2	17.18	0.0
BLK14 BLK15		-	Branch River Mill River	1.20 1.10	1.30	0.90	1.10 0.20	1.13 0.50	••••••					•	•	•	•	•	16.9 21.2	13.88 13.88	0.
BLK16		•	Peters River	1.70	0.80	1.70	4.30	2.13						•	•	•	•	•	28.4	16.03	0.0
BLK17	•	ļ		1.50	1.30	1.50		1.43						٠	٠	•		•	29.6	16.76	0.0
BLK18	•	[5.50	2.60	3.50	1.30	3.23						٠	٠	٠	٠	•	32.7	18.74	0.
BLK19	•	ļ		2.50	5.00	5.10	0.10	3.18						٠	٠	•		•	35.4	20.51	0.0
BLK20		ļ	Slaters Mill	2.30	0.40 2.20	2.10 0.70	0.10	1.23 1.48						•		•			38.7	22.67	0.0
BLK21		<u> </u>	Sidlers Willi	2.90	2.20	0.70	0.10	1.40					<u> </u>	٠	•			•	37.6	21.94	0.1
Oc	tobe	er 19	991 Survey																		
BLK01	•			0.40	0.90	2.90	1.40	1.40								٠	٠	•	48.0	28.79	1.
3LK02	•	ļ		0.90	1.30	2.00	2.70	1.73]					٠	•	٠	•	53.9	32.78	1.
BLK03		ļ		0.30	0.60	1.40	1.40	0.93	ļ				.			•	•		52.9	32.09	1.
BLK04 BLK05	•	•	Quinsigamond R.	2.40 0.70	1.60 0.70	1.90 0.40	2.30 1.00	2.05 0.70						•	•		•	•	49.3 39.6	29.67	1.
SLK06	•	ļ <u></u>	Quinaigamonu R.	2.30	2.30	0,40	1.70	2.10						•	•		•	•	46.9	23.24 28.07	0.9 1.0
SLK07	•	†"····		6.10	2.90	2.70	3.30	3.75	·····					•	•	•	•	•	44.8	26.65	1.0
LK08	•	<u> </u>		3,70	2.80	2.50	5.80	3.70						٠	٠	•	٠	•	45.0	26.78	1.0
LK09	ļ	•	Mumford River	2.40	1.10	1.00	0.60	1.28]				٠	٠	•	٠	•	13.6	13.88	0.
LK10	ļ <u>.</u>	•	West River	2.40	0.90	1.70	0.90	1.48	ļ			[+	٠	٠	٠	•	17.6	13.88	0.
BLK11 BLK12	•	ļ		5.20	1.80	3.40	1.80	3.05	ļ	ļļ			.	•	•		•		33.2	19.12	0.
BLK12 BLK13	÷	-		6.70 3.00	1.50 1.80	6.20 3.80	1.70 1.40	4.03 2.50	\vdash			\dashv	⇥	÷	•	÷	•	•	33.2 31.7	19.07	0.
BLK14	ļ <u></u>	•	Branch River	3.00	1.80	0.70	0.30	0.73	ļ					•	•		•	•	11.5	18.09 13.88	0. 0.
3LK15	†	•	Mill River	2.50	0.80	0.40	0.50	1.05		 			-	•	•			•	18.8	13.88	0.
BLK16]	•	Peters River	2.10	1.90	1.20	0.40	1.40	ļi			····†		٠	٠	•		•	29.1	16.49	0.0
3LK17	•	<u> </u>		9.40	1.00	1.40	2.30	3.53	<u>.</u>					+	+	•	٠	•	28.0	15.76	0.0
BLK18	•	ļ		3.10	1.70	1.10		1.97	ļ]			•	٠	*******		•	28.2	15.91	
		ı	l i	2.20	1.50	1.10	1.40	1.55	l			- 1		٠	٠	٠	•	•	29.3	16.61	0.0
SLK19 SLK20	•	·····		0.90	1.00	2.30	1.70	1.48				I	().	٠	•	+	٠	•	29.5	16.72	0.0

Figure 4-51

Dry Weather Sampling: Particulate Lead Concentration (ug/l)

July	1991	Survey

July 1991								
Station No.	Blackstone River	Tributary	Location	Run #1	Run #2	Run #3	Run #4	MEAN
BLK01	•			3.1	3.4			3.33
IIBI KO2	•	[2.9	3.1	0.2	1.0	1.80
BLK03	•			3.1	2.4	<u></u>	0.9	3.33 1.80 2.13 4.53 1.23 21.88 96.18 16.98 3.10 1.87 24.60
BLK04	•			2.9	3.7		4.8	4.53
BLK04 BLK05 BLK06			Quinsigamond River	0.8 53.1	1.8	1.8		1.23
BLK06	•	ļ,		53.1	23.2	0.2	: 11 N	21.88
BLK07	•	ļ		15.1 21.8	268.2	93.7	7.7	96.18
BLK08	•	ļ		21.8	13.9			16.98
BLK09 BLK10 BLK11			Mumford River	0.2 2.6 8.0	3.1	7.0	2.1	3.10
BLK10			West River	2.6	1.0	I	<u>.</u>	1.87
	•	ļ	***************************************			49.9	28.4	24.60
BLK12	•			2.3		0.3		
BLK13	•		***************************************	10.9	9.0			12.73
BLK14 BLK15 BLK16		•	Branch River	2.3	0.1	0.2		1.10
BLK15		•	Mili River	0.9 3.7	<u> </u>		1.3	1.10
BLK16		•	Peters River	3.7	2.2	8.9	7.5	5.58
BLK17 BLK18	•	ļ		3.2	3.9		4.3	3.40
BLK18	•			4.1	3.1			3.17
BLK19	•		***************************************	2.1	1.9			1.98
BLK19 BLK20	•		***************************************			0.1		12.73 1.10 1.10 5.58 3.40 3.17 1.98 0.80 2.95
BLK21	•		Slaters Mill	2.4	3.2	3.3	2.9	2.95

Statistics	- all 3	SHIPVEVS

	Mini-	Maxi-
Mean	mum	mum
8.1	0.7	49.8
2.0	0.2	4.3
3.1	0.9	8.3
3.2	0.3	9.4
1.7	0.1	5.0
10.6	0.2	53.1
35.0	1.5	268.2
11.4	0.6	31.6
2.4	0.0	7.0
1.7	1.0	2.6
11.8	1.8	49.9
3.5	0.3	9.4
8.0	2.7	16.1
1.1	0.1	2.3
1.3	0.4	3.9
3.1	0.0	8.9
4.3	1.9	12.5
3.5	1.1	6.5
2.5	0.7	6.5
1.8	0.0	3.2
2.6	0.0	4.3

August	1991	Survey
August	1331	Survey

August 19	ອ ເ ວu	rvey						
BLK01	•			2.1	49.8	15.2	1.5	17.15
BLK02	•			1.7	4.3		1.2	2.40
BLK03	•		***************************************	2.3	5.1		2.0	3.13
BLK04	•			9.4	0.7	0.3	1.0	2.85
BLK05		•	Quinsigamond River		5,0		0.4	3.17
BLK06	•			2.0	5.1	8.5	2.8	4.60
BLK07	•			6.0	1.5			5.07
BLK08	•		***************************************	12.6	11.0	12.7	7.8	11.02
BLK09		•	Mumford River	0.7	1.2	1.9	0.9	1.18
BLK10		•	West River	<u> </u>	1.0	1.7		1.35
BLK11	•			7.2	1.8		3.5	4.17
BLK12	•			4.3	3.5	7.4	2.7	4.48
BLK13	•			2.7			5.4	4.05
BLK14		•	Branch River	1.6	1.2	1.0	2.0	1.45
BLK15		•	Mill River	1.0		0.9	3.9	1.93
BLK16		•	Peters River	1.2	1.2	2.2	3.7	2.08
BLK17	•			3.5	3.2	4.3		3.67
BLK18	•			1.1	1.9	1.1	5.6	2.43
BLK19	•			1.4	2.2	0.7	6.5	2.70
BLK20	•			1.2	3.0	2.9	0.0	1.78
BLK21	•		Slaters Mill	0.9	2.7	4.3	0.0	1.98

α		004	Survey
ULLUI	Jei	331	Survey

BLK01	•			2.2	3.4	3.1	6.2	3.73
BLK02	•			1.7	2.0	2.8	1.2	1.93
BLK03	•			2.4	2.3	8.3	3.3	4.07
BLK04	•			1.5	2.0	3.0	2.0	2.13
BLK05		•	Quinsigamond River	1.4	0.7	0.4	0.1	0.65
BLK06	•			6.0	5.4		4.6	5.33
BLK07	•			3.7	3.8	6.1	3.7	3.73
BLK08	•			6.5	4.8	6.1	7.3	6.18
BLK09		•	Mumford River	0.0	4.0	3.9	3.7	2.90
BLK10		•	West River	2.2	2.0	1.5	1.5	1.80
BLK11	•			3.3	11.3	6.0	6.2	6.70
BLK12	•			0.7	9.4	4.6	5.9	5.15
BLK13	•		-	5.2	7.9	10.6	5.5	7.30
BLK14		•	Branch River		0.1	0.8	1.5	0.80
BLK15		•	Mill River	0.8	0.4	1.9	0.7	0.95
BLK16		•	Peters River	0.4	1.5	0.0	4.6	1.63
BLK17	•			1.9	5.6	3.0	12.5	5.75
BLK18	•			6.5	4.8	3.6		4.96
BLK19	•			1.5	2.9	2.5	4.3	2.80
BLK20	•			2.9	2.9	3.2	2.7	2.92
BLK21	•		Slaters Mill	2.9	2.9	3.2	2.7	2.92

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled;

Avg = Average value of all runs considered; SD = Standard deviation; + Range & -Range = 95% Confidence interval.

Figure 4-52
Wet Weather Data - Storm I: Total Lead (ug/l)

	œ					Mean (Concen	tration		l N	linimun	n Conc	entratio	on	M	laximur	n Conc	entratio	on
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				6.5	20.6	11.3	5.4			7.3	8.7	3.9			32.6	17.3	6.9	
22			•	CSO facility in Worchester															
01	•				3.3	14.8	9.7	4.7			11.1	3.8	3.0			21.6	14.0	6.4	
23			•	UBWPAD, Worchester	3.9	3.3	3.3	2.2			2.4	2.3	2.0			4.3	5.7	2.4	
02	•		<u> </u>		3.4	16.9	7.4	3.2			5.5	4.5	2.6			31.9	11.0	3.8	
03	•		<u> </u>				*****				İ								
04	•		<u> </u>		3.0	12.5	9.0	3.2		<u> </u>	7.3	5.6	2.9			18.2	14.2	3.4	
05		•	<u> </u>	Quinsigamond River		11.5	1.5	1.2			1.2	1.0	1.1			30.6	2.0	1.2	
06	•				7.5	17.1	8.9	6.7			8.6	7.5	6.5			33.5	10.0	6.8	
07	•				5.9	7.9	8.6	9.1			6.6	6.1	7.1			9.3	11.4	11.0	
08	•				9.0	18.2	10.2	10.3			14.8	5.5	8.8			23.7	12.2	11.7	
09		•		Mumford River	0.9	1.7	1.4	1.4			0.8	0.9	0.9			2.3	2.3	1.9	
10		•		West River		1.3	0.8	0.6			1.2	0.5				1.4	1.1		
11	•				4.8	9.3	6.3	6.5			6.6	4.8	6.1			12.7	9.6	6.9	
12	•																	,	"
13	•				4.0	4.4	4.6	3.6			3.2	3.4	3.2			6.4	6.6	3.9	
14		•		Branch River		3.0	1.4	1.1			1.1	0.9	1.0			6.3	2.1	1.2	
15		•		Mill River	7.4	2.9	1.6	2.3			1.3	1.4	1.7			5.6	1.9	2.9	
16		•		Peters River	5.4	10.6	4.3	3.0			3.7	3.7	2.1			19.0	4.9	3.8	
17	•				5.3	8.4	5.0	5.4			5.6	4.0	4.3			10.2	5.4	6.4	
24			•	Woonsocket WWTF	9.4	16.5	6.7	11.8			6.7	5.3	11.2			21.6	9.0	12.3	
18	•		L		4.2	4.0	5.0	6.5			2.9	3.6	3.4			4.7	6.0	9.6	
19	•		L																
20	•				3.4	4.3	3.5	4.0			3.2	2.8	2.8			5.7	4.3	5.1	
21	•		L		3.1	14.0	3.8	3.7			5.0	3.1	3.0			20.2	4.3	4.4	
25			•	Bucklin Point (Seekonk R.)	5.2	7.7	8.6	6.2			6.1	6.7	5.4			9.7	10.6	7.0	

Dissolved Lead		teria (u as Ca0	
Criteria	25	35	45
Acute Criteria	13.9	20.3	26.8
Chronic Criteria	0.5	0.8	1.0

Figure 4-53
Wet Weather Data - Storm II: Total Lead (ug/l)

					:															
	ď		_			Mean (Concen	tration		M	linimun	nimum Concentration			Maximum Concentration					
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	
00	•				2.3	15.1	4.8	6.1	4.1		3.8	4.3	5.7			41.1	5.3	6.4		
22			•	CSO facility in Worchester	26.0	28.5		***************************************			22.0			***************************************		35.0				
01	•				4.5	17.6	6.2	2.2	3.5		4.6	3.2	2.0		***************************************	26.7	9.1	2.4		
23			•	UBWPAD, Worchester	1.6	3.1	3.7	2.2	3.2		1.9	2.7	1.8			4.7	4.5	2.5		
02	•				4.7	14.5	5.5	3.4	3.5		2.9	2.7	2.7			28.8	10.3	4.0		
03	•																			
04	•	ļ			1.9	20.8	7.2	2.7	3.5		3.2	3.9	1.5			51.3	13.4	3.8		
05		•		Quinsigamond River	***************	2.2	3.0	4.0	1.0		0.8	1.5	0.9			3.1	4.7	7.0		
06	•				2.8	14.0	13.5	6.4	6.2		5.4	7.4	6.1			37.7	19.4	6.6		
07	•				3.5	5.0	9.5	6.8	8.0		3.8	7.4	6.3			6.5	11.6	7.2		
08	•				4.1	8.2	12.7	15.7	5.6		5.0	9.4	14.0			18.5	15.1	17.4		
09		•		Mumford River	<i>-</i>	1.4	2.9	1.1	1.3		0.7	0.8	0.8			2.4	8.9	1.4		
10		•		West River	0.8	1.1	1.0	0.8	0.8	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.5	0.4	0.6			1.7	2.1	0.9		
11	•	ļ			3.5	4.6	13.6	9.6	10.3	ļ	2.1	8.4	7.6		ļ	10.9	28.5	11.6		
12	•			.,																
13	•				2.7	3.7	7.2	8.5	10.2	ļ,,,,,,	2.4	3.9	7.7			5.6	14.4	9.2		
14		•		Branch River	1.3	2.4	1.6	1.0	1.7	,,,,,,,,,,,,	0.9	1.2	0.8			7.8	2.2	1.2		
15		•		Mill River	1.0	3.0	1.7	1.5	1.0		1.2	0.9	1.4			6.1	3.4	1.5		
16		•		Peters River	1.9	6.0	4.3	2.8	1.8		2.9	1.5	2.6			8.7	8.3	2.9		
17	•				2.4	3.8	6.1	3.5	9.3		2.6	3.3	1.5			5.3	12.4	5.5		
24			•	Woonsocket WWTF	19.1	11.1	13.7	11.0	NA		3.2	2.5	10.5			19.5	22.7	11.4		
18	•				2.6	3.9	4.7	3.1	5.2		2.5	3.9	1.3			8.3	6.0	4.8		
19	•																			
20	•				2.2	3.2	6.1	3.6	5.4		2.7	2.9	1.8			4.2	8.2	5.4		
21	•			***************************************	3.7	5.8	6.2	6.6	6.8		2.7	3.0	5.9			10.1	10.9	7.2		
25			•	Bucklin Point (Seekonk R.)	10.6	13.4	9.4	38.3			5.0	7.7	4.3			24.9	12.9	72.3		

	Criteria (ug/l)								
Dissolved Lead	(mg/l	as CaC	CO ₃)						
Criteria	25	35	45						
Acute Criteria	13.9	20.3	26.8						
Chronic Criteria	0.5	0.8	1						

Figure 4-54
Wet Weather Data - Storm III: Total Lead (ug/l)

				, , , , , , , , , , , , , , , , , , ,								····	· - ·						
	œ					Mean (Concer	tration		Ň	linimun	n Conc	entratio	n	М	aximur	n Conc	entratio	on
Station No.	Blackstone	Tributary	WWTF/CSC	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				7.7	49.5	5.7	3.5			3.0	3.9	2.5			89.2	8.1	5.3	
22			•	CSO facility in Worchester		16.4	•	***************************************	2.0		2.0					57.6			
01	•				2.6	34.2	24.4	3.8			3.2	1.8	2.8			53.4	67.2	5.6	,
23			•	UBWPAD, Worchester	0.8	1.9	1.8	2.3	***************************************		1.5	1.1	1.1			2.2	3.4	3.4	
02	•				3.0	31.3	12.3	2.7			1.2	6.4	1.9			68.0	21.1	3.3	
03	•					,													
04	•				3.0	12.7	12.8	12.0			1.3	4.9	3.0			24.0	20.9	31.2	
05		•		Quinsigamond River	1.6	1.8	1.6	1.4			1.6	0.7	0.6			2.0	3.0	2.1	
06	•				5.0	12.4	17.6	8.6		İ	2.5	6.3	1.5			23.0	37.9	24.9	
07	•				4.9	5.7	16.6	9.2	7.6	<u> </u>	4.7	12.0	7.4			7.1	23.1	11.5	
08	•				5.1	8.6	30.3	14.3	6.9		7.5	14.1	6.8			10.1	68.0	22.9	
09		•		Mumford River	0.8	1.5	1.3	1.5	1.4		1.1	0.7	0.9			2.1	1.6	2.2	
10		•		West River	2.6	2.0	1.7	1.9	3.2		0.9	0.5	0.9			2.9	2.9	3.0	
11	•				5.8	13.4	15.1	24.3	7.9		4.2	6.8	8.9			25.2	25.8	57.4	
12	•																		
13	•				5.1	3.1	6.7	10.2	4.0	ļ	1.3	4.0	6.6			4.0	11.8	13.3	
14		•		Branch River	1.1	1.3	1.9	1.3			0.2	1.1	1.1		ļ	2.8	2.8	1.7	
15		•		Mill River	0.9	1.9	2.8	2.1	1.8		1.0	0.8	0.8		<u> </u>	2.7	5.1	3.8	
16		•		Peters River	1.3	4.9	5.5	4.1	2.6		3.3	4.4	2.0			7.5	7.3	6.8	
17	•				3.7	22.2	4.8	6.7	7.8		4.4	4.3	5.5			44.8	5.2	9.6	
24			•	Woonsocket WWTF	31.4	27.2	22.9	21.5			24.5	20.6	20.5			30.0	26.7	22.8	
18	•				3.7	4.5	6.8	5.7			4.4	6.0	4.9			4.5	7.6	6.5	
19	•				ļ														
20	•				4.1	4.4	5.9	7.5			3.3	4.1	6.2			6.0	9.4	9.6	
21	•				3.6	6.0	5.0	6.3			5.4	3.8	5.6		ļ 	6.8	6.9	6.9	
25			•	Bucklin Point (Seekonk R.)	2.7	5.5	3.2	4.0			3.2	2.7	2.5			9.2	3.5	7.3	

Dissolved Lead		teria (u as Ca	
Criteria	25	35	45
Acute Criteria	13.9	20.3	26.8
Chronic Criteria	0.5	0.8	1

Figure 4-55

Lead Concentration for Storm 1, September 22-24, 1992

Table 4-56 Source Rankings by Dry and Wet Load

Total Lead

	tion o.						Total L	ead (po	unds)			Tot	al Lead (~ %)		
		River						Wet L				Wet Loads				
From	To	Blackstone Ri	Tributary	WWTF/CSO	Location	Dry Weather Load	Storm 1	Storm 2	Storm 3	Average - All Storms	Dry Weather Load	Storm 1	Storm 2	Storm 3	Avergaege - All Storms	
neadw	00	•					5.12	15.10	86.20			25.70	15.60	51.20	31.10	
2				•	CSO facility in Worchester			1.31	1.78				1.35	1.06	0.35	
00	01(*)	•						0.16			3.67		0.16		0.06	
2	2			•	UBWPAD, Worchester		1.51	2.15	1.69		3.01	7.60	2.22	1.00	3.64	
01	02	•					2.92	8.84	26.30		0.15	14.70	9.11	15.60	13.90	
02 03	03 04	•					0.02	12.10	į		1.58 1.27	0.09	12.50		4.27	
0	15		•		Quinsigamond River		0.09	0.34	0.28		0.79	0.46	0.35	0.17	0.33	
04	06	•							0.16		23.80			0.09	0.03	
06	07	•									22.20			Ī	***************************************	
07	08	•					0.60	18.40	35.30		7.28	3.02	19.00	20.90	14.50	
0	9		•		Mumford River		0.09	1.81	0.39		2.68	0.45	1.86	0.23		
1	0		•		West River		0.03	0.11	0.24		1.21	0.15	0.11	0.14	1.00	
08	11	•				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		11.50			10.40		11.80	Ī	2.80	
11	12	•								***************************************	0.91			Ī	***************************************	
12	13	•								***************************************	13.00		•	······	***************************************	
1	4		•		Branch River	,	0.33	1.04	0.60		1.43	1.67	1.07	0.36	1.05	
1	5		•		Mill River		0.12	0.28	0.10		0.44	0.60	0.29	0.06	4.00	
1	6		•		Peters River		0.27	0.69	0.23		0.42	1.36	0.71	0.14	1.06	
13	17	•					1.98		6.02		1.74	9.95		3.57	4.54	
2	4			•	Woonsocket WWTF		1.12	2.05	3.92		1.31	5.62	2.11	2.33	3.38	
17	18	•					0.23			***************************************	0.01	1.15		The state of the s	0.39	
18	19	•					<u> </u>	8.00	E 00	••••••	0.23		0.04	0.40		
19	20	•						8.00	5.28		0.46	1	8.24	3.13	3.85	
20	21	•					5.47	13.20			2.07	27.50	13.60	<u>-</u>	13.80	
	of Rank						10.4	71.8	152.3	0.0	92.0	52.3	74.1	90.4	72.0	
Sum o	f Rank	ing	s - F	ti (ii	ncl. Mill and Peters Rivers)		9.5	25.3	16.2	0.0	8.1	47.9	26.0	9.6	28.1	
					Totals		19.9	97.1	168.5	0.0	100.1	100.1	100.1	100.0	100.1	

^(*) For Dry weather data, rankings between Segment "00 and 01" include the Segment "Headwater to 00".

Table 4-57 Exceedences of Regulatory Standards - Dry Weather Surveys Dissolved Lead

Data: **Blackstone River Initiative (BRI)** (Wright et al., 2001) BRI concentrations were compared to RI Regulatory Standards

						Acute	Criteria			Chroni	c Crite	ia :		
						Dry W	eather		Dry Weather					
								•••••						
Station No.	Blackstone River	Tributary	WWTF/CSO	Location	July 11-13, 1991	Aug. 14-15, 1991	Oct. 2-3, 1991	Total Exceedences (%)	July 11-13, 1991	Aug. 14-15, 1991	Oct. 2-3, 1991	Total Exceedences (%)		
00	•					***************************************			1					
22			•	CSO facility in Worchester	,					·····				
01	•				0%	0%	0%	0%	25%	100%	50%	58%		
23			•	UBWPAD, Worchester						y	,			
02	•				0%	0%	0%	0%	25%	100%	75%	67%		
03	•				0%	0%	0%	0%	25%	67%	50%	47%		
04	•			***************************************	0%	0%	0%	0%	25%	100%	100%	75%		
05		•		Quinsigamond River (*)	0%	0%	0%	0%	25%	67%	25%	39%		
06	•				25%	0%	0%	8%	100%	100%	100%	100%		
07	•				0%	0%	0%	0%	100%	100%	100%	100%		
08	•				0%	0%	0%	0%	75%	100%	100%	92%		
09		•		Mumford River	0%	0%	0%	0%	75%	50%		75%		
10	<u> </u>	•		West River	0%	0%	0%	0%	100%	100%	100%	100%		
11	•				0%	0%	0%	0%	100%	100%	100%	100%		
12	•				0%	0%	0%	0%	100%	100%	100%	100%		
13	•				0%	0%	0%	0%	100%	100%	100%	100%		
14	<u> </u>	•		Branch River	0%	0%	0%	0%	75%	100%	67%	81%		
15	<u>[</u>	•		Mill River	0%	0%	0%	0%	50%	33%	50%	44%		
16		•		Peters River	0%	0%	0%	0%	100%	100%	75%	92%		
17	•				0%	0%	0%	0%	25%	100%	100%	75%		
24			•	Woonsocket WWTF										
18	ullet				0%	0%	0%	0%	25%	100%	100%	75%		
19	•				0%	0%	0%	0%	0%	75%	100%	58%		
20	•				0%	0%	0%	0%	50%		100%	67%		
21	•				0%	0%	0%	0%	25%	50%	100%	58%		

	Criteria (ug/l)								
Dissolved Lead		Hardn I as Ca							
Criteria	25	35	45						
Acute Criteria	13.9	20.3	26.8						
Chronic Criteria	0.5	0.8	1						

Figure 4-58

Wet Weather Data: Exceedence of Dissolved Lead (*) - Acute Criteria

Backsone (iver initiative (wright et al., 2001)																			
٠	괊		٥		STORM I: Mean Concentration						TORM Concer) 		STORM III: Mean Concentration				
Station No.	Blackstone R.	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•						[<u> </u>				•			
22	†	•	•	CSO facility in Worchester						•		······			l	•	·		
01	•	ļ										1			 	†	·	·····	1110.341
23	†		•	UBWPAD, Worchester		•••••						1		***************************************	!	†	·		
02	•											1		***************				•••••	
03	•								***************************************							liir		i de Poi pe	
04	•											1	******************	***************************************			***************************************		
05	<u> </u>	•		Quinsigamond River]			<u> </u>		1	***************************************		1	•			
06	•																		
07	•																		
80	•			,															
09		•		Mumford River]	Ī	
10		•		West River															
11	•	<u>.</u>													I	Ţ	l	l	
12	•				i:				H s			11 11		1.11.11.11					1
13	•	<u></u>	,,,,,,,	***************************************					:]							
14	ļ	•		Branch River					L : :	<u> </u>									
15	<u> </u>	•		Mill River															
16	ļ	•		Peters River	<u> </u>			<u> </u>											
17	•	<u> </u>					İ	<u> </u>	7.7 T										
24	ļ	<u> </u>	•	Woonsocket WWTF											•	•	•	•	XXXXXX
18	•	<u></u>																[
19	•	<u> </u>																	
20	•			***************************************														[
21	•															I			
25	Ĺ		•	Bucklin Point (Seekonk R.)										7777				***************************************	

(*)	Note:	The total lead concentrations were compared to the dissolved lead
	re	gulatory standards of Rhode Island by assuming a constant concentration
	of	40% dissolved lead in the total lead samples.

•	The mean concentration exceeded the regulatory criteria.
	The mean concentration did not exceed the regulatory criteria
	No samples were analyzed.

	Criteria (ug/l)								
Dissolved Lead	for (mg/l								
Criteria	25	35	45						
Acute Criteria	13.9	20.3	26.8						
Chronic Criteria	0.5	0.8	1.0						

Figure 4-59

Wet Weather Data - Storm I: Exceedence of Lead - Chronic Criteria

Blackstone River Initiative (Wright et al., 2001)																			
	2		٥				TORM Concer	l: itration	ì	STORM II: Mean Concentration					STORM III: Mean Concentration				
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				•	•	•	•			•	•	•		•			- 4/	
22	†	ļ	•	CSO facility in Worchester						•	•							7.25	
01	•					•	•	•			•	•	***************************************				•	•	
23	1		•	UBWPAD, Worchester	•	•	•	†		l	•	•				•	•	•	
. 02	•		İ	· · · · · · · · · · · · · · · · · · ·		•	•			•	•	•	•			•	•	•	E. 56
03	•		Ī		***************************************			11111					***************************************						
04	•		ļ		***************************************	•	•	*****************			•	•	•		•	•	•	•	
05		•		Quinsigamond River		•		1	13			•	•				***************************************		
06	•			·	•	•	•	•			•	•	•		•	•	•	•	
07	•				•	•	•	•		•	•	•	•		•	•	•	•	
08	•		<u> </u>		•	•	•	•	1,4, 141	•	•	•	•		•	•	•	•	
09		•	<u> </u>	Mumford River		•	•	•			•	•	•			•	•	•	
10		•	<u></u>	West River				•			•	•			•	•	•	•	
11	•	ļ			•	•	•	•		•	•	•	•		•	•	•	•	
12	•						Nije iii						94. j						
13	•	ļ	ļ		•	•	•	•		•	•	•	•		•	•	•	•	anang Anang
14		•		Branch River		•	•			•	•	•	•		•	•	•	•	2.000
15	ļ	•		Mill River	•	•	•	•			•	•	•			•	•	•	
16	ļ	•	ļ	Peters River	•	•	•	•		•	•	•	•			•	•	•	(A
17	•				•	•	•	•		•	•	•	•		•	•	•	•	112121618
24	ļ	ļ	•	Woonsocket WWTF	•	•	•	•		•	•	•	•		•	•	•	•	
18	•		ļ			•	•	•		•	•	•	•		•	•	•	•	
19	•		ļ			***************************************							Y	7			77gv - 14		
20	•	ļ		***************************************		•	•	•		•	•	•	•		•	•	•	•	
21	•			***************************************	•	•	•	•		•	•	•	•		•	•	•	•	
25			•	Bucklin Point (Seekonk R.)	•	•	•	•		•	•	•	•			•	•	•	

Note: The total lead concentrations were compared to the dissolved lead regulatory standards of Rhode Island by assuming a constant concentration of 40% dissolved lead in the total lead samples.

•	The mean concentration exceeded the regulatory criteria.
	The mean concentration did not exceed the regulatory criteria.
	No samples were analyzed.

	Criteria (ug/l)									
Dissolved Lead		Hardne as Ca(
Criteria	25	35	45							
Acute Criteria	13.9	20.3	26.8							
Chronic Criteria	0.5	0.8	1.0							

Acute Lead Violations for Storm 3, October 12-16, 1993.

White Denotes No Violations

Figure 4-61
RIDEM Chemical Monitoring of Tributaries, Section 305b

Total Lead Concentration (ug/l)

F							Τ	г
Date	Round Top Brook	Pascoag River	Clear River	Abbot Run Brook (Cumberland)	Abbot Run Brook (North Attleboro)	Dry Weather (1)	Wet Weather (2)	Mixed Weather (3)
12-Mar-91	0.50	1.70	1.00	1.30	1.20	•		<u> </u>
13-May-91	0.90	4.30	6.30	17.20	11.80			•
29-Jul-91	1.30	3.30	2.10	4.60	1.30			•
06-Sep-91	0.90	2.40	1.40	1.30	0.70			•
26-Apr-93	2.10	1.30	8.30	4.90	2.80		•	
10-Aug-93	0.30		3,60	2.70	1.30	•		
27-Dec-93	1.60	2.90	10.20	1.80	3.00	•		
11-Mar-96	0.20	3,60	1.80	4.30	0.60			•
14-May-96	0.90	1.80	1.50	1.00	24.10			•
20-Aug-96	5.60	3.40	5.90	0.70	1.20	•		
02-Oct-96	1.00	1.50	0.90	0.30	0.30			•
14-Apr-98	0.80	1.70	13.00	7.20	0.90	•		
05-Aug-98	0.80	1.70	4.20	2.40	4.10	•		
26-Oct-98	1.70	1.80	2.10	4.80	13.80	•	[Ī.
20-Jan-99	0.80	0.80	1.80	0.80	0.80			•
19-Mar-99	0.85	1.60	12.94	10.91	5.44	•		
10-Jun-99	2.43	1.90	2.13	1.68	ND	•		
19-Aug-99	ND	ND	ND	ND	ND	•		
12-Oct-99				1.18	0.83			•
15-Mar-00	1.64			1.89				•
30-May-00	[]			2.36	1.09	•		
18-Sep-00				1.90				•
11-Dec-00				1.42				•
St	atistical Su	mmary - Al	I Sample:	S				
Count	19	16	17	22	18	•	•	•
Geometric Mean	1.35	2.23	4.66	3.48	4.18	•	•	•
Minimum	0.20	0.80	0.90	0.30	0.30	•	•	•
Maximum	5.60	4.30	13.00	17.20	24.10	•	•	•
St	atistical Su	mmary - Dı	ry Weathe	r				
Count	9	8	9	10	9	•		
Geometric Mean	1.62	2.09	6.12	3.59	3.56	•	••••••	
Minimum	0.30	1.60	1.00	0.70	0.90	•	••••••	
Maximum	5.60	3.40	13.00	10.91	13.80	•		
Statistic	al Summar	y - Mixed a	nd Wet W	eather				
Count	9	8	8	12	9		•	•
Geometric Mean	1.08	2.38	3.01	3.40	4.80		•	•
Minimum	0.20	0.80	0.90	0.30	0.30		•	•
Maximum	2.10	4.30	8.30	17.20	24.10		•	•

ND = Not detected

- (1) Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day.
- (2) Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or rainfall of more than 1.0" on days 2 and 3 prior to sampling.
- (3) Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Figure 4-62

RIPDES-permitted Point Sources

Total Lead (ug/l)

Data Period: January 31, 1997, to October 31, 2001

	Sandoria Products (S marsC) (002 lleftuc)										37.43		[]	
	Seram Sylvania Products 'Outfall 001)		0.03	0.02	0.05						0.03	0.02	0.05	
	Okonite, Co.													
Total Lead (ug/l)	Moonsocket WWTF		4.74	1.00	13.20						8.52	1.00	44.10	
Total Le	Blackstone Smithfield Co.													
	Atlantic Thermoplastics							•						
	HTWW Əllivlilınu8		1.31	1.00	2.40			. 			2.42	1.00	8.00	
	IstiqsoH Isinom9M onstsdmsZ					:		<u>: </u>						
	Osram Sylvania Products (Outfall 200)		330,000		670,000						530,000	310,000	1,820,000	
	Osram Sylvania Products (Outfall 001)		580,000	460,000	710,000									
	Okonite, Co.		80,000	30,000	140,000						150,000	900'09	250,000	
Flow (gallons per day)	Woonsocket WWTF		9,180,000	5,230,000	13,520,000									
Flow (gal	Blackstone Smithfield Co.		2,992	2,400	4,608									
	Atlantic Thermoplastics		1,200	268	2,988									
	Burrillville WWTF		830,000		-						1,100,000	700,000	2,580,000	
	Sambarano Memorial Hospital		50,000	30,000	70,000	ge				Ę	80,000	40,000	000'06	
		Monthly Mean	Average	Minimum	Maximum	Weekly Average	Average	Minimum	Maximum	Daily Maximum	Average	Minimum	Maximum	

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit.

0.510

0.896 0.710 1.096

0.124 0.046 0.216

14.175 8.076 20.877

0.005

0.002 0.000 0.005

1.282 0.988 1.884

0.077 0.046 0.108

Monthly Mean
Average
Minimum
Maximum

Flow (cfs)

Data Source: Rhode Island Department of Environmental Management

Figure 4- 63
Woonsocket Wastewater Treatment Facility - Effluent
Total Lead

Figure 64a

Valley Falls Pond Chlorophyll, Year 2000

Source: URI Watershed Watch, unpub. Data

Figure 64b

Valley Falls Pond Chlorophyll, Year 2001

Source: URI Watershed Watch, unpub. Data

Figure 4-65

Nitrate Concentration (ug/I N) - Reservoirs

Waterbody		All Years (1993-2000)	1993	1994	1995	1996	1997	1998	1999	2000
PASCOAG RESERVOIR	Mean	<40		<40	65	<40	<40	33	<40	30
	Minimum	<40	***************************************	<40	<40	<40	<40	<40	<40	<40
. '	Maximum	105		<40	105	<40	<40	60	<40	50
SPRING LAKE	Mean	<40	<40	<40	<40	<40	<40	37	23	<40
	Minimum	<40	<40	<40	<40	<40	<40	<40	30	<40
	Maximum	70	<40	<40	<40	<40	<40	70	<40	<40
KEECH POND	Mean	<49	83	<40	50	40	33	40	48	50
	Minimum	<40	<40	<40	<40	<40	<40	<40	<40	<40
	Maximum	210	210	<40	110	80	60	80	70	80
SMITH AND SAYLES RESERVOIR	Mean	<40	<40	<40	<40	<40	<40	<40	<40	<40
	Minimum	<40	<40	<40		<40	<40		<40	<40
	Maximum	80	<40	<40		<40	<40		<40	80
SPRING GROVE POND	Mean	<40	<40	80	85	<40	<40	<40	<40	<40
	Minimum	<40	<40	<40	<40	<40	<40	<40	<40	<40
	Maximum	175	<40	140	175	<40	<40	<40	<40	<40
SLATER\$VILLE RESERVOIR	Mean	157			133					180
	Minimum	100			100					150
	Maximum	210			160					210
VALLEY FALLS POND	Mean	767				,,				767
	Minimum	240			,,,,,,					240
	Maximum	1,230								1,230

Regulatory Standard: --

Figure 4-66

Total Nitrogen Concentration at 1 m Depth (ug/l N) - Reservoirs

Waterbody		All Years (1993-2000)	1993	1994	1995	1996	1997	1998	1999	2000
PASCOAG RESERVOIR	Mean	298		345	335	360	223	267	273	280
	Minimum	150		250	310	285	190	150	210	
	Maximum	440		440	360	435	260	370	350	
SPRING LAKE	Mean	338	565	175	340	308	277	243	355	440
	Minimum	100	280	100		255	210	130	320	
	Maximum	850	850	250		360	360	430	390	
KEECH POND	Mean	443	385	387	470	633	427	430	343	470
	Minimum	40	250	260	340	560	270	330	40	
	Maximum	705	520	490	600	705	630	500	580	
SMITH AND SAYLES RESERVOIR	Mean	374	800	370	340	300	225	265	330	360
	Minimum	190				285	190	200	300	
	Maximum	360				315	260	330	360	
SPRING GROVE POND	Mean	445	335	485	510	820	433	330	370	280
	Minimum	240	300	470	}	700	250	240	320	
	Maximum	940	370	500		940	790	480	420	
SLATERSVILLE RESERVOIR	Mean	510			530					490
	Minimum									***************************************
	Maximum									
VALLEY FALLS POND	Mean	1,990								1,990
	Minimum		Ī							***************************************
	Maximum							************************	***************************************	•••••

Regulatory Standard: --

Figure 4-67

Dissolved Phosphorus Concentration (ug/I P) - Reservoirs

Waterbody		All Years (1993-2000)	1993	1994	1995	1996	1997	1998	1999	2000
PASCOAG RESERVOIR	Mean	<4		<4	2.7	<4	<4	<4	<4	<4
	Minimum	<4		<4	<4	<4	<4	<4	<4	<4
	Maximum	4.0	-11	<4	4.0	<4	<4	<4	<4	<4
SPRING LAKE	Mean	<4	6.3	<4	<4	<4	<4	<4	4.3	2.7
	Minimum	<4	<4	<4	<4	<4	<4	<4	<4	<4
	Maximum	15.0	15.0	<4	<4	<4	<4	<4	6.0	4.0
KEECH POND	Mean	<5	12.7	<4	<4	<4	<4	<4	<5	<4
	Minimum	<4	<4	<4	<4	<4	<4	<4	<4	<4
	Maximum	34.0	34.0	<4	<4	<4	<4	<4	5.0	6.0
SMITH AND SAYLES RESERVOIR	Mean	<4	<4	<4	<4	<4	<4	<4	<4	<4
	Minimum	<4	<4	<4		<4	<4		<4	<4
	Maximum	<4	<4	<4		<4	<4		<4	<4
SPRING GROVE POND	Mean	<4	<4	<4	<4	4.7	<4	<4	<4	6.0
	Minimum	<4	<4	<4	<4	<4	<4	<4	<4	<4
	Maximum	14.0	<4	<4	<4	10.0	<4	<4	<4	14.0
SLATERSVILLE RESERVOIR	Mean	5.4			6.3					4.5
	Minimum	<4			<4					<4
·	Maximum	15.0			15.0					7.0
VALLEY FALLS POND	Mean	129.7								129.7
	Minimum	93.0								93.0
	Maximum	175.0								175.0

Regulatory Standard: Average Total Phosphorus concentation of 25 ug/l P for lakes, ponds, and reservoirs.

Figure 4-68

Total Phosphorus Concentration at 1 m Depth (ug/I P) - Reservoirs

Waterbody		All Years (1993-2000)	1993	1994	1995	1996	1997	1998	1999	2000
PASCOAG RESERVOIR	Mean	7.4		9.3	8.7	7.3		5.0	6.7	7.3
	Minimum	<3	***************************************	8.0	7.0	5.0		<3	6.0	5.0
	Maximum	11.0	***************************************	11.0	10.0	9.0		8.0	7.0	11.0
SPRING LAKE	Mean	10.1	22.3	8.0	7.3	6.7		10.0	8.3	8.0
	Minimum	<3	5.0	6.0	5.0	5.0		<3	5.0	4.0
	Maximum	48.0	48.0	10.0	9.0	9.0		13.0	11.0	11.0
KEECH POND	Mean	12.1	12.0	14.7	14.0	12.0		9.0	11.3	11.5
	Minimum	<3	9.0	12.0	10.0	9.0		7.0	10.0	. <3
	Maximum	21.0	15.0	20.0	21.0	15.0		12.0	13.0	17.0
SMITH AND SAYLES RESERVOIR	Mean	11.8	25.0	6.7	14.0	7.7		7.5	11.5	10.3
	Minimum	<3	23.0	<3	8.0	6.0		5.0	11.0	8.0
	Maximum	27.0	27.0	11.0	20.0	9.0		10.0	12.0	15.0
SPRING GROVE POND	Mean	11.8	9.0	13.7	13.0	14.5		15.7	7.5	9.0
	Minimum	5.0	7.0	12.0	11.0	12.0		7.0	5.0	7.0
	Maximum	24.0	11.0	15.0	16.0	17.0		24.0	10.0	10.0
SLATERSVILLE RESERVOIR	Mean	20.2			18.3					22.0
	Minimum	15.0			15.0			1	***************************************	19.0
	Maximum	25.0			22.0					25.0
VALLEY FALLS POND	Mean	325.0								325.0
	Minimum	218.0								218.0
	Maximum	390.0]	***************************************	390.0

Regulatory Standard: Average Total Phosphorus concentation of 25 ug/l P for lakes, ponds, and reservoirs.

Figure 4-69 **Trophic Status Concentration - Reservoirs**

Waterbody		All Years (1993-2000)	1993	1994	1995	1996	1997	1998	1999	2000
PASCOAG RESERVOIR	Mean Minimum Maximum	0		0	o	O		o	O	0
SPRING LAKE	Mean Minimum Maximum	O	M	0	0	O		O	o	0
KEECH POND .	Mean Minimum Maximum	M	M	М	М	М		0	M	М
SMITH AND SAYLES RESERVOIR	Mean Minimum Maximum	M	E	0	M	O		0	M	М
SPRING GROVE POND	Mean Minimum Maximum	O/M	0	М	М	М		М	0	О
SLATERSVILLE RESERVOIR	Mean Minimum Maximum	М			М					М
VALLEY FALLS POND	Mean Minimum Maximum	E								E

O = Oligotrophic
M = Mesotrophic
E = Eutrophic

Figure 4-70

Nutrient Concentrations in Sediments

Valley Falls Pond

Sample Depth (cm)	Carbon (ug/mg)	Nitrogen (ug/mg)	Phosphorus (ug/mg)
1	88.8	6.3	1.80
3	71.9	4.8	1.84
9	70.2	4.8	2.11
16	87.9	6.2	2.08
31	151	22.1	1.49
51	172.2	9.4	1.50
Mean	107.0	8.9	1.80

Source: Dr. John King, University of Rhode Island (unpublished data)

Figure 4-71

Nitrate and Nitrite (mg/l N) - Data Summary (all studies in Rhode Island Section of Blackstone River)

			ı	F	\vdash	Station Location	_	Mean	Flow			Minimum	n Flow		×	Maximum	Flow	
Data Appendix	Station No.	Study Author	Year(s) of data collection	Blackstone R.	Tributary		Dry Weather	miotS grind	24h After Storm	teft After m1ot2	Dry Weather	mrotS guirnD	Tejh AlbS m1ojS	48h After Storm	Dry Weather	mrotS gnirud	24h After Storm	48h After mrot2
,	ļ	╟▔	1991	•	-		1.80				0.63				4.53			
<u>ဌ</u>	7	URI BRI wet	1991-1993	•		TOUTE 122, MIIIVIIIE, MA												
თ	Forestdale		1990-1999		•	Branch River, 400ft downst. of Mill dam in Forestdale	0.31		0.21		0.20		0.10		0.63		0.30	
ų	7	URI BRI dry	1991		•		0.21				0.01				0.31			
<u>.</u>	<u> </u>	URI BRI wet	1991-1993		•	Dialicii Rivei, Route 140A, Statetsville, IVIA												
9	B2	River Rescue	1990-1995	•		Main Street, Blackstone, MA		1.03	9			0.36	3	_		2.41		
٠	BRSL	URI	1988-1989	•	_	Blackstone River at MA/RI state line	3.19	3.10	3.05	3.28	2.86	1.84	2.01	2.00	3.51	3.79	4.31	4.74
4	75	URI BRI dry	1991	•		Bridge St. (State Boundary) Blackstone MA	1.35				0.68				2.38			
<u>-</u>	2	URI BRI wet	1991-1993	•		mill bridge ot. (orate bournary), brackstorie, MA	1.77	1.38	1.71	1.34		0.47	0.65	0.71	_	2.29	1.85	1.85
ŕ	Ť,	URI BRI dry	1991		•	Mill River Winter St. Woonsonket RI	0.33				0.16				0.89			
2	2	URI BRI wet	1991-1993	_	•	IVIIII INIVEL, WHILES OL., WOOLSOCKEL, IVI												
4	45	URI BRI dry	1991		•	Dates Diver Doute 111 Woonsonket DI	0.67				0.42				0.95		•	
2	<u> </u>	URI BRI wet	1991-1993		•	reters niver, node 114, woolisooner, ni												
ļ		URI BRI dry	1991	•		; ;	0.91				0.39				1.46			
<u>ი</u>	<u>}</u>	URI BRI wet	1991-1993	•		Hamlet Ave., (תופ. 122 and 126), vvoonsocket, תו	1.93	1.60	1.58	1.72		1.36	1.17	1.34		2.17	2.25	1.85
	7	URI BRI dry	1991		_	•												
<u>.</u>	47	URI BRI wet	1991-1993		•	Efficat Monacocket Source Treatment Deat	3.37	4.48	4.73	4.72		0.03	0.02	0.01		14.65	13.74	13.52
-	WSTP	URI	1988-1989				23.71	19.87	12.10	2.83	17.88	11.16	4.97	0.89	29.54	27.63	16.08	6.85
4	RIPDES	RIDEM	1997-2001		-			5.99	6			4.12	2			41.68		
,	ç	URI BRI dry	1991	•			1.43				0.62				4.65			
2	<u>o</u>	URI BRI wet	1991-1993	•		Manville Hill Rd., Cumberland, RI	2.23	1.87	1.79	1.54		1.36	1.12	1.15		2.79	2.91	2.25
6	Manville	nses	1990-1999	•			1.02		0.84		0.26		0.40		1.90		1.60	
4	q	URI BRI dry	1991	•		School St /Albion Dd Cumbadand D	1.29				0.25				1.97			
2	<u> </u>	URI BRI wet	1991-1993	•	Н	OCTOOL OL/ PROJECT INC. ; CONTROLLED INC. INC.									-			
9	Blons	River Rescue	1990-1995	•				1.25	S.			0.56	9			3.34		
4	S	URI BRI dry	1991	•		O olopado Ové olopado	1.37				0.15				2.29		,	
2	3	URI BRI wet	1991-1993	•			1.87	1.82	1.85	2.02		1.40	0.82	1.33		2.09	2.47	2.85
5	S-2	NBC	1997-2000	•				••••										
_	BRCF	URI	1988-1989	•	<u> </u>	Blackstone River above Central Falls, Pawtucket	3.29	2.69	2.60	3.04	2.50	1.86	1.74	1.98	4.07	3.13	3.99	4.09
-	BRSM	URI	1988-1989	•	<u> </u>		5.27	5.26	5.25	5.69	2.76	2.32	2.02	2.02	9.38	9.19	9.82	10.45
2	BRSMDN	URI	1990	•		****	1.36	1.40	1.29	1.09	1.17	0.97	0.82	09.0	1.59	1.92	1.77	1.52
5	S-3	NBC	1997-2000	•	<u> </u>						-							
ļ		URI BRI dry	1991	•	_		1.53				0.54				2.41			
	L7	URI BRI wet	1991-1993	•	1_		1.83	1.75	1.84	2.10		1.42	1.45	1.62		2.07	2.25	2.81
2	TMDL	RIDEM	1995-1996	•			1.55		<u>1</u> .		0.47		0.28		2.31		1.99	
9	B1	River Rescue	1990-1995	•	\dashv	Main Street, Pawtucket, RI		1.04	4			0.0	1			4.15		

Figure 4-72 **Ammonia** (mg/l N) - Data Summary (all studies in Rhode Island Section of Blackstone River)

			u	-	L	Station Location		Mean F	ΜO		Σ	Minimum Flow	Flow			Maximum Flow	n Flow	
			oitoe	e R.	0		et	v			\vdash	w.c				wic		
Data Xipnendix	Station No.	Study Author	Year(s) Ioo fata coll	Blackston	Tributary WWTF/CS		Dry Weath	During Sto 24h After Storm		19th After M10t2	Пгу Weath	During Sto	24h After Storm	48h After Storm	Dry Weath	During Sto	19th After M10t8	18h After mrot2
15	12	URI BRI dry	1991	•	_	Route 122 Millyille MA	0.14				0.04	2			0.37			
2	1	URI BRI wet	1991-1993	•														
6	Forestdale	nses	1990-1999	Ī	•	Branch River, 400ft downst. of Mill dam in Forestdale	0.13		0.07		90.0		0.01		0.69		0.13	
ŕ	4	URI BRI dry	1991	Ť	•	Branch River Route 146A. Statersville, MA	0.14				0.01				0.62	,		
2	<u>.</u>	URI BRI wet	1991-1993	Ĭ	•	בייין ייין יייין יייין יייין יייין יייין יייין יייין יייין יייין י												
9	B2	River Rescue	1990-1995	•		Main Street, Blackstone, MA		0.42				0.01				1.84	4	
-	BRSL	URI	1988-1989	•		Blackstone River at MA/RI state line	0.17	0.26	0.16	0.22	0.13	0.12	0.04	0.14	0.20	0.53	0.29	0.32
ή	4,	URI BRI dry	1991	•		Bridge St (State Boundan) Blackstone MA	0.14				0.01				0.38			
2	2	URI BRI wet	1991-1993	•		- Diluge St. (State Douridary), Diackstolle, MA	0.09	0.12	0.37	09.0		0.00	0.02	0.00		0.07	0.24	0.19
15	15	URI BRI dry	1991		•	Mill River, Winter St., Woonsocket, RI	0.12				0.03				0.39			
		URI BRI wet	1991-1993	_	•			<u>-</u>		_	-							
15	16	URI BRI dry	1991	+	• (Peters River, Route 114, Woonsocket, RI	0.18	Į,	7		0.04	ļ	<u></u>	-	0.33	-	-	
		URIBRI drv	1991-1993	•	•		0.14				0.01				0.77			
ن	17	URI BRI wet	1991-1993	•		Hamlet Ave., (Rte. 122 and 126), Woonsocket, RI	0.05	0.05	0.15	0.45		0.00	0.05	000		0.03	0.08	0.12
ų	70	URI BRI dry	1991		•							7						
2	**	URI BRI wet	1991-1993	H	•	Efficient Monacontrol Courses Tenatement Direct	21.10	16.57	16.96	15.29		0.53	0.43	0.36		30.00	31.00	21.30
-	WSTP	URI	1988-1989	H	•	EIIIIIEIII, WOOIISOO	3.96	3.70	2.75	17.73	2.60	0.32	0.93	3.11	5.32	7.76	4.86	29.60
4	RIPDES	RIDEM	1997-2001		•			20.04				0.50				30.	10	
7	ά,	URI BRI dıy	1991	•			0.71			_	0.04				1.54	Ì		
2	2	URI BRI wet	1991-1993	•		Manville Hill Rd., Cumberland, RI	1.67	1.21	1.26	1.14		0.04	0.50	0.28		3.20	3.50	2.13
6	Manville	nses	1990-1999	•			0.47		0.39		0.05		0.01		1.20		0.84	
15	6	URI BRI dry	1991	•		School St./Albion Rd., Cumberland, RI	0.58			1	0.20				1.03	ì	Å	
g	Blons	UR! BRI wet River Rescue	1991-1993	• •	-			0.43			-	000		+		1.46	9	
ļ		URI BRI dry	1991	•	-	i -	0.31				0.01				0.55			
<u>ნ</u>	25	URI BRI wet	1991-1993	•		Lonsdale Ave., Lonsdale, RI	0.34	0.48	0.58	0.50		0.31	0.32	0.21		0.58	0.92	0.74
10	S-2	NBC	1997-2000	•	_	-		<u> </u>										
-	BRCF	URI	1988-1989	•	L	Blackstone River above Central Falls, Pawtucket	0.17	0.15	0.09	0.17	0.17	90.0	0.01	0.12	0.17	0.21	0.19	0.22
-	BRSM	URI	1988-1989	•	_		0.20	0.32	0.30	0.18	0.15	0.01	0.01	90.0	0.28	1.44	0.94	0.23
2	BRSMDN	URI	1990	•														
10	S-3	NBC	1997-2000	•		-Slaters Mill												
Ť	2	URI BRI dry	1991	•	_		0.30		,		0.04		***************************************		0.64	***************************************		
?	i	URI BRI wet	1991-1993	•	_		0.39	0.49	0.38	0.36		0.33	0.10	0.08		0.54	0.58	0.43
ß	TMDL	RIDEM	1995-1996	•			0.16		0.15		0.01	- 1	90.0		0.75		0.29	
9	B1	River Rescue	1990-1995	•	_	Main Street, Pawtucket, RI		0.33				0.00				1.30	0	

	Acute	Chr	Chronic Criteria	eria
	Criteria	Ten	Temperature (C)	<u></u>
Н	l/gm)	10.0	15.0	20.0
6.5	48.8	8.9	6.5	4.7
7.0	36.1	7.9	5.7	4.2
7.5	19.9	5.8	4.2	3.1
Ammoni	Ammonia criteria for acute and	or acute an	PL	
chronic is	chronic is based on criteria with	criteria w	£	
early life	early life stages absent.	sent.		
² Chronic	² Chronic ammonia criteria is	criteria is		
temperati	temperature and pH dependent.	depende	nt.	

Figure 4-73

Phosphate (mg/l P) - Data Summary (all studies in Rhode Island Section of Blackstone River)

	18th After Mrot2					0.31		0.50							0.26		4.81	17.27			0.36							0.41	1.61	1.52			0.48		
m Flow	A4b After M1018			0.01		0:30		0.49	· · · · · · · · · · · · · · · · · · ·			•			0.23		5.27	17.56		À	0.56	0.32		0		0.44	,	0.47	1.86	0.39			0.42	0.39	က္
Maximum Flow	mıo\$& gninu					0.36	0.31	0.52				÷			0.30		6.14	14.93			0.46			0.40		0.40		0.37	1.46	0.31			0.41		0.53
	Dry Weather	0.46		0.12	0.14			0.56	0.38	0.08	8	90.0		0.20				10.76		0.36	5	0.33			0.34			0.35	1.35	0.30		0.28		0.31	
	48h After Storm					0.14		0.10							0.09		2.28	7.51			0:30					0.23		0.13	0.15	0.61			0.23		
n Flow	24h After Storm			0.01		0.18	0	0.07	-		ļ				0.06		2.45	8.21			0.23	0.02		0		0.21		0.04	0.17	0.05			0.13	0.05	1
Minimum	mnot& gninuQ					0.14	0.00	0.10							0.06		2.91	10.48			0.26			0.00		0.19		0.10	0.11	0.05			0.10		0.01
	Dry Weather	0.01		0.01	0.01			0.09	0.01	0.01	3	0.01		0.01				10.36	,	0.01	L	0.75			0.01			0.17	0.25	0.05		0.01		0.05	
	1911 After m1012					0.25		0.30							0.18		4.55	12.33		İ	0.32	Ì		-		0.48		0.27	0.67	0.18			0.30		-
Flow	24h After Storm			0.01		0.26		0.25							0.15		4.32	12.38			0.40	0.01				0.31		0.21	0.76	0.22			0.26	1.58	6
Mean	m1o32 gni1uQ		}			0.25	0.0	0.31)			•			0.16		4.81	12.59			0.37			0.08		0.28		0.26	0.61	0.20			0.25		0.00
	Dry Weather	0.16		0.02	0.04	0.28		0.33	0.14	0 03	3	0.02		0.09	0.17		5.26	10.56		1.54	0.37	0.14			0.14	0.29		0.26	0.63	0.20		0.11	0.31	0.14	:
Station Location	ммтғ/сsо		Koute 122, Millville, MA	Branch River, 400ft downst. of Mill dam in Forestdale		DIBLICH KIVET, KOULE 146A, SIBLETSVIILE, MA	Main Street, Blackstone, MA	Blackstone River at MA/RI state line	Bridge St. (State Boundary), Blackstone, MA		Mill River, Winter St., Woonsocket, RI	TO FEIT TO THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER	reters Miver, Route 114, Woorlsocker, Mi	Hamlet Ave. (Rts. 122 and 126) Woonsocket RI	- :		Effluent Woonsocket Saware Treatment Plant				Manville Hill Rd., Cumberland, Ri 		School St./Albion Rd., Cumberland, RI			Collocale Ave., Collocale, N.		Blackstone River above Central Falls, Pawtucket			Clatere Mill	Oddelo IVIII			Main Street, Pawtucket, RI
	Tributary	⊢		•	•	•				•	•	•	•								1														
<u> </u>	Blackstone R.	•	<u>ა</u>	<u>_</u>	_	ည	5	• ஓ	-	<u>စ</u>	က		က္	•	• ღ		က္	စ္	-	•	<u>σ</u> (• •	<u>و</u>	ي وي	•	စ္	9	• 0	• 6	•	9	•	• က	9	2
uc	Year(s) of data collectio	1991	1991-1993	1990-1999	1991	1991-1993	1990-1995	1988-1989	1991	1991-1993	1991-1993	1991	1991-1993	1991	1991-1993	1991	1991-1993	1988-1989	1997-2001	1991	1991-1993	1990-1999	1991-1993	1990-1995	1991	1991-1993	1997-2000	1988-1989	1988-1989	1990	1997-2000	1991	1991-1993	1995-1996	1990-1995
	Study Author	URI BRI dry	URI BRI wet	nses	URI BRI dry	URI BRI wet	River Rescue	URI	URI BRI dry	UKI BRI wet	URI BRI wet	URI BRI dry	URI BRI wet	URI BRI dry	URI BRI wet	URI BRI dry	URI BRI wet	URI	RIDEM	URI BRI dry	URI BRI wet	USGS URIBRIDA	URI BRI wet	River Rescue	URI BRI dry	URI BRI wet	NBC	URI	URI	URI	NBC	URI BRI dry	URI BRI wet	RIDEM	River Rescue
	Station No.	;	7	Forestdale	7	<u>+</u>	B2		13		5	9	2	17	=	24	-	WSTP	RIPDES	18		Manville	9	Blons	ç	2	S-2	BRCF	BRSM	BRSMDN	S-3	24	7	_	B1
-	Data XibnəqqA	Ų	0	6	'n	2	ဖ	-	15		5	7.0	2	ī.	2	7.	2	-	44	5		ກ	ن	9	ń	2	10	-	-	2	10	7,	2	2	9

Figure 4-74
Nitrate and Nitrite Concentration
USGS Station at Forestdale, Branch River

Figure 4-75
Nitrate and Nitrite Concentration
USGS Station at Manville, Blackstone River

Figure 4-76

Total Ammonia Concentration

USGS Station at Forestdale, Branch River

Figure 4-77

Total Ammonia Concentration

USGS Station at Manville, Blackstone River

Figure 4-78

Ammonia and Total Organic Nitrogen Concentration
USGS Station at Forestdale, Branch River

Figure 4-79

Ammonia and Total Organic Nitrogen Concentration
USGS Station at Manville, Blackstone River

Figure 4-80

Orthophosphate Concentration

USGS Station at Forestdale, Branch River

Figure 4-81

Orthophosphate Concentration

USGS Station at Manville, Blackstone River

Figure 4-82

Total Phosphorus Concentration

USGS Station at Forestdale, Branch River

Figure 4-83

Total Phosphorus Concentration

USGS Station at Manville, Blackstone River

Figure 4-84

Dissolved Oxygen Concentration

USGS Station at Forestdale, Branch River

Figure 4-85

Dissolved Oxygen Concentration

USGS Station at Manville, Blackstone River

Figure 4-86
Nitrate+Nitrite Concentration
(Kerr and Lee, 1996)

Figure 4-87

Dissolved Ammonia Concentration
(Kerr and Lee 1996)

Figure 4-88

Total Dissolved Nitrogen Concentration
(Kerr and Lee, 1996)

Figure 4-89

Phosphate (Dissolved Inorganic Phosphorus) Concentration
(Kerr and Lee, 1996)

Figure 4-90 **Total Phosphorus Concentration**(Kerr and Lee, 1996)

Figure 4-91 **Dissolved Oxygen Concentration**(Kerr and Lee, 1996)

Figure 4-92 **Water Temperature** (Kerr and Lee, 1996)

Figure 4-93

Dry Weather Sampling: Nitrate Concentration (mg/l N)

	tone				Total Le	ad Concen	trations	
Station No.	Blacksto R.	Tributary	Location	Run #1	Run #2	Run #3	Run #4	MEAN
BLK01				0.65	0.51	1.00	0.45	0,65
BLK02	•			2.89	2.57	4.55	2.02	3.01
BLK03	•			4.03	3.64	4.16	3.89	3.93
BLK04	•			4.43	4.20	4.42	4.47	4.38
BLK05	1	•	Quinsigamond R.	0.13	0.08	0.20	4.06	1.12
BLK06	•			2.78	2.64	4.42	0.07	2.48
BLK07	•			2 74	2 85	3 63	3.68	3 23

Station No.	Blacks R.	Tributa	Location	Run #1	Run #2	Run #3	Run #4	MEAN
BLK01	•			0.65	0.51	1.00	0.45	0,65
BLK02	•			2.89	2.57	4.55	2.02	0.65 3.01 3.93 4.38 1.12 2.48 3.23 2.64 0.91 0.10
BLK03	•			4.03	3.64	4.16	3.89	3.93
BLK04	•			4.43	4.20	4.42	4.47	4.38
BLK05		•	Quinsigamond R.	0.13	0.08	0.20	4.06	1.12
BLK06	•			2.78	2.64	4.42	0.07	2.48
BLK07	•			2.74	2.85	3.63	3.68	3.23
BLK08	•			2.37	2.29	2.79	3.10	2.64
BLK09 BLK10	<u> </u>	•	Mumford River	0.15	0.14	0.15	3.18	0.91
		•	West River	0.12	0.03	0.10	0.17	0.10
BLK11	•			1.70	1.52	2.67	1.74	1.91
BLK12	•			1.77	1.39	1.92	1.65	1.68
BLK13	•			1.57	1.50	1.73	1.46	1.57
BLK14		•	Branch River	0.24	0.23	0.01	0.27 0.39	0.19
BLK15		•	Mill River	0.38	0.29	0.20	0.39	0.32
BLK16 BLK17		•	Peters River	0.76	0.77	NS	0.77	0.77
BLK17	•			1.28	1.20	0.39	1.46	1.57 0.19 0.32 0.77 1.08
BLK18	•			1.23	1.17	1.47	1.41	1.32
BLK19	•			1.40	1.37	1.57	1.62	1.49
BLK20 BLK21	•		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.64	1.71	1.74	1.98	1.49 1.77
BLK21	•		Slaters Mill	1.59	1.98	2.02	1.90	1.87

Statistics - all 3 Surveys							
Меап	Mini- mum	Maxi- mum					
0.86	0.16	2.19					
2.93	1.24	4.77					
3.25	1.01	5.21					
3.29	1.13	4.47					
0.42	0.03	4.06					
2.35	0.07	4.42					
2.62	0.80	4.24					
2.42	0.90	4.28					
0.61	0.09	3.18					
0.15	0.01	0.98					
1.46	0.64	2.67					
1.80	0.63	4.53					
1.35	0.68	2.38					
0.21	0.01	0.31					
0.33	0.16	0.89					
0.67	0.42	0.95					
0.91	0.39	1.46					
1.43	0.62	4.65					
1.29	0.25	1.97					
1.37	0.15	2.29					
1.53	0.54	2.41					

August	1001	Cumon

BLK01	•		0.16	1.45	0.71	0.66	0.75
BLK02	•		2.70	3.81	4.18	4.77	3.86
BLK03	•		4.28	3.63	3.57	5.21	4.18
BLK04	•		4.09	4.21	3.35	4.20	3.96
BLK05	<u> </u>	 Quinsigamond R. 	0.03	0.14	0.13	0.12	0.10
BLK06	•		3.42	2.89	4.05	3.37	3.43
BLK07	•		4.20	2.54	4.24	2.86	3.46
BLK08	•		2.85	4.28	3.80	2.86	3.45
BLK09		 Mumford River 	2.46	0.14	0.64	0.09	0.83
BLK10	<u> </u>	West River	0.98	0.19	0.01	0.09	0.32
BLK11	•		1.41	1.45	2.00	1.20	1.51
BLK12	•		4.53	1.60	2.38	1.33	2.46
BLK13	•		0.97	0.82	2.38	0.95	1.28
BLK14		 Branch River 	0.25	0.28	0.22	0.31	0.27
BLK15		Mill River	0.25	0.25	0.17	0.89	0.39
BLK16		Peters River	0.56	0.65	0.68	0.95	0.71
BLK17	•		0.79	0.82	0.82	1.14	0.89
BLK18	•		1.43	1.17	4.65	1.52	2.19
BLK19	•		1.76	1.51	1.57	1.97	1.70
BLK20	•		2.03	1.74	1.98	2.29	2.01
BLK21	•	Slaters Mill	1.67	1.626	1.717	2.413	1.86

October	1991	Survey

		ui ve						
BLK01	•			1.55	0.24	2.19	0.736	1.18
BLK02	•			1.24	1.88	2.617	1.985	1.93
BLK03	•			1.27	1.012	2.049	2.212	1.64
BLK04	•			1.13	1.301	1.481	2.212	1.53
BLK05		•	Quinsigamond R.	0.06	0.067	0.055	0.034	0.05
BLK06	•			1.32	0.954	0.974	1.327	1.14
BLK07	•			0.80	1.418	1.229	1.191	1.16
BLK08	•	l		1.23	0.897	1.397	1.191	1.18
BLK09		•	Mumford River	0.09	0.096	0.098	0.102	0.10
BLK10		•	West River	0.01	0.029	0.041	0.034	0.03
BLK11	•			1.08	0.636	0.804	1.259	0.94
BLK12	•			2.12	0.665	0.634	1.599	1.25
BLK13	•			2.07	0.773	0.676	1.259	1.20
BLK14	I	•	Branch River	0.24	0.164	0.154	0.202	0.19
BLK15		•	Mill River	0.44	0.164	0.183	0.279	0.27
BLK16		•	Peters River	0.69	0.434	0.424	0.539	0.52
BLK17	•			1.31	0.559	0.564	0.61	0.76
BLK18	•			0.62	1.022	0.706	0.766	0.78
BLK19	•			1.08	0.25	0.536	0.817	0.67
BLK20	•			0.39	0.154	0.507	0.299	0.34
BLK21	•		Slaters Mill	1.38	0.791	0.536	0.714	0.86

Detection limit is 0.02 mg/L; All values below the detection limit are considered as 0.01 mg/L

Figure 4-94

Blackstone River Initiative (Wright et al., 2001)

Dry Weather Sampling: Ammonia Concentration (mg/l N)

	ne			Total Lead Concentrations				
Station No.	Blackstone R.	Tributary	Location	Run #1	Run #2	Run #3	Run #4	MEAN
BLK01	•			0.14	0.17	0.24	0.24	0.20
BLK02	•			0.48	0.26	0.24	0.45	0.36
BLK03	•			0.29	0.21	0.11	0.18	0.20
BLK04	•			0.38	0.29	0.28	0.33	0.32
BLK05		•	Quinsigamond R.	0.07	0.07	0.01	0.08	0.06
BLK06	•			0.12	0.13	0.12	0.16	0.13
BLK07	•			0.22	0.16	0.05	0.08	0.12
BLK08	•			0.12	0.05	0.14	0.11	0.11
BLK09		•	Mumford River	0.09	0.04	0.01	0.06	0.05
BLK10		•	West River	0.04	0.04	0.04	0.07	0.05
BĽK11	•			0.06	0.06	0.10	0.02	0.06
BLK12	•			0.04	0.05	0.05	0.06	0.05
BLK13	•			0.05	0.06	0.05	0.09	0.06
BLK14	1	•	Branch River	0.09	0.12	0.08	0.09	0.09
BLK15		•	Mill River	0.06	0.04	0.05	0.05	0.05
BLK16	1	•	Peters River	0.22	0.26	0.25	0.33	0.27
BLK17	•	l'''''		0.06	0.05	0.05	0.09	0.06
BLK18	•			1.03	1.54	1.01	1.07	1.16
BLK19	•	l'''''		1.03	0.60	0.77	0.99	0.85
BLK20	•			0.55	0.50	0.43	0.45	0.48
BLK21	•		Slaters Mill	0.33	0.31	0.36	0.25	0.31

Statist	ics - all 3 S	urveys
Mean	Mini- mum	Maxi- mum
0.28	0.01	1.37
0.45	0.01	1,61
0.36	0.01	1.66
0.44	0.01	1.72
0.10	0.01	0.49
0.33	0.01	1.21
0.27		0.93
0.19	0.01	0.78
0.09	0.01	0.46
0.10		0.55
0.15	0.02	0.41
0.14	0.04	0.37
0.14	0.01	0.38
0.14	0.01	0.62
0.12	0.03	0.39
0.18	0.04	0.33
0.14	0.01	0.77
0.71	0.04	1.54
0.58	0.20	1.03
0.31	0.01	0.55
0.30	0.04	0.64

August 1	991 Sur	vey					
BLK01	•		1.37	0.65	0.01	0.01	0.51
BLK02	•		1.61	0.73	0.01	0.01	0.59
BLK03	•		1.66	0.75	0.03	0.01	0.61
BLK04	•		1.72	1.13	0.02	0.01	0.72
BLK05		 Quinsigamond R. 	0.49	0.32	0.09	0.01	0.23
BLK06	•		1.21	0.58	0.69	0.01	0.62
BLK07	•		0.58	0.93	0.42	0.01	0.48
BLK08	•		0.13	0.78	0.32	0.01	0.31
BLK09		 Mumford River 	0.26	0.46	0.15	0.01	0.22
BLK10		 West River 	0.55	0.18	0.13	0.13	0.25
BLK11	•		0.09	0.41	0.40	0.26	0.29
BLK12	•		0.13	0.33	0.37	0.27	0.27
BLK13	•		0.08	0.38	0.34	0.26	0.27
BLK14		 Branch River 	0.22	0.62	0.25	0.01	0.28
BLK15		● Mill River	0.09	0.26	0.26	0.39	0.25
BLK16		 Peters River 	0.20	0.28	0.17	0.18	0.21
BLK17	•		0.01	0.22	0.10	0.14	0.12
BLK18	•		0.88	1.25	0.22	0.74	0.77
BLK19	•		0.67	0.43	0.75	0.83	0.67
BLK20	•		0.49	0.34	0.04	0.43	0.32
BLK21	•	Slaters Mill	0.50	0.44	0.64	0.04	0.40

October 1991 Survey										
BLK01	•		0.15	0.11	0.15	0.17	0.14			
BLK02	•		0.19	0.07	0.75	0.54	0.39			
BLK03	•		0.16	0.14	0.24	0.56	0.28			
BLK04	•		0.18	0.20	0.32	0.46	0.29			
BLK05	ļ	 Quinsigamond R. 	0.01	0.01	0.01	0.01	0.01			
BLK06	•		0.21	0.13	0.40	0.16	0.23			
BLK07	•		0.14	0.23	0.20	0.24	0.20			
BLK08	•		0.07	0.15	0.21	0.18	0.15			
BLK09	<u> </u>	 ■ Mumford River 	0.01	0.01	0.01	0.03	0.01			
BLK10	<u> </u>	■ West River	0.01	0.01	0.01	0.01	0.01			
BLK11	•		0.07	0.09	0.10	0.09	0.09			
BLK12	•		0.08	0.12	0.09	0.12	0.10			
BLK13	•		0.08	0.10	0.19	0.01	0.09			
BLK14		Branch River	0.02	0.04	0.07	0.01	0.04			
BLK15	<u> </u>	● Mill River	0.06	0.03	0.11	0.08	0.07			
BLK16	<u> </u>	 Peters River 	0.06	0.06	0.05	0.04	0.06			
BLK17	•		0.01	0.77	0.10	0.05	0.23			
BLK18	•		0.04	0.16	0.33	0.22	0.19			
BLK19	•		0.21	0.20	0.23	0.21	0.21			
BLK20	•		0.17	0.01	0.21	0.17	0.14			
BLK21	•	Slaters Mill	0.14	0.20	0.25	0.15	0.19			

Detection limit is 0.02 mg/L; All values below the detection limit are considered as 0.01 mg/L

Figure 4-95

Blackstone River Initiative (Wright et al., 2001)

Dry Weather Sampling: Phosphate Concentration (mg/l P)

July 1991 Survey

	_			Total Lead Concentrations				
Station No.	Blackston e R.	Tributary	Location	Run #1	Run #2	Run #3	Run #4	MEAN
BLK01	•	L	·	0.023	0.010	0.010	0.010	0.013
BLK02	•	[0.893	0.996	1.149	0.110	0.787
BLK03	•	Ī		0.893	0.855	1.067	0.931	0.937
BLK04	•	I		0.711	0.760	0.849	0.931	0.813
BLK05		•	Quinsigamond R.	0.082	0.034	0.083	0.876	0.269
BLK06	•	Ī		0.637	0.432	0.466	0.055	0.269 0.398
BLK07	•	İ		0.674	0.571	0.521	0.493	0.565
BLK08	•	İ		0.527	0.477	0.411	0.439	0.464
BLK09		•	Mumford River	0.126	0.015	0.066	0.411	0.155
BLK10		•	West River	0.148	0.019	0.010	0.010	0.047
BLK11	•	İ		0.381	0.241	0.193	0.104	0.230
BLK12	•	İ		0.462	0.241	0.165	0.095	0.241
BLK13	•			0.308	0.383	0.220	0.120	0.258
BLK14		•	Branch River	0.010	0.050	0.138	0.010	0.052
BLK15		•	Mill River	0.020	0.050	0.083	0,010	0.052 0.041
BLK16		•	Peters River	0.025	0.050	NS	0.010	0.021
BLK17	•	·····		0.132	0.201	0.050	0.059	0.111
BLK18	•			0.164	0.286	0.165	0.128	0.186
BLK19	•		·····	0.188	0.258	0.193	0.065	0.176
BLK19 BLK20	•	·····		0.122	0.229	0.176	0.072	0.150
BLK21	•		Slaters Mill	0.102	0.201	0.165	0.010	0.120

Statist	Statistics - all 3 Surveys							
Mean	Mean Mini- mum							
0.050	0.010	0.195						
0.801	0.110	1.343						
0.826	0.342	1.456						
0.735	0.415	1.400						
0.103	0.010	0.876						
0.428	0.055	0.895						
0.346	0.077	0.674						
0.260	0.010	0.527						
0.070	0.010	0.411						
0.030	0.010	0.148						
0.147	0.010	0.381						
0.159	0.010	0.462						
0.139	0.010	0.383						
0.036	0.010	0.138						
0.029	0.010	0.083						
0.023	0.010	0.062						
0.088	0.010	0.201						
0.154	0.010	0.361						
0.142	0.010	0.330						
0.140	0.010	0.340						
0.114	0.010	0.280						

۸.			40	04	٠.	rvev
Δ	uai	IST	19	47	- 51	INON

Auguot	.00 . 00	at vey					
BLK01	•		0.051	0.010	0.010	0.010	0.020
BLK02	•		1.195	0.827	1.020	1.343	1.096
BLK03	•		1.038	0.673	1.020	1.456	1.047
BLK04	•		0.809	0.827	0.829	1.400	0.966
BLK05		 Quinsigamond R. 	0.010	0.010	0.010	0.063	0.023
BLK06	•		0.650	0.313	0.656	0.895	0.629
BLK07	•		0.315	0.077	0.144	0.586	0.281
BLK08	•		0.010	0.036	0.010	0.417	0.118
BLK09		 Mumford River 	0.010	0.010	0.010	0.041	0.018
BLK10		 West River 	0.079	0.010	0.010	0.024	0.031
BLK11	•		0.010	0.010	0.010	0.193	0.056
BLK12	•		0.087	0.010	0.010	0.165	0.068
BLK13	•		0.010	0.010	0.010	0.120	0.038
BLK14		 Branch River 	0.063	0.010	0.072	0.024	0.042
BLK15		 Mill River 	0.010	0.010	0.083	0.024	0.032
BLK16		 Peters River 	0.010	0.010	0.062	0.024	0.027
BLK17	•		0.010	0.010	0.109	0.176	0.076
BLK18	•		0.161	0.010	0.179	0.361	0.178
BLK19	•		0.130	0.010	0.169	0.330	0.160
BLK20	•		0.099	0.010	0.340	0.249	0.175
BLK21	•	Slaters Mill	0.087	0.010	0.280	0.193	0.143

October 1991 Survey

		our vey					
BLK01	•		0.048	0.157	0.195	0.068	0.117
BLK02	•		0.342	0.619	0.502	0.619	0.521
BLK03	•		0.342	0.526	0.489	0.619	0.494
BLK04	•		0.415	0.444	0.416	0.434	0.427
BLK05		 Quinsigamond R. 	0.010	0.022	0.024	0.010	0.017
BLK06	•		0.205	0.260	0.249	0.316	0.258
BLK07	•		0.161	0.200	0.205	0.205	0.193
BLK08	•		0.161	0.225	0.205	0.205	0.199
BLK09		 Mumford River 	0.010	0.022	0.010	0.103	0.036
BLK10		 West River 	0.010	0.022	0.010	0.010	0.013
BLK11	•		0.205	0.150	0.117	0.150	0.156
BLK12	•		0.249	0.150	0.117	0.150	0.167
BLK13	•		0.161	0.150	0.017	0.150	0.120
BLK14		 Branch River 	0.010	0.031	0.010	0.010	0.015
BLK15		● Mill River	0.010	0.031	0.010	0.010	0.015
BLK16		 Peters River 	0.010	0.031	0.010	0.032	0.021
BLK17	•		0.048	0.137	0.049	0.068	0.076
BLK18	•		0.048	0.138	0.137	0.068	0.098
BLK19	•		0.078	0.138	0.107	0.032	0.089
BLK20	•		0.078	0.155	0.078	0.068	0.095
BLK21	•	Slaters Mill	0.078	0.090	0.078	0.068	0.079

Detection limit is 0.02 mg/L; All values below the detection limit are considered as 0.01 mg/L

Figure 4-96

Wet Weather Data - Storm I: Nitrate+Nitrite (mg/l N)

N. C					Mean Concentration						Ainimun	n Conc	entratio	n	Maximum Concentration					
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	
00	•				0.58	0.36	0.20	0.16			0.28	0.15	0.16			0.41	0.29	0.16		
22	·	ļ	•	CSO facility in Worchester												<u>0.77</u>	0.20	0.70	***************************************	
01	•	1			0.50	0.48	0.45	0.37			0.36	0.40	0.35		,,,,,,,,,,	0.61	0.53	0.39		
23			•	UBWPAD, Worchester	4.75	4.16	4.18	4.30			2.87	3.37	4.18			5.09	5.64	4.42		
02	•				1.54	0.98	1.36	1.16	.,		0.68	0.97	0.97	***************************************]	1.47	1.94	1.34		
03	•											***************************************	***************************************					***************************************		
04	•				1.75	2.02	2.21	2.55			1.62	1.87	1.70			2.63	2.86	3.40		
05		•		Quinsigamond River	0.22	0.18	0.15	0.13			0.12	0.11				0.25	0.18	***************************************		
06				***************************************	3.36	3.44	3.45	2.23			3.34	3.05	1.64			3.58	3.75	2.81	************	
07		ļ			2.29	2.88	3.59	2.46			2.71	3.16	2.22			3.05	3.96	2.69	***************************************	
08	•				2.62	2.27	2.79	2.43			2.08	2.62	2.17			2.42	3.02	2.69		
09		•		Mumford River	0.16	0.15	0.46	0.57			0.14	0.10	0.48			0.18	0.86	0.65		
10	<u> </u>	•		West River	0.02	0.02	0.05				0.02					0.02		***************************************		
11	•	ļ		***************************************	2.32	1.94	1.62	1.60			1.85	1.22				2.04	1.77	***************************************		
12	•																		***************************************	
13	•				1.79	1.54	1.18	0.91			1.40	1.07	0.71			1.63	1.32	1.10		
14		•		Branch River	0.45	0.42	0.35	0.33			0.38	0.33	0.32			0.46	0.36	0.33		
15		•		Mill River	0.47	0.43	0.42	0.38		Ĺ	0.41	0.41	0.34			0.46	0.43	0.41		
16	ļ	•		Peters River	0.43	0.74	0.57	0.51			0.62	0.51	0.51			0.88	0.64	0.51		
17					1.57	1.43	1.29	1.39			1.36	1.18	1.34			1.54	1.44	1.44		
24		ļ	•	Woonsocket WWTF	0.64	0.51	0.44	0.65			0.10	0.32	0.42			1.01	0.63	0.88		
18	•				1.38	1.38	1.33	1.26			1.36	1.20	1.20			1.41	1.46	1.31		
19	•				<u> </u>					<u> </u>										
20	•				1.80	1.87	1.99	2.23		<u> </u>	1.83	1.85	2.10			1.90	2.10	2.36		
21	•				1.60	1.49	1.70	2.21		<u> </u>	1.42	1.47	2.13			1.57	1.88	2.28		
25	<u></u>		•	Bucklin Point (Seekonk R.)	2.40	0.51	1.50	1.56		<u></u>	0.04	0.03	0.86			1.33	3.44	2.26		

Figure 4-97

Wet Weather Data - Storm I: Ammonia (mg/l N)

	Α.					Mean Concentration Minimum Concentration									Maximum Concentration					
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	
00	•				0.05	0.20	0.09	0.20			0.08	0.05	0.05			0.31	0.12	0.35		
22			•	CSO facility in Worchester								******************************	***************							
01	•				0.11	0.29	0.15	0.27			0.20	0.04	0.08			0.42	0.27	0.45	1	
23			•	UBWPAD, Worchester	1.34	3.97	1.64	1.16			3.46	1.14	0.46			4.32	2.10	1.86	1	
02	•				1.82	2.32	0.77	1.22			1.73	0.52				2.95	1.20			
03	•																			
04	•				0.81	1.26	1.08	0.10			0.97	0.20	0.10			1.66	1.61	0.10		
05		•		Quinsigamond River																
06	•				0.36	0.44	0.77	0.24		{	0.37	0.46	0.22			0.50	1.01	0.26		
07	•				0.51	1.19	0.94	0.33			1.08	0.28	0.08			1.35	1.79	0.58		
08	•				0.46	1.59	1.06	0.08			1.52	0.72	0,08			1.64	1.27	0.08		
09		•		Mumford River	0.06	0.06	0.07				0.05	0.06				0.06	0.07			
10		•		West River																
11	•				0.09	0.29	0.46	0.14			0.15	0.31	0.08			0.52	0.70	0.20		
12	•																			
13	•					0.04	0.10	0.10				0.02					0.24			
14		•		Branch River		0.24	0.08	0.05			0.12	0.06	0.05			0.36	0.09	0.05		
15		•		Mill River																
16		•		Peters River		0.26	0.06	0.07										ļ		
17	•						0.07	0.11			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.05	0.09				0.08	0.12		
24			•	Woonsocket WWTF	34.30	26.33	22.65		.,,,,,,,,,,		23.70	16.30	17.70			30.00	31.00	21.30		
18	•				4.20	2.40	2.34	2.05	····		1.60	1.76	1.97			3.20	3.50	2.13		
19	•							ļ										<u> </u>		
20	•				0.32	0.51	0.67	0.48			0.42	0.41	0.21			0.58	0.92	0.74		
21	•				0.42	0.48	0.32	0.26	.,		0.41	0.11	0.08			0.54	0.58	0.43		
25			•	Bucklin Point (Seekonk R.)	2.00	5.80	3.00	2.00			3.20	1.20	0.40			8.20	7.20	3.60	l	

Figure 4-98

Wet Weather Data - Storm I: Phosphate (mg/l P)

						Mean (Concen	tration		N	/linimun	n Conc	entratio	'n	N	laximur	n Conc	entratio	on
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				0.03	0.02	0.03	0.03			0.02	0.02	0.03			0.03	0.03	0.03	
22			•	CSO facility in Worchester			,								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************		•••••
01	•				0.02	0.04	0.02				0.02	0.02				0.06	0.02		*****************
23			•	UBWPAD, Worchester	1.97	2.03	1.47	0.61			1.97	1.40	0.54			2.09	1.54	0.68	
02	•	ļ			1.13	0.82	0.82	0.27			0.59	0.74	0.27			1.13	0.90	0.27	***************************************
03	•	ļ					*************												
04	•	ļ,			1.11	1.01	0.67	0.56			0.76	0.58	0.36			1.15	0.76	0.76	
05		•		Quinsigamond River	0.02		0.02												
06	•	ļ	,		0.77	0.91	0.71	0.57			0.89	0,59	0.55			0.94	0.94	0.59	
07	•	ļ <u>.</u>		***************************************	0.64	0.65	0.68	0.63			0.62	0.65	0.61			0.68	0.72	0.65	
80	•	ļ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.65	0.61	0.64	0.67			0.48	0.61	0.64			0.67	0.67	0.70	
09		•		Mumford River	0.02	0.02	0.02	0.02			0.02	0.02	0.02			0.02	0.02	0.02	
10	ļ	•	· •i	West River			0.02												
11	•	ļ			0.36	0.35	0.36	0.44			0.34	0.34	0.42			0.36	0.38	0.45	
12	•																		
13	•	ļ		,	0.33	0.27	0.29	0.28			0.25	0.28	0.25			0.28	0.30	0.31	
14	ļ	•		Branch River	0.03	0.02	0.02	0.02			0.02	0.02	0.02			0.03	0.02	0.02	
15	ļ	•		Mill River	0.02														
16	ļ	•		Peters River	0.03	0.03	0.02	0.02			0.02	0.02	0.02			0.04	0.02	0.02	
17	•	ļ			0.27	0.27	0.22	0.24			0.24	0.21	0.22			0.30	0.23	0.26	
24	ļ		•	Woonsocket WWTF	4.21	5.42	3.25	2.90			4.39	2.45	2.28			5.97	5.27	3.51	
18	•				0.48	0.38	0.46	0.33			0.36	0.36	0.30			0.41	0.56	0.36	
19	•	ļļ								ļ	,								
20	•	ļ			0.21	0.22	0.27	0.33			0.19	0.21	0.28		L	0.26	0.32	0.38	
21	•	ļļ			0.21	0.13	0.16	0.25			0.10	0.13	0.23			0.17	0.18	0.26	
25			•	Bucklin Point (Seekonk R.)	6.25	5.39	3.86	3.59		<u></u>	5.03	3.51	3.51			5.64	4.27	3.67	

Figure 4-99 Wet Weather Data - Storm I: Dissolved Oxygen (mg/l)

	œ					Mean (Concen	tration		r	Minimur	n Conc	entratio	n	,	/laximu:	n Солс	entratio	n
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				8.4	7.5	8.8	7.3			6.4	8.4	7.3			8.3	9.1	7.3	
22	ļ		•	CSO facility in Worchester	***************************************			. 41					***************************************	***************************************					
01	•				8.4	7.1	8.3	7.2			6.3	7.8	7.2			7.5	8.8	7.2	
23			•	UBWPAD, Worchester		6.7	7.8				6.4					6.9		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
02	•				7.7	7.1	7.8	8.0			6.8	7.5	8.0			7.3	8.3	8.0	
03	•																		
04	•				8.7	8.4	9.0	8.8			8.2	8.6	8.7			8.6	9.2	8.9	
05	ļ	•		Quinsigamond River	10.2	7.1	8.9	8.7			7.0	8.0	8.5			7.2	9.6	8.9	
06	•	ļ			8.3	7.8	8.5	8.6			7.7	8.4	8.5			7.8	8.7	8.7	
07	•	ļ,		,,,,,	8.6	8.9	9.1	8.3			8.4	7.8	8.1			9.2	9.9	8.4	
08	•	<u></u>			9.9	7.5	8.7	8.2			7.1	7.7	7.8			7.7	9.3	8.5	
09	<u> </u>	•		Mumford River	10.4	9.5	10.2	8.7			9.4	9.5	7.2		L	9.6	10.5	10.2	
10	<u> </u>	•	,	West River	9.6	8.9	9.4	8.2			8.9	8.9	7.0			8.9	10.0	9.4	
11	•	<u> </u>			10.4	8.6	9.3	7.9			8.5	8.7	6.5			8.7	9.7	9.2	
12	•																		
13	•	ļ			11.0	10.0	10.4	9.6			9.9	10.1	8.6			10.2	10.8	10.6	
14	ļ	•		Branch River	10.0	9.4	10.2	9.3		<u></u>	8.9	9.8	8.2			9.7	10.6	10.3	
15	ļ	•		Mill River	8.4	8.4	8.6	8.4			7.9	7.9	7.4			8.7	9.4	9.4	
16	ļ	•		Peters River	8.4	7.0	6.7	7.2			6.4	5.2	6.0			7.3	7.9	8.4	
17	•	<u> </u>			9.8	9.4	9.7	9.4			8.5	8.3	9.2			10.1	10.6	9.5	
24	ļ	ļ	•	Woonsocket WWTF							ļ					<u> </u>			
18	•	ļ		4	6.9	7.0	6.9	7.4			6,5	6.0	7.1			7.3	7.7	7.7	
19	•	ļ	ļ													<u> </u>			
20	•	ļ	ļ		9.1	6.5	8.0	7.6			6.1	5.9	6.8			6.7	9.9	8.4	
21	•		ļ		9.1	8.7	9.1	9.0			8.1	8.1	8.9			9.1	9.8	9.0	
25			•	Bucklin Point (Seekonk R.)	3.5	2.6	2.5	2.2		L	2.2	1.8	2.0		L	3.2	3.1	2.3	

Regulatory Standard: Instantaneous minimum dissolved oxygen concentration of at least 5 mg/l.

Figure 4-100
Wet Weather Data - Storm I: Flow Rate (cfs)

																		•	
	انما				T	Mear	1 Flow	Rate			Minim	um Flo	w Rate	,		Maxim	um Flo	w Rate	
Station No.	Blackstone R.	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				15	90	38	19			38	22	15			172	54	22	
22			•	CSO facility in Worchester															***************************************
01	•				17	97	41	20			41	24	17	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		185	58	24	***************************************
23			•	UBWPAD, Worchester								•				***************************************			***************************************
02	•				73	177	100	65			107	50	50			268	142	81	
03	•															[
04	•				79	173	126	60			93	80	53			245	163	66	
05		•	<u> </u>	Quinsigamond River	5	5	8	5			4	7	5			6	9	6	
06	•		<u> </u>		80	96	148	95			67	120	90			111	166	100	
07	•				107	98	110	122			95	103	120			101	123	123	
08	•				109	123	119	136			115	108	136			129	130	136	
09		•		Mumford River	12	14	12	10			12	12	9			15	14	11	
10		•		West River	8	9	9	9			8	9	9			9	9	9	
11	•				133	158	155	172			142	148	166			173	162	177	
12	•		L																}
13	•				169	211	202	214			188	192	210			232	209	218	
14		•		Branch River	33	49	43	38			42	41	36			55	46	40	
15	<u> </u>	•		Mill River	6	10	12	16			6	9	15			12	17	17	
16	<u> </u>	•		Peters River	2	9	7	4	***************************************		4	4	4			13	11	4	
17	•			***************************************	162	235	211	249			163	205	209			292	215	289	
24	<u> </u>		•	Woonsocket WWTF															
18	•				181	222	216	271			205	186	226			250	226	315	
19	•																		
20	•				210	240	247	262			226	215	253			253	265	271	
21	•				239	248	247	262			241	215	253			253	265	271	
25			•	Bucklin Point (Seekonk R.)															

Figure 4-101

Wet Weather Data - Storm II: Nitrate+Nitrite (mg/l N)

	œ					Mean (Concen	tration		n	/linimun	n Conce	entratio	n	N	laximur	n Conc	entratio	'n
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				0.14	0.17	0.06	0.11	0.09		0.02	0.02	0.09			0.36	0.08	0.12	
22			•	CSO facility in Worchester	1.56	1.34	•	***************************************			1.24	***************************************				1.43		***************************************	***************************************
01	•				0.41	0.28	0.17	0.30	0.31		0.16	0.11				0.41	0.22		*******
23			•	UBWPAD, Worchester	1.70	0.44	0.08	0.01	0.61		0.18	0.03	0.01			0.68	0.18	0.01	***************************************
02	•				0.80	0.29	0.26	0.28	0.22		0.19	0.17	0.17			0.42	0.38	0.39	***************************************
03	•											***************************************	444444				***************************************		
04	•	ļ			NA	0.47	0.40	0.37	0.49		0.07	0.31	0.31			1.21	0.62	0.42	***************************************
05		•		Quinsigamond River	0.11	0.10	0.03	0.02			0.05	0.02	0.02			0.12	0.05	0.02	***************************************
06	•				1.75	1.05	0.54	0.50	0.52		0.29	0.40	0.41			1.86	0.75	0.58	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
07	•				1.72	1.63	0.62	0.54			1.43	0.54		***************************************		1.77	0.66		
80	•				2.00	1.76	0.81	0.52			1.57	0.57				2.00	1.49		
09	<u>.</u>	•	<u> </u>	Mumford River	0.12	0.15	0.09	0.23			0.13	0.04	0.07			0.17	0.12	0.38	
10	<u> </u>	•		West River	0.10	0.11	0.02	0.06					0.03			0.39	0.04	0.08	
11	•				NA	1.57	0.96	1.17			0.95	0.70	0.67			2.22	1.40	1.67	
12	•																		
13	•				1.28	0.62	2.15	1.33			0.47	0.65	1.29			0.81	5.07	1.36	
14	<u> </u>	•		Branch River	0.37	0.37	0.32	0.33			0.31	0.28	0.32			0.42	0.38	0.33	
15	<u> </u>	•		Mill River	0.55	0.59	0.47	0.49			0.46	0.43	0.48			0.87	0.49	0.49	
16		•		Peters River	0.75	0.72	0.46	0.60			0.54	0.40	0.45			0.82	0.52	0.74	
17	•				2.13	1.47	1.41	1.97			1.37	1.17	1.34			1.58	1.86	2.60	
24]	<u> </u>	•	Woonsocket WWTF	0.21	0.19	0.11	0.01	NA		0.03	0.02	0.01			0.84	0.31	0.01	
18	•				2.74	1.60	1.29	1.31			1.48	1.12	1.15			1.72	1.51	1.47	
19	•																		
20	•	ļ			1.80	1.58	1.33	1.35			1.40	0.82	1.33			1.77	1.70	1.36	
21	•	<u> </u>			1.91	1.69	1.63	1.69			1.52	1.45	1.62			1.83	1.83	1.75	
25			•	Bucklin Point (Seekonk R.)	3.69	1.45	0.58				1.20	0.22				1.88	1.48		

Figure 4-102
Wet Weather Data - Storm II: Ammonia (mg/l N)

	αż					Mean (Concer	ntration		N	linimur	n Conc	entratio	on	M	laximu	n Conc	entratio	on
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				0.03	0.10	0.04	0.03	0.07		0.03	0.01	0.01			0.20	0.06	0.04	
22			•	CSO facility in Worchester	3.20	0.82					0.35	***************************************				1.28	***************************************		••••
01	•				0.18	0.20	0.14	0.20	0.23		0.07	0.09	0.18			0.35	0.22	0.22	***************************************
23		<u> </u>	•	UBWPAD, Worchester	13.10	13.95	11.77	15.45	12.50		7.38	8.10	13.30			20.60	12.80	17.60	
02	•	ļ			5.32	4.48	3.17	4.80	5.51		2.55	1.73	4.08			7.09	4.42	5.52	***************************************
03	•	ļ																	
04	•	ļ		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.46	4.41	2.21	2.83	2.77		2.27	1.40	1.34			6.65	2.85	4.32	
05		•	,	Quinsigamond River															
06	•	ļ		***************************************	4.25	4.41	2.21	2.66	1.40		3.02	1.63	2.52			6.17	3.00	2.80	
07	•	ļ			2.57	3.21	2.73	1.26	1.16		2.65	1.55	1.25			4.40	4.56	1.26	
08	•	ļ		***************************************	1.65	2.53	2.73	2.16	1.05		2.12	1.97	2.11			3.48	3.31	2.20	
09	ļ	•		Mumford River	0.01	0.05	0.06	0.02	0.01			0.05	0.02				0.06	0.02	
10		•		West River	NA	0.10													
11	•				0.61	0.78	1.51	1.13	0.72		0.63	0.88	1.07			1.15	2.10	1.19	
12	•																		
13	•	ļ,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.12	0.25	0.98	1.60	0.56		0.13	0.38	1.53			0.49	1.97	1.66	
14	<u> </u>	•		Branch River	0.08	0.09	0.09	0.09	0.15		0.06	0.03	0.05			0.14	0.17	0.13	
15		•		Mill River	0.31	0.36	0.35	0.34	0.26		0.32	0.26	0.33			0.45	0.39	0.35	
16		•		Peters River	0.28	0.21	0.21	0.12	0.34		0.01	0.05	0.03			0.54	0.51	0.21	
17	•				0.12	0.11	0.35	1.20	0.74		0.08	0.16				0.18	0.68		
24	<u> </u>	<u> </u>	•	Woonsocket WWTF	29.00	22.85	27.87	26.10	29.80		18.40	24.80	25,80			32.70	33.60	26.40	
18	•	<u> </u>			0.80	1.20	1.15	1.13	2.06		0.42	0.75	0.74			1.87	1.62	1.52	
19	•	<u> </u>																	
20	•				0.54	0.67	0.76	0.81	1.48		0.47	0.32	0.68			0.80	1.15	0.93	
21	•	<u> </u>			0.73	0.79	0.76	0.72	1.33		0.33	0.50	0.67			1.07	1.18	0.76	
25			•	Bucklin Point (Seekonk R.)	14.10	14.90	11.66	16.15	19.30		9.78	6.45	15.60			25.90	19.60	16.70	

Figure 4-103

Wet Weather Data - Storm II: Phosphate (mg/l P)

	3 .					Mean (Concen	tration		,	/linimun	n Conc	entratio	n	N	faximu	m Conc	entratio	on
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				0.02	0.06	0.02	0.01			0.01	0.01				0.16	0.05		
22	1		•	CSO facility in Worchester	0.09	0.27	***************************************			***************************************	0.23	 			l	0.31			
01	•				0.01	0.04	0.02	0.01	0.01		0.01	0.01			l	0.10	0.03		
23			•	UBWPAD, Worchester	1.15	1.41	1.26	1.26	0.24		1.30	0.84	1.22	***************************************		1.53	1.61	1.30	***************************************
02	•				0.83	0.54	0.31	0.16	0.05		0.35	0.21	0.02	***************************************	l	0.71	0.43	0.30	
03	•														l			[İ
04	•				0.90	0.59	0.41	0.25	0.16		0.42	0.27	0.23			0.79	0.58	0.27	Ī
05		•		Quinsigamond River													,,,,	 	Ī
06	•				0.71	0.58	0.30	0.24	0.18		0.40	0.21	0.24			0.77	0.36	0.24	
07	•				0.69	0.64	0.31	0.29			0.52	0.25	0.25			0.69	0.39	0.32	·
08	•				0.63	0.60	0.40	0.33			0.55	0.34	0.30		l	0.65	0.58	0.35	
09		•		Mumford River		0.01									l'''''	0.01		[
10		•		West River	0.01	0.01		0.04											Ī
11	•			***************************************	0.31	0.27	0.29	0.20	NA		0.25	0.23	0.19			0.30	0.39	0.21	
12	•																		
13	•				0.16	0.17	0.21	0.17			0.14	0.18	0.14			0.18	0.25	0.20	
14		•		Branch River															
15	ļ	•		Mill River		0.03	0.01	0.01	->>							0.08	0.01		
16	ļ	•		Peters River	0.03	0.05	0.01	0.01		<u> </u>	0.03	0.01	0.01			0.09	0.03	0.01	
17	•				0.19	0.17	0.18	0.23			0.16	0.16	0.21			0.18	0.24	0.25	
24	 		•	Woonsocket WWTF	4.70	3.57	4.70	6.08			2.91	3.21	5.96		l	4.18	7.16	6.19	
18	•				0.18	0.31	0.27	0.32			0.26	0.23	0.31			0.36	0.31	0.33	
19	•																		********
20	•				0.23	0.22	0.28	0.25			0.19	0.25	0.23			0.23	0.32	0.27	
21	•				0.32	0.21	0.22	0.25			0.18	0.17	0.24			0.25	0.26	0.25	
25			•	Bucklin Point (Seekonk R.)	3.76	4.07	2.75	3.90			2.03	2.36	3.63			5.23	3.10	4.16	

Figure 4-104 Wet Weather Data - Storm II: Dissolved Oxygen (mg/l)

	2					Mean	Concen	tration	ļ	ļ	Vinimun	n Conc	entratio	n		/laximur	n Conc	entratio	n
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				11.6	11.3	11.2	10.2	7.4		10.8	10.8	9.9			11.8	11.6	10.4	
22	†	1	•	CSO facility in Worchester											ļ				
01	•	†	Ì	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11.0	11.2	10.7	9.9	7.0		10.8	10.4	9.6		}	11.6	11.1	10.2	
23	1	1	•	UBWPAD, Worchester					5.4				***************************************				***************************************		
02	•	1	·		9.4	9.6	9.9	8.6	6.5		8.9	9.3	8.0	***************************************		10.0	10.9	9.1	
03	•		·																
04	•				10.4	10.6	10.7	9.7	7.8		10.0	10.1	9.5		Ī	11.5	11.0	9.8	
05		•		Quinsigamond River	1.6	10.3	10.6	9.9	7.2		9.5	10.0	9.6		<u> </u>	11.1	11.2	10.2	
06	•				10.3	10.4	10.6	9.4	7.0		9.8	10.2	9.2			11.5	11.0	9.5	
-07	•				8.5	9.9	8.9	9.8	7.8		8.3	8.4				12.2	9.6		
08	•				8.3	9.4	8.8	8.5	7.8		7.7	7.7	8.3			12.0	9.6	8.7	
09		•		Mumford River	9.4	10.3	9.5	9.2	8.4		8.7	8.0	9.0			11.2	10.4	9.3	
10		•		West River	9.1	10.0	8.8	8.8	8.3		8.3	8.1	8.4			12.2	9.8	9.1	
11	•		<u> </u>		8.9	10.3	8.8	8.6	8.3		7.6	8.0	8.4			13.6	10.2	8.7	
12	•																		
13	•		<u> </u>		9.9	9.9	8.8	9.5	8.1		8.0	7.8	8.3			11.8	9.9	10.6	
14		•		Branch River	8.6	10.2	9.5	8.7	9.0		7.9	8.2				12.8	10.4		
15	<u> </u>	•	<u> </u>	Mill River	5.8	7.0	7.3	8.7	8.7		6.5	6.0	8.6			7.3	8.7	8.8	
16	<u> </u>	•	<u> </u>	Peters River	6.3	6.6	7.1	6.9	7.0		6.1	6.2	6.7			7.3	8.1	7.0	
17	•	<u> </u>	<u> </u>		11.4	10.9	9.3	9.8	8.0		8.8	8.2	9.2			12.0	10.8	10.4	
24	<u> </u>	<u> </u>	•	Woonsocket WWTF					6.0										
18	•	<u> </u>	<u> </u>		8.1	6.9	7.5	8.5	8.2		6.5	6.1	8.4			7.4	9.7	8.6	
19	•	<u> </u>	<u> </u>																
20	•	<u> </u>	<u> </u>		8.5	7.0	7.3	7.5	8.0		6.7	6.6	7.4			7.7	7.9	7.6	
21	•	ļ	ļ		8.6	7.4	7.4	9.0	8.6		7.2	6.8	8.7			8.0	8.3	9.2	
25			•	Bucklin Point (Seekonk R.)	2.8	3.2	2.8	2.4	2.0		2.0	2.4	1.9			5.0	3.5	2.8	

Regulatory Standard: Instantaneous minimum dissolved oxygen concentration of at least 5 mg/l.

Figure 4-105
Wet Weather Data - Storm II: Flow Rate (cfs)

	αż					Mear	Flow	Rate			Minim	um Flo	w Rate			Maxim	um Flo	w Rate	
Station No.	Blackstone F	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•		<u> </u>		72	149	122	117	57		65	113	113			228	128	121	
22			•	CSO facility in Worchester										,	·		***************************************	i	
01	•		<u> </u>		77	160	131	126	62		71	122	122		·	245	138	130	
23			•	UBWPAD, Worchester											ļ 		***************************************		***************************************
02	•		<u> </u>		107	245	165	167	103		107	142	156		["·····	453	222	177	
03	•		ļ				***************************************												
04	•		<u> </u>		108	247	194	178	108		108	142	165			380	273	191	
05		•	ļ	Quinsigamond River	2	7	16	15	16		3	15	15			14	16	15	
06	•		ļ		111	230	202	212	126		153	141	179			334	286	245	
07	•				100	211	251	204	183		100	205	200			367	339	208	
08	•		ļ		206	176	328	278	279		105	282	269			269	436	287	
09	<u> </u>	•		Mumford River	34	56	103	97	74		34	97	93			86	104	100	
10	ļ	•		West River	13	16	22	27	29		13	20	27			21	25	27	
11	•		ļ	.,	252	248	453	402	382		152	409	389			376	553	414	
12	•			- <u>-</u>							:								
13	•		ļ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	321	336	581	534	497		222	540	520			483	676	547	
14		•		Branch River	68	86	125	129	113		66	116	128			105	130	130	
15	<u> </u>	•	ļ	Mill River	10	15	21	26	18		9	16	21			22	24	31	
16	ļļ	•	<u> </u>	Peters River	6	18	18	13	11		6	16	11			30	21	14	
17	•				259	310	608	633	569		282	445	606			365	693	660	***************************************
24	ļ		•	Woonsocket WWTF															
18	•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	295	359	628	679	568		265	451	628			500	767	730	
19	•																		***************************************
20	•				328	399	697	754	630		294	500	697	1		554	852	810	***************************************
21	•		ļ		294	358	704	878	702		208	446	799			458	890	956	
25			•	Bucklin Point (Seekonk R.)															

Figure 4-106

Wet Weather Data - Storm III: Nitrate+Nitrite (mg/l N)

	٥	ż		_			Mean	Concen	tration		ı	/linimur	n Conc	entratio	n	N	laximu	n Conc	entratio	on
Station No.	Grandan	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00		•				0.25	0.25	0.17	0.16			0.21	0.16	0.16			0.30	0.21	0.16	
22				•	CSO facility in Worchester		0.18	0.17		,		0.17					0.21			
01		•				0.50	0.39	0.36	0.25	•		0.29	0.33	0.09	***************************************		0.50	0.41	0.37	
23				•	UBWPAD, Worchester	7.32	4.46	6.72	4.73			4.16	4.50	4.62		***************************************	4.73	9.02	5.07	
02		•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3.56	1.89	1.58	1.83			0.89	1.28	1.44			3.89	1.83	2.14	
03		•							.,,,,					***************************************				*****		
04	*****	•				2.80	1.53	1.05	1.49			0.77	0.86	1.30			2.07	1.22	1.71	
05		.	•		Quinsigamond River	0.04	0.03	0.03	0.03	***************************************		0.03	0.03	0.03			0.04	0.03	0.03	
06		•				2.30	2.38	1.23	1.36			2.02	1.06	1.23			2.59	1.67	1.45	***************************************
07	}	•				2.28	2.35	1.57	1.01			2.28	1.18	0.41			2.44	2.60	1.30	
08		•				2.45	2.45	1.90	1.13			2.35	1.49	0.83			2.54	2.54	1.40	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
09		.	•	*******	Mumford River	0.13	0.13	0.11	0.08			0.13	0.08	0.08			0.13	0.13	0.08	
10			•		West River													***************************************	***************************************	
11		•				2.11	1.69	0.34	0.30			0.34	0.34	0.08			2.49	0.34	0.43	
12	-	•	\dashv												***************************************					
13		<u> </u>				2.25	2.00	1.80	1.78			1.85	1.77	1.65			2.29	1.85	1.85	
14			•		Branch River	0.08	0.08	0.35	0.38			0.08	0.35	0.35			0.08	0.35	0.48	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
15	·····-}·····		•		Mill River	1.30	1.26	1.42	1.58			1.14	1.30	1.36			1.32	1.65	1.89	
16			•		Peters River	0.59	0.54	0.54	0.44			0.51	0.46	0.42			0.59	0.59	0.51	
17		•				2.09	1.89	2.04	1.81			1.41	1.85	1.77			2.17	2.25	1.85	
24				•	Woonsocket WWTF	9.27	12.73	13.63	13.51			8.88	13.52	13.50			14.65	13.74	13.52	***************************************
18						2.58	2.62	2.74	2.06			2.46	2.58	2.00			2.79	2.91	2.25	
19		<u> </u>																		
20		<u> </u>				2.01	2.02	2.25	2.49			1.96	1.96	1.87			2.09	2.47	2.85	
21	•	<u>.</u>				1.98	2.06	2.19	2.41			2.03	2.13	1.57			2.07	2.25	2.81	
25	丄			•	Bucklin Point (Seekonk R.)	0.86	0.78	0.14	0.34			0.78	0.14	0.34			0.78	0.14	0.34	

Figure 4-107

Wet Weather Data - Storm III: Ammonia (mg/l N)

	Т		1												l				
	ين					Mean (Concen	tration			linimun	n Conc	entratio	nn .	M	avimur	n Conc	entratio	\n
o.			ုပ္က				011001		<u> </u>			00110				<u> </u>			
Station No	Blackstone	Tributary	WWTF/CS	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				0.04	0.06	0.03	0.02			0.06	0.01	0.01			0.07	0.07	0.02	
22			•	CSO facility in Worchester		0.56	0.64				0.07					1.50		,,	
01	•				0.30	0.10	0.06	0.07			0.05	0.04	0.05			0.20	0.09	0.15	
23			•	UBWPAD, Worchester	1.74	0.84	0.93	0.32			0.07	0.15	0.06			1.64	2.08	0.90	
02	•		<u> </u>		0.40	0.41	0.14	0.15			0.17	0.09	0.06			0.71	0.24	0.35	
03	•																		
04	•				0.16	0.34	0.23	0.17			0.13	0.09	0.14			0.65	0.48	0.21	
05		•	<u> </u>	Quinsigamond River	0.05	0.01	0.02	0.05			0.01	0.01	0.03			0.01	0.04	0.06	
06	•		<u> </u>		0.16	0.11	0.27	0.09			0.09	0.08	0.07			0.16	0.35	0.10	
07	•		<u> </u>		0.05	0.09	0.28	0.13			0.05	0.17	0.07			0.12	0.40	0.28	
08	•	<u> </u>	<u> </u>		0.11	0.11	0.25	0.12			0.05	0.10	0.02			0.18	0.31	0.19	
09		•	<u> </u>	Mumford River															
10	<u> </u>	•	<u> </u>	West River	0.01	0.03	0.02	0.03			0.02	0.00	0.01			0.05	0.04	0.06	
11	•		<u> </u>		0.01	0.02	0.10	0.17			0.01	0.03	0.11			0.04	0.18	0.23	
12	•																		
13	•	ļ	<u> </u>		0.06	0.05	0.04	0.12			0.04	0.01	0.03			0.07	0.05	0.19	
14	<u> </u>	•	<u> </u>	Branch River	0.01	0.06	0.04	0.07			0.05	0.02	0.06			0.08	0.07	0.10	
15		•	<u> </u>	Mill River	0.67	0.85	1.04	0.93			0.63	0.98	0.82			1.09	1.12	0.98	
16		•		Peters River	0.03	0.03	0.04	0.05			0.02	0.01	0.05			0.03	0.05	0.06	
17	•	<u> </u>			0.02	0.03	0.05	0.04			0.03	0.01	0.01			0.03	0.08	0.09	
24		ļ	•	Woonsocket WWTF		0.52	0.37	0.26			0,50	0.26	0.20			0.53	0.43	0.36	
18	•	L		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.01	0.03	0.30	0.24			0.02	0.02	0.17			0.04	0.50	0.28	
19	•	<u> </u>																	
20	•	<u> </u>			0.17	0.25	0.32	0.23			0.19	0.21	0.08			0.31	0.57	0.35	
21	•	<u></u>			0.01	0.20	0.07	0.10			0.05	0.05	0.04			0.36	0.10	0.13	
25			•	Bucklin Point (Seekonk R.)	23.20	19.40	11.04	15.67			12.50	8.94	12.20			25.10	12.50	18.00	

Figure 4-108

Wet Weather Data - Storm III: Phosphate (mg/l P)

				·····				,				· · ·							
١.	2	Ì	0			Mean	Concen	tration		١	/inimun	n Conc	entratio	n	N	laximur	n Conc	entratio	n
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				0.01	0.01	0.01	0.01			0.01	0.01	0.01			0.01	0.01	0.01	
22			•	CSO facility in Worchester		0.30	0.23	***************************************			0.23					0.34			
01	•				0.01	0.01	0.01	0.01			0.01	0.01	0.01			0.01	0.01	0.01	***************************************
23			•	UBWPAD, Worchester	1.65	1.84	1.11	1.10			1.60	0.99	1.04			1.98	1.34	1.16	***************************************
02	•		<u> </u>		0.74	0.46	0.25	0.31			0.20	0.23	0.26			0.92	0.26	0.33	••••
03		ļ	ļ																
04	•	ļ	ļ		0.48	0.27	0.25	0.30			0.19	0.22	0.25			0.41	0.28	0.39	
05	ļ	•		Quinsigamond River			İ	***************************************											
06	•	ļ			0.54	0.53	0.30	0.24			0.50	0.25	0.24			0.54	0.32	0.24	
07	•	ļ	ļ	***************************************	0.39	0.43	0.30	0.22			0.43	0.25	0.11			0.43	0.39	0.29	
08	•		ļ		0.36	0.38	0.37	0.24	***************************************		0.36	0.32	0.11			0.39	0.43	0.32	
09		•	ļ	Mumford River	0.26	0.27	0.25	0.24			0.23	0.24	0.24		ĺ	0.33	0.26	0.24	,,,
10		•	ļ	West River					***************************************				******************		<u> </u>				
11	•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.33	0.30	0.23	0.27			0.30	0.23	0.26			0.30	0.23	0.29	
12	•																		
13	•				0.36	0.32	0.28	0.30			0.30	0.24	0.30			0.36	0.30	0.30	
14	ļ	•		Branch River					***************************************						<u> </u>				
15		•		Mill River				,						.,,,,,					
16		•		Peters River															
17	•				0.06	0.05	0.06	0.07		ļ	0.04	0.06	0.04			0.06	0.06	0.09	
24			•	Woonsocket WWTF	6.86	5.45	5.01	4.67			5.11	4.81	4.39		.,,	6.14	5.22	4.81	
18	•				0.46	0.41	0.46	0.30			0.36	0.41	0.25			0.46	0.52	0.35	
19	•																•••••	I	
20	•				0.44	0.39	0.40	0.85			0.37	0.33	0.78		***************************************	0.40	0.44	0.89	
21	•				0.39	0.40	0.39	0.42			0.37	0.36	0.36			0.41	0.42	0.48	
25			•	Bucklin Point (Seekonk R.)	1.83	4.41	1.50	0.94			1.95	0.67	0.91			5.64	3.25	0.97	

Figure 4-109

Wet Weather Data - Storm III: Dissolved Oxygen (mg/l)

																	 -	-	
	ď					Mean	Concen	tration		ľ	Vinimur	n Conc	entratio	n		/laximur	n Conc	entratio	n
Station No.	Blackstone	Tributary	WWTF/CS(Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				9.0	10.5	10.9	11.0			10.4	10.0	10.2			10.6	11.3	11.8	
22			•	CSO facility in Worchester											***************************************				
01	•				9.0	10.5	11.0	10.4			10.0	10.8	9.0		***************************************	11.0	11.0	11.4	
23			•	UBWPAD, Worchester										•	************************				***************************************
02	•			***************************************	7.9	10.4	10.0	9.4			8.6	9.4	9.0			12.5	10.5	9.8	*****
03	•				***************************************				.,,,,,										
04	•				9.2	11.2	11.1	10.3	***************************************		10.5	10.8	9.4			12.5	11.5	10.9	
05		•		Quinsigamond River	8.2	10.9	10.2	10.3	*****************************		9.9	10.0	10.0			12.5	10.5	10.8	
06	•			***************************************	8.2	11.2	10.9	10.2	*****		9.1	10.3	9.4		"	14.0	11.5	10.8	
07	•				8.8	9.4	11.7	11.6			8.8	9.6	10.0			9.8	14.4	13.0	
08	•				9.0	9.0	11.0	11.8		ļ	8.4	9.6	10.6			9.4	12.4	13.0	
09	ļ	•		Mumford River	9.8	9.7	11.5	12.1		<u> </u>	9.4	9.8	10.8			10.4	14.0	13.2	
10	ļ	•		West River	8.2	8.4	10.0	11.2			8.2	8.8	9.8			8.8	11.3	13.0	
11					6.5	9.6	11.1	11.2			9.0	9.4	10.1			10.8	13.5	12.4	
12																			
13	•				10.5	9.7	11.4	12.1			9.4	10.2	10.5			10.2	12.9	13.5	
14	ļ	•	*******	Branch River	9.1	9.5	11.4	11.8			9.4	9.8	10.3			9.8	12.8	13.4	
15	ļ	•	***************************************	Mill River	5.3	7.1	6.8	6.6			6.3	4.7	5.2		***************************************	7.6	8.1	8.0	
16	ļ	•		Peters River	6.3	7.4	7.5	8.1			6.8	7.0	7.6			8.4	8.1	8.6	
17	•				10.6	9.7	11.9	12.4		,	9.2	10.0	10.6			10.4	13.4	13.8	
24	ļ		•	Woonsocket WWTF															
18	•	ļļ			9.1	9.7	9.7	10.3			9.0	9.4	9.6			10.3	10.0	11.2	
19	•			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												.,,,,,			
20	•			.,,	9.2	10.5	10.4	10.9			9.4	8.2	10.3			11.1	13.2	12.0	
21	•				9.7	10.9	11.1	11.1			9.8	10.0	10.4			11.8	13.8	12.1	
25			•	Bucklin Point (Seekonk R.)	5.2	4.0	3.5	2.9			2.4	3.0	2.3			5.0	4.5	3.6	

Regulatory Standard: Instantaneous minimum dissolved oxygen concentration of at least 5 mg/l.

Figure 4-110

Wet Weather Data - Storm III: Flow Rate (cfs)

						Maa	. Flaur	Data			Minim	51.	D-4-						
1	ď					wear	1 Flow	Rate	l		IVIINIM	um Fio	w Rate	j		Maxim	um Flo	w Rate	
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				38	325	125	75			38	109	48			530	140	100	1 2
22			•	CSO facility in Worchester									***************************************						
01	•				41	350	134	81			41	117	52			570	150	108	
23			•	UBWPAD, Worchester		51	46	32			33	30	31		***************************************	69	75	33	
02	•	<u> </u>	ļ			829							*************				***************************************		
03	•		<u> </u>														***************************************		
04	•				109	465	293	201			109	246	173		************************	746	378	230	
05	ļ	•		Quinsigamond River	8	17	28	24			9	26	22			21	30	27	***************************************
06	•		ļ		98	261	286	206			98	216	110		,	456	456	260	
07	•		ļ		144	255	359	224			144	278	144			421	570	265	
08	•		ļ	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	152	180	365	290			127	332	283			229	414	301	
09		•	ļ	Mumford River	17	34	28	26			23	18	25			41	37	27	
10		•	ļ	West River	9	11	12	12			9	12	12			13	13	13	
11	•		ļ		202	221	371	284			143	188	235			372	494	346	***************************************
12	•		L																
13	•		ļ		228	262	428	373			177	223	299			423	580	495	
14		•	ļ	Branch River	41	55	48	45			43	45	45			62	54	45	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
15		•	<u> </u>	Mill River	No Flow														
16	<u> </u>	•	<u> </u>	Peters River	2	4	3	4			2	3	3		***************************************	7	4	5	
17	•	,,,	<u> </u>		165	207	412	447			172	207	406			246	797	551	
24		,,,	•	Woonsocket WWTF															
18	•				240	259	406	396			218	236	338			280	682	429	
19	•														•••••		***************************************		***************************************
20	•			«	255	277	439	427			231	250	363			300	746	464	***************************************
21	•		ļ		254	321	348	514			264	290	402			385	485	668	
25	<u> </u>		•	Bucklin Point (Seekonk R.)	23	20	20	19			16	12	14			24	24	23	

Table 4-111 Source Rankings by Dry and Wet Load Nitrate (as N)

Sta	tion o.			_		N	itrate (as	N) (100() pounds	5)		Nitra	te (as N)	(%)	
		River			·		(40	Wet L		"		- 141616	Wet L		· · · · · · · · · · · · · · · · · · ·
From	To	Blackstone Ri	Tributary	WWTF/CSO	Location	Dry Weather Load	Storm 1	Storm 2	Storm 3	Average - All Storms	Dry Weather Load	Storm 1	Storm 2	Storm 3	Avergaege - All Storms
neadw	00	•					0.07	0.15	0.32			1.17	0.90	2.75	1.63
2				•	CSO facility in Worchester			0.07					0.41		0.08
00	01(*)	•					0.04		0.12		2.66	0.66		1.03	0.58
2				•	UBWPAD, Worchester		2.29	0.29	4.29		49.60	37.90	1.75	36.60	26.20
01	02	•				***************************************	<u></u>	0.20					1.21		0.41
02 03	03 04	•					0.52	0.21	0.39		3.46 1.12	8.54	1.29	3.34	4.57
0	5		•		Quinsigamond River		0.00	Ī		••••••	0.15	0.03	***************************************		0.01
04	06	•					1.09	0.39	0.03		0.76	18.10	2.41	0.27	7.29
06	07	•						0.14			2.35	***************************************	0.85		0.28
07	08	•						0.27	0.27		0.61		1.65	2.26	1.31
0	9		•		Mumford River		0.40	0.15	0.01		0.62	6.62	0.91	0.10	
1	0		•		West River		0.00	0.02	0.00		0.08	0.02	0.10	0.01	0.58
08	11	•						1.46			1.98	*************************	8.97		3.00
11 12	12 13	•					0.70	5.01	2.36		5.28 2.98	11.60	30.80	20.20	
1.	4		•		Branch River		0.03	0.18	0.15	_	0.90	0.50	1.09	1.26	0.96
1:	5		•		Mill River		0.03	0.07	0.04		0.30	0.43	0.42	0.32	
1]	•		Peters River	Ī	0.02	0.07	0.02		0.32	0.30	0.42	0.15	0.70
13	17	•				I	<u> </u>		0.80					6.80	2.27
2	4			•	Woonsocket WWTF	I	0.05		2.08		7.90	0.89		17.70	6.27
17	18	•]		I	0.15				3.20	2.55		······i	0.90
18 19	19 20	•					0.64	1.66	0.84		2.19 2.58	10.60	10.20	7.14	9.56
20	21	•						5.96			10.90		36.60		12.20
Sum o	f Rank	ings	s - IV	1A			5.1	8.4	7.8		71.7	84.6	51.3	66.6	67.0
Sum o	f Rank	ings	s - R	l (ir	cl. Mill and Peters Rivers)		0.9	7.9	3.9		28.3	15.3	48.7	33.4	32.9
					Totals		6.0	16.3	11.7		99.9	99.9	100.0	99.9	99.9

^(*) For Dry weather data, rankings between Segment "00 and 01" include the Segment "Headwater to 00".

Table 4-112 Source Rankings by Dry and Wet Load Ammonia (as N)

Stat						Λm	monia (a	e NI) /10	00 noun	de)		Ammo	nio (oo N	1) /9/1	
"i	o .	ē					inoma (a	Wet L		13)		Allillo	nia (as N Wet L		
		₹				_		Well	vaus				wetL	oaus	
From	<u>2</u>	Blackstone River	Tributary	WWTF/CSO	Location	Dry Weather Load	Storm 1	Storm 2	Storm 3	Average - All Storms	Dry Weather Load	Storm 1	Storm 2	Storm 3	Avergaege - All Storms
headw	00	•					0.05	0.07	0.07			0.76	0.30	2.90	0.06
2				•	CSO facility in Worchester			0.08	0.09				0.33	3.69	1.25
00	01(*)	•					0.01	0.01			2.62	0.18	0.04		1.34
2				•	UBWPAD, Worchester		1.08	11.40	0.63		4.87	17.80	49.60	25.00	31.20
01	02	•					0.21	1.53	0.48		8.28	3.39	6.63	19.00	9.83
02	03	•			·			1.97			0.35		8.54		0.00
03	04	•						1.97	ľ		4.52		0.54		2.89
0	5		•		Quinsigamond River				0.01	•••••	0.46			0.28	0.09
04	06	•						1.10		•••••	1.01		4.77		1.61
06	07	•					0.15	0.34	0.12			2.53	1.47	4.76	2.96
07	08	•			·		0.20					3.32		i	1.12
0	9		•		Mumford River		0.00	0.00	0.002		0.65	0.05	0.01	0.08	
1			•		West River		1		0.002		0.25			0.08	0.07
80	11	•					Ī	0.18	0.01		0.10		0.77	0.36	0.38
11	12	•				***************************************	1	······································	*******************		1.04				
12	13	•						0.90			0.35		3.90	<u> </u>	
1-	4		•		Branch River		0.03	0.12	0.04		1.93	0.56	0.52	1.47	0.86
1:			•		Mill River		1	······	0.03		0.48			1.03	
1			•		Peters River		0.00	0.02	0.002		0.25	0.02	0.08	0.08	0.41
13	17	•					0.01	1				0.18			0.07
2	4			•	Woonsocket WWTF	***************************************	2.48	4.21	0.06		67.30	40.80	18.20	2.42	20.80
17	18	•				***************************************	1.85		0.98		2.49	30.40		38.80	23.40
18	19	•								••••••			•••••••••••••••••••••••••••••••••••••••		
19	20	•				***************************************	İ		Ī		3.01		I	, [
20	21	•				***************************************	·····	1.11					4.81		1.63
									i						50
Sum o							1.7	17.6	1.41		24.5	28.0	76.4	56.2	52.8
Sum o	f Rank	ing	s - R	l (ir	cl. Mill and Peters Rivers)		4.4	5.5	1.11		75.5	72.0	23.6	43.8	47.2
					Totals		6.1	23.0	2.53		100.0	100.0	100.0	100.0	100.0

^(*) For Dry weather data, rankings between Segment "00 and 01" include the Segment "Headwater to 00".

Table 4-113 Source Rankings by Dry and Wet Load Orthophosphate (as P)

	tion o.						Orthoph (100	nosphate 00 pound			(Orthopho	sphate (a	as P) <i>(%)</i>)
		ive						Wet L	oads	•••••	i		Wet L	oads	
From	Тo	Blackstone River	Tributary	WWTF/CSO	Location	Dry Weather Load	Storm 1	Storm 2	Storm 3	Average - All Storms	Dry Weather Load	Storm 1	Storm 2	Storm 3	Avergaege - All Storms
neadw	00	•					0.01	0.05	0.01			0.39	2.27	0.26	1.09
	1			•	CSO facility in Worchester			0.01	0.05				0.44	0.93	0.35
00	01(*)	•					<u> </u>				1.40				
h	2			•	UBWPAD, Worchester		0.72	1.01	1.07		63.20	46.50	44.90	21.60	42.00
01	02	•				***************************************	0.07			•••••		4.18			1.55
02 03	03 04	•					0.06	0.06			2.45	4.11	2.80		2.57
ļ	<u></u> 5		•		Quinsigamond River			0.00	0.002		0.29		0.09	0.04	0.05
04	06	•					-	0.00	0.002		0.20		0.03	0.04	0.03
06	07	•					i i		0.60		0.86			12.20	4.52
07	08	•		•••••			0.11	0.15			0.15	6.75	6.85		5.06
0	9		•		Mumford River		0.00	0.00	0.04	•••••	0.60	0.06	0.13	0.83	
***************************************	0		•		West River		1	0.00	0.001		0.13		0.18	0.02	0.14
08	11	•					·······	0.06		•••••	1.82		2.67		0.99
11 12	12 13	•							0.33		2.65 2.99			6.61	2.45
1			•		Branch River		0.00	0.01	0.001		0.61	0.06	0.31	0.02	0.45
1	***************************************		•		Mill River	***************************************	0.00	0.00	0.001	•••••	0.10	0.06	0.13	0.02	
	6		•		Peters River	***************************************	0.00	0.01		••••••••••	0.08	0.06	0.12		0.18
13	17	•					0.02	0.05			1.67	1.09	2.22		1.23
2	4			•	Woonsocket WWTF		0.40	0.72	0.83		19.50	25.80	31.90	16.80	27.70
17	18	•					0.12	0.07	0.51			7.46	3.16	10.20	7.72
18 19	19 20	•				***************************************	0.05	·····	1.52		0.40	3.47		30.60	1.29
20	21					•	<u></u> 1.	0.04			0.46 1.12		1.69	<u> </u>	0.63
								0.04					1.09		0.03
Sum o					ol Mill and Dates Divers		0.97	1.34	2.10		76.5	62.0	60.3	42.5	60.8
oum o	Rank	ings	5 - h	a (<i>II</i>	ncl. Mill and Peters Rivers)		0.59	0.90	2.86		23.5	38.0	39.6	57.6	39.2
<u> </u>					Totals	20 == 1 01	1.56	2.24	4.96		100.1	100.0	100.0	100.1	100.0

^(*) For Dry weather data, rankings between Segment "00 and 01" include the Segment "Headwater to 00".

Figure 4-114

Final Effluent Monitoring Data: Woonsocket Wastewater Treatment Facility Nutrients, TSS, BOD5

Data Period: January 31, 1997, to October 31, 2001

		10		otal Nitrogen	Ammonia (as N)	a (re (Kjeldahl Nitrogen (as N)	Total Phosphorus (as P)	
	됩	ВОБ5	TSS	otal	Ammo (as N)	Nitrite (as N)	Nitrate (as N)	Kjelda (as N)	Total Phos (as P)	Flow
	<u> </u>	<u>ш</u>	<u> </u>	<u> </u>	₹ □	<u> ک</u> ک	23	<u> </u>	- 4	ш.
			<u> </u>		-					
		mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	gallons per day
Concentratio	35352					<u> </u>				
Monthly Average							.		_	<u> </u>
Average	6.75	15.69	20.70	20.65	20.04	0.33	5.66	17.67	5.60	9,180,000
Minimum	5.60	6.00	20.70 2.40	6.50	0.50	0.05	4.07	2.10	0.40	5,230,000
Maximum	7.47	40.20	60.10	35.10	30.10	0.73	7.68	34.00	10.20	13,520,000
Maximum Daily	7					-				
Average	7.38	32.57	43.22	36.59	28.51	0.54	1.32	33.22	9.38	
Minimum	6.94	10.00	5.00	9.00	2.00	0.00	0.01	33.22 4.30	0.70	
Maximum	10.00	130.00	132.00	75.00	43.00	4.50	11.40	74.00	19.20	
Loads (kg/da	1V)									
Monthly Average				<u> </u>						
Average		574 178	735							
Minimum		178	521			***************************************		***************************************		
Maximum		1,765	1,657							
Maximum Daily	/									
Average		1,526	1,975		<u></u>					
Minimum		310	113		I		I			
Maximum		6,449	6,344							
Count	55	58	58	11	58	58	58	16	58	58

Data Source: Rhode Island Department of Environmental Management

Figure 4–115
Woonsocket Wastewater Treatment Facility - Effluent
Nitrate (as N)

Figure 4-116
Woonsocket Wastewater Treatment Facility - Effluent
Nitrite (as N)

Figure 4-117
Woonsocket Wastewater Treatment Facility - Effluent
Ammonia (as N)

Figure 4-118
Woonsocket Wastewater Treatment Facility - Effluent
Total Kjeldhal Nitrogen (as N)

Figure 4-119
Woonsocket Wastewater Treatment Facility - Effluent
Total Nitrogen

Figure 4-120
Woonsocket Wastewater Treatment Facility - Effluent
Total Phosphorus

Figure 4-121
Woonsocket Wastewater Treatment Facility - Effluent
BOD

Figure 4-122
Woonsocket Wastewater Treatment Facility - Effluent
Total Suspended Solids (TSS)

Figure 4-123

Total Suspended Solids (mg/l) - Data Summary (all studies in Rhode Island Section of Blackstone River)

			u	-	-		Mean	an Conc	Concentration	Ĕ	Mini	Minimum Concentration	centrati	le le	Maximum		Concentration	ioi
steQ xibnəqqA	Station No.	Study Author	Year(s) of data collectio	Blackstone R.	Tributary	Station Location	Dry Weather	mroj& gnirud	24h After Storm	48h After m1o52	Dry Weather	m1o38 guinu0	19ftA d4s m1of3	48h After Storm	Dry Weather		24h After Storm	48h After Storm
Ť.	-5	URI BRI dry	1991	•	H	Dorto 122 Milkillo MA	4.7			II .	2.2			II.	9.4		Ш	
2	7.		1991-1993	•		Route 122, Millylle, MA												
6	Forestdale	_	1990-1999		•	Branch River, 400ft downst. of Mill dam in Forestdale								<u> </u>				
15	14	URI BRI dry	1991	\dashv	•		2.2				9.0				4.0			
?		URI BRI wet	1991-1993		•	בומוכין זיכנוס ילכלי ייכנוס ילכלי איני	2.0	2.7	3.9	2.0	1.4	1.0	1.0	1.0	2.6	6.0	20.2	4.4
9	B2	River Rescue	1990-1995	•		Main Street, Blackstone, MA	2.8		2.6		9.0				5.2			
۳-	BRSL	URI	1988-1989	•		Blackstone River at MA/RI state line	13.0	11.6	10.3	8.9	8.2	7.2	5.2	6.8	17.8	13.6	14.0	11.5
 (C	13	URI BRI dry	1991	•			5.4				2.4				8.4			
2	2	URI BRI wet	1991-1993	•	-		3.5	3.2	4.4	6.3	2.6	2.2	1.6	2.0	4.6	4.7	8.0	13.4
15	15	URI BRI dry	1991	1	•	Mill River, Winter St., Woonsocket, RI	3.4				1.8				6.2			
		URI BRI wet	1991-1993	1	•		4.1	7.9	5.0	6.2	2.0	2.2	2.4	2.2	8.0	43.2	10.4	28.0
15	16	URI BRI dry	1991	-	•	"Peters River, Route 114, Woonsocket, RI	4.2				1.0				9.0			
		URI BRI wet	1991-1993		•	contraction of the contraction o	6.8	19.2	9.5	9.9	2.0	2.0	1.4	1.8	15.0	90.4	53.4	56.0
15	17	URI BRI dry	1991	•	-	Hamlet Ave (Rte 122 and 126) Woonsocket RI	5.1								8.2			
2	: !!!	URI BRI wet	1991-1993	•	-	ובב מוס ובט), ייסטווסטהפי	2.5	7.1	5.7	4.7	1.4	1.4	1.6	1.4	4.2	30.6	11.8	11.2
15	24	URI BRİ dıy	1991	1	•													
!		URI BRI wet	1991-1993	1	•	● Fflient Woonsocket Sewage Treatment Plant	79.3	71.8	84.0	55.9	6.8	17.2	9.0	3.4	202.0	297.0	350.0	227.0
-	WSTP	Z.	1988-1989	1	•		15.0	33.6	14.5	12.0		9.3	13.0	_		50.6	16.0	
4	RIPDES	RIDEM	1997-2001	1	•			20.	7			<2.4	*			132.(0	
15	18	URI BRI dry	1991	•	-		4.5				2.4				8.6			
		URI BRI wet	1991-1993	•	1	Manville Hill Rd., Cumberland, RI	3.9	4.1	6.8	9.5	3.0	1.2	3.4	2.8	4.6	11.8	11.2	22.5
6	Manville	USGS URI BRI drv	1990-1999	• •	1		,	ĺ			0.0				ca			
15	<u>0</u>	URI BRI wet	1991-1993	•	<u> </u>	School St./Albion Rd., Cumberland, RI		<u></u>						<u> </u>		<u></u>		
9	Blons	River Rescue	1990-1995	•										<u> </u>				
15	20	URI BRI dry	1991	•		"I opedate Ave I opedate RI					1.8				2.0			
		URI BRI wet	1991-1993	•			2.6	3.8	8.2	6.3	1.3	1.2	2.0	2.8	3.8	11.8	26.4	12.0
9	S-2	NBC	1997-2000	•														
-	BRCF	URI I	1988-1989	•	-	Blackstone River above Central Falls, Pawtucket		10.2	10.8	8.3			2.2		15.2	22.0	18.0	9.2
-	BRSM	URI	1988-1989	•	-		6.9	8.5	8.2	10.7	2.4	2.8	2.1	6.7	12.0	19.8	12.4	25.4
2	BRSMDN	URI	1990	•	_			4.6	5.2	6.0			1.0		5.5	12.8	12.4	11.6
9	S-3	NBC	1997-2000	•		Slaters Mill											.	
15	21	URI BRI dry	1991	•	-		4.8				1.4				2.0			
		URI BRI wet	1991-1993	•	4		3.8	6.7	4.6	5.4	1.4	1.3	1.8	1.8	5.0	31.4	12.2	11.0
വ	TMDL	RIDEM	1995-1996	•	1		8.0		26.8		2.7		1.7		37.5		51.9	
9	B1	River Rescue	1990-1995	•	\dashv	Main Street, Pawtucket, RI	2.8		6.3		0.5		1.6		8.7		16.2	

Figure 4-124

Total Suspended Solids Concentration
(Kerr and Lee, 1996)

Figure 4-125 Blackstone River Initiative (Wright et al., 2001)

Maxi-

mum

4.6

5.4

5.6

4.0

1.8

11.8 9.2

18.4

2.6 2.8

13.4

9.4

8.4

4.0

6.2 9.0

8.2 8.6 8.2 7.0 7.0

July 199		Э							Statistics	- all 3 surv	eys
Station No.	Blackstone River	Tributary	Location	Run #1	Run #2	Run #3	Run #4	MEAN	Mean	Mini- mum	Max mur
BLK01				2.4	C	.)			3.0		
BLK02 BLK03		ļ		4.6			*	3.90	3.6		
BLK04		 		0.5	******************			1.05 1.45	2.3 2.3		
BLK05	··· <u>-</u>	•	Quinsigamond River	1.6	·		*****************	• • • • • • • • • • • • • • • • • • • •	1.0		
BLK06	•			6.6		••••••••••	**************************************		4.2	1.0	
BLK07	•			4.2	5.2				5.7	3.2	
BLK08		ļ <u>.</u>		5.0			*		8.9		
BLK09 BLK10		•	Mumford River West River	1.8	(*********	1.70	1.5		
BLK11		.	West River	2.2 9.4	{ ***********************		*******	1.85 10.45	1.6 6.7	7.0 2.4	
BLK12	•			5.0	*		*···	6.65	4.7	2.2	
BLK13	•	_		6.4		4.		7.20	5.4	2.4	\vdash
BLK14		•	Branch River	1.6	{	.}	1.4	1.40	2.2	0.6	1
BLK15		•	Mill River	2.4	2.6	1.8	4.0	2.70	3.4	1.8	
BLK16		•	Peters River	5.4			7.0	5.30	4.2	1.0	
BLK17			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.6					5.1	2.4	
BLK18 BLK19				8.6			&	5.75	4.5		
BLK20				5.8 3.8			&		5.0 3.8		
BLK21	•		Slaters Mill	4.6	6		&		4.8	1.8 1.4	
BLK01 BLK02 BLK03 BLK04 BLK06 BLK06 BLK06 BLK07 BLK08 BLK09 BLK10 BLK11 BLK11 BLK11 BLK15 BLK14 BLK15 BLK16 BLK16 BLK16 BLK16 BLK17 BLK18 BLK17 BLK18 BLK17 BLK18 BLK17 BLK18 BLK17			Quinsigamond River Mumford River West River Branch River Mill River Peters River	3.0 4.8 2.0 1.8 3.6 8.6 3.8 1.6 1.6 5.2 3.6 5.4 2.0 3.8 2.0 3.8 2.0 4.0 2.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4	3.0 1.0 2.6 1.8 6.8 6.2 1.6 1.4 4.4 3.8 5.2 3.2 4.2 5.8	3.0 1.6 1.8 1.6 1.0 5.6 17.8 1.4 1.8 2.4 4.0 4.0 6.2 5.8 4.4 4.0 6.8 5.4	1.4 0.6 1.8 0.3 2.0 4.4 8.6 1.2 1.0 4.0 3.2 4.4 2.6 9.0 4.6 4.2 3.0 7.0	3.05 1.30 2.00 1.26 2.35 6.35 9.10 1.45 1.45 4.40 3.80 4.75 3.10 4.80 5.00 4.15 4.00 4.90			
October 1 BLK01 BLK02 BLK03 BLK04 BLK05 BLK06 BLK07 BLK08 BLK08 BLK09	1991 St	ırve	Quinsigamond River	3.2 3.4 4.4 3.8 1.2 4.2 5.0 7.4	3.6 4.4 3.2 1.0 5.4 6.2 8.4	5.4 5.6 4.0 0.6 11.8 3.2 3.0	2.0 3.4 3.6 2.4 0.6 3.6 3.8 5.2	3.45 3.95 4.50 3.35 0.85 6.25 4.55 6.00			
BLK10	·	•	West River	1.8	1.8		1.0	1.45			
BLK11	•	*********		5.4				5.15			
BLK12	•		I	3.4	6.6		<i>(</i>	3,75			

3.4

4.2

3.0

3.6

3.4

4.0

4.6

3.6

4.2

NS

•

•

•

•

•

Branch River

Peters River

Slaters Mill

Mill River

BLK12 BLK13

BLK14

BLK15 BLK16

BLK17

BLK18 BLK19

BLK20 BLK21

6.6

4.6 3.0

3,0

5.0

4.0

5.0

3.6 3.6

2.2

5.4

1.6

2.0

1.0

2.4

3.4

2.2

2.8

2.0

2.8

2.4 1.0

2.0

2.2

3.8

2.8

2.4

1.8

3.75

4.15

2.15

2.65

2.25

3.80

3.70 3.30 2.73

2.80

Figure 4-126

Wet Weather Data - Storm I: Total Suspended Solids (mg/l)

	T									<u> </u>	`								
	يد		_			Mean (Concen	tration		N	/linimur	n Conc	entratio	n	N	Maximur	n Conc	entratio	n
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				2.4	6.7	7.7	5.6			1.3	5,6	3.2			15.4	11.0	8.0	
22			•	CSO facility in Worchester				***************************************											
01	•			·	2.6	13.7	4.5	3.0			3.4	2.8	2.2			26.4	6.0	3.8	
23	<u> </u>		•	UBWPAD, Worchester	6.2	9.0	6.7	6.8			8.2	6.4	4.8			9.8	6.8	8.8	
02	•	ļ			9.0	8.7	5.8	5.8			4.2	4.8				14.2	7.2		
03	•																		
04	•	ļ			5.0	31.1	6.0	2.2			23.6	2.4	1.5			35.8	10.2	2.8	
05	ļ	•		Quinsigamond River	1.5	1.5	1.3	2.3			1.4	0.8	2.0			1.7	1.6	2.5	
06	•	ļ		***************************************	3.8	9.6	6.9	6.1			7.5	2.6	5.2			11.4	9.4	7.0	
07	•	ļ			1.8	7.1	8.6	7.5			6.2	3.2	4.0			8.8	12.4	11.0	
08	•	ļ			6.2	15.7	8.0	6.3			11.8	3.4	2.6			18.2	12.6	10.0	
09	ļ	•		Mumford River	1.8	1.4	1.6	3.1			0.8	1.0	2.0			2.0	2.0	4.2	
10	ļ	•		West River	2.3	2.5	4.7	2.4			0.8	1.2	1.5			4.0	9.2	3.2	
11	•				2.8	8.3	4.7	4.0			6.0	3.6	3.8			11.2	6.4	4.2	
12	•	Ш		-,															
13	•	ļ			2.6	3.5	3.9	4.0		<u></u>	2.8	2.6	4.0			4.4	5.2	4.0	
14		•		Branch River		3.5	1.7	2.7			1.6	1.0	1.0			6.0	2.4	4.4	
15	ļ	•		Mill River	2.0	3.0	4.1	4.1		ļ	2.2	2.8	3.5			4.2	5.4	4.6	
16	ļ	•		Peters River	15.0	12.0	5.1	3.8			2.8	3.6	1.8			17.0	6.8	5.8	
17					1.4	6.7	5.3	3.0		ļ	3.8	3.0	1.4			9.8	7.5	4.6	
24	ļ	ļ	•	Woonsocket WWTF	6.8	35.9	21.8	23.0			17.2	9.0	3.4		<i></i>	66.0	30.5	42.5	
18	•			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4.2	3.3	6.3	3.8		ļ	1.2	3.6	2.8			4.8	10.5	4.8	
19	•																		
20	•				1.3	1.9	3.1	3.7			1.2	2.0	2.8	·····		2.8	4.8	4.6	
21	•				5.0	2.7	2.7	1.9			1.3	2.6	1.8	.,		4.0	3.0	2.0	
25			•	Bucklin Point (Seekonk R.)	18.7	28.7	16.3	18.1			17.4	7.4	17.8			47.5	24.4	18.4	

Figure 4-127

Wet Weather Data - Storm II: Total Suspended Solids (mg/l)

	Т	Т	Т		···					inacive (<u> </u>				
_	ď						Mean	Concen	tration	•	N	linimur	n Conc	entratio	n	, ,	/laximu	m Conc	entratio	n
Station No.	Blackstone	Tulbutan	imputaty	WWTF/CSC	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•					1.6	17.3	2.5	1.5	3.5		2.2	1.6	1,4			65.0	3.4	1.6	
22				•	CSO facility in Worchester	18.0	26.8				***************************************	20.0		• • • • • • • • • • • • • • • • • • • •			33.6			
01	•	I				12.2	20.5	4.7	2.1	3.7	*******************	5.0	2.8	1.8		i	31.8	11.6	2.4	
23		ļ		•	UBWPAD, Worchester	12.5	10.2	6.5	9.7	3,0		3.8	3.6	8.0			16.8	10.0	11.4	***************************************
02	•	ļ				9.0	23.6	7.2	2.2	1.8		3.8	3.4	1.4			72.6	14.0	3.0	***************************************
03	•	.l																		
04	•	ļ	.]		3.6	25.2	7.5	3.5	1.4		3.4	5.0	3.2			73.9	12.6	3.8	
05			•		Quinsigamond River	1.0	4.6	1.4		1.0		1.2	1.0				8.0	1.8		
06			.			3.2	14.8	6.7	4.4	1.4		1.6	2.0	2.8			51.3	11.4	6.0	
07		ļ				3.4	4.8	6.5	7.7	5.7		2.8	3.4	4.0			9.0	11.0	11.4	
08		.ļ	.			3.4	8.4	9.6	8.0	11.7		1.2	1.8	4.2			19.8	22.2	11.8	
09		19	<u>.</u>	******	Mumford River	ļ	2.2	1.9	1.2			1.4	1.0				2.8	2.8		
10			<u>.</u>		West River		1.5	1.8	1.8			1.2	1.2			<u> </u>	1.6	3.0		
11			.			4.2	6.4	15.7	4.6			2.4	1.4	1.2			16.0	39.0	8.0	
12	•	+	4	_																
13						3.4	2.9		5.4	3.7		2.2	1.6	2.0			4.7	8.0	8.8	
14			₽.	*****	Branch River	1.4	2.3	2.4	1.1	1.6		1.6	1.2	1.0			2.8	4.7	1.2	
15			•		Mill River	2.2	3.7	3.2	2.8	2.0		2.4	2.4	2.8			5.4	4.4	2.8	
16			•		Peters River	2.0	28.9	2.9	7.2	2.2		2.0	1.4				90.4	6.8		
17		.ļ	.			2.0	2.5	4.5	3.1	8.7		1.4	1.6	1.4			3.8	6.8	4.8	
24		<u>.</u>		•	Woonsocket WWTF	202.0	149.3	197.0	121.7	235.0		23.0	15.0	16.4		<u> </u>	297.0	350.0	227.0	
18		.ļ				3.0	2.6	7.0	17.1	1.6		1.8	3.4	11.6		ļ	3.8	10.6	22.5	
19	•															ļ	ļ			
20	•					2.8	3.3	9.8	6.0	7.0		2.0	4.2	3.8		ļ	4.7	13.8	8.2	
21		.ļ			5 11 5 7 7 8 1 1 2	1.4	3.3	5.7	6.0	4.0		2.0	1.8	2.4		ļ	5.3	12.2	9.6	
25	<u> </u>	<u>L</u>		<u>•</u>	Bucklin Point (Seekonk R.)	14.4	57.1	17.6	17.8	3.3		15.6	3.4	15.5			146.0	28.3	20.0	

Figure 4-128

Wet Weather Data - Storm III: Total Suspended Solids (mg/l)

	T	_	_								==	''			ı —				
	ď		_			Mean	Concen	tration	······	N	/linimur	n Conc	entratio	n	N	/laximun	n Conc	entratio	n
Station No.	Blackstone	Tributary	WWTF/CSO	Location	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom	Dry Weather	During Storm	24h After Storm	48h After Storm	72h After Strom
00	•				2.6	32.8	5.7	2.4			1.2	1.8	1.8			73.0	12.0	3.4	
22	********	1	•	CSO facility in Worchester		73.5	52.0		47.4		47.4					96.0			
01	•]			0.8	32.4	9.1	3.0			0.5	3.6	1.8	***************************************		53.4	14.4	4.8	
23		<u> </u>	•	UBWPAD, Worchester	2.6	5.4	4.0	4.0			1.6	1.4	1.8	***************************************		8.2	5.6	7.8	
02	•				6.4	25.9	10.4	2.2			1.2	3.6	1,4	***************************************		39.0	17.0	2.8	
03	•											***************************************							
04	•	<u></u>			3.0	67.9	11.4	3.7			0.5	4.4	2.0			129.2	26.6	6.0	
05		•		Quinsigamond River		0.9	2.5	2.3			0.6	1.2	2.2			1.4	4.0	2.4	
06	•	ļ			0.6	36.2	15.9	6.5			2.0	6.4	2.6			99.2	29.4	12.2	
07	•	<u> </u>			4.8	7.2	13.2	7.9	7.2		6.6	8.4	4.2			8.2	18.6	11.0	
08	•	<u> </u>			8.2	9.0	29.0	9.8	5.6		7.8	13.6	8.2			9.6	62.6	12.2	
09	ļ	•		Mumford River	1.6	2.4	2.9	3.7	3.8		2.0	1.6	1.0			3.0	4.0	11.2	
10		•		West River	1.0	3.0	2.3	2.1	0.6		1.0	1.2	1.0			5.2	4.0	2.8	
11	•	ļ		***************************************	5.8	4.7	23.1	10.5			2.8	6.0	5.2			6.0	42.4	14.2	
12	•																		
13	•			*****	4.6	3.2	4.5	9.5	3.4		2.4	3.8	4.4			3.6	5.2	13.4	
14	ļ	•		Branch River	2.6	2.2	7.5	2.3			1.0	2.0	1.0			2.8	20.2	4.4	
15	 	•	********	Mill River	8.0	17.1	7.6	11.7	6.6		3.8	6.2	2.2			43.2	10.4	28.0	
16	ļ	•		Peters River	3.4	16.8	20.6	18.7	2.4		3.0	3.2	2.0			44.0	53.4	56.0	
17	•	ļ			4.2	12.0	7.3	8.0	5.6		1.8	5.4	4.9			30.6	11.8	11.2	
24		ļ	•	Woonsocket WWTF	29.2	30.1	33.1	23.1			25.2	26.4	13.3			34.4	41.3	30.4	
18		ļļ			4.6	6.5	7.1	6.6			3.6	5.4	4.9			11.8	11.2	10.2	
19	•	ļļ		***************************************															,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
20	•	ļļ			3.8	6.3	11.8	9.1			2.0	5.6	6.8			11.8	26.4	12.0	
21	•	ļļ			5.0	14.1	5.3	8.4			3.0	1.8	6.2			31.4	9.8	11.0	
25			•	Bucklin Point (Seekonk R.)	10.0	21.7	18.6	15.5			9.0	8.4	6.8			35.6	43.2	31.2	

Figure 4-129
RIDEM Chemical Monitoring of Tributaries, Section 305b

Total Suspended Solids Concentration (mg/l)

Date	Round Top Brook	Pascoag River	Clear River	Abbot Run Brook (Cumberland)	Abbot Run Brook (North Attleboro)	Dry Weather (1)	Wet Weather (2)	Mixed Weather (3)
12-Mar-91	1.20	1.20	2.60	3.40	2.60	•	<u> </u>	
13-May-91	0.40	4.00	2.00	1.00	3.40		ļ	•
29-Jul-91	1.00	1.50	2.50	2.20	0.60		<u> </u>	•
06-Sep-91	1.60	2.60	2.40	3,00	1.40		ļ	•
26-Apr-93	1.80	1.80	3.40	1.20	3.20		•	.
10-Aug-93			2.40	3.40	0.80	•	ļ	ļ
27-Dec-93		3.60	0.80	2.20	1.00	•		ļ
11-Mar-96	1.50	2.80	1.10	1.10	1.50		ļ	•
14-May-96	1.80	1.80	3.20	3.00	6.20		ļ	•
20-Aug-96	10.80	4.30	2.20	2.50	4.60	•	ļ	ļ
02-Oct-96	1.20	1.00	1.40	2.00	1.00		ļ	•
14-Apr-98	0.86	4.14	1.44	1.98	4.54	•	ļ	ļ
05-Aug-98	1.43	1.57	3.87	1.47	0.80	•	ļ	ļ
26-Oct-98	2.77	2.33	4.13	2.20	1.97	•		ļ
20-Jan-99	1.20	2.33	2.00	2.97	2.50			•
19-Mar-99	1.90	2.13	3.80	1.97	0.53	•	ļ	
10-Jun-99	2.18	3.13	3.08	3.43	3.60	•	<u> </u>	
19-Aug-99	2.83	1.49	2.17	3.30	3.73	•	<u> </u>	<u> </u>
12-Oct-99	1.67	2.72	1.94	2.97	1.62		<u> </u>	•
15-Mar-00	0.66	1.16	1.33	2.00	2.25	•••••	<u> </u>	•
30-May-00	1.70	1.80	2.60	3.93	4.73	•	<u> </u>	<u> </u>
18-Sep-00	2.83	1.57	2.47	2.07	1.50		<u> </u>	•
11-Dec-00	0.80	7.23	0.53	3.20	1.77		<u> </u>	•
	atistical Sur							
Count	21	22	23	23	23	•	•	•
Mean	2.01	2.55	2.32	2.46	2.43	•	•	•
Minimum	0.40	1.00	0.53	1.00	0.53	•	•	•
Maximum	10.80	7.23	4.13	3.93	6.20	•	•	•
	atistical Sur		y Weathe	r				
Count	9	10	11	11	11	•		<u> </u>
Mean	2.85	2.57	2.64	2.71	2.63	•		
Minimum	0.86	1.20	0.80	1.47	0.53	•		
Maximum	10.80	4.30	4.13	3.93	4.73	•		
	al Summary				_			
Count	12	12	12	12	12		•	•]
Mean	1.37	2.54	2.02	2.23	2.25		•	•
Minimum	0.40	1.00	0.53	1.00	0.60		•	•
Maximum	2.83	7.23	3.40	3.20	6.20		•	

ND = Not detected

- (1) Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day.
- (2) Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or rainfall of more than 1.0" on days 2 and 3 prior to sampling.
- (3) Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Figure 4-130

Summary of Blackstone River Biomonitoring Data

Year	Bioassessment Result (%)	Biomonitoring Rating
1994	55.8	Moderately Impaired
1995	21.0	Severely Impaired
1996	56.3	Moderately Impaired
1997	62.5	Slightly Impaired
1998	68.8	Slightly Impaired
1999	50.0	Moderately Impaired
2000	62.5	Slightly Impaired
2001	50.0	Moderately Impaired

Figure 4-131

Biomonitoring Field Data

Taxa	Wood River (Reference Station)				Blackstone River Station			
	1998	1999	2000	2001	1998	1999	2000	2001
Hirudinea					2	1		1
Tubificidae					***************************************			
Oligochaeta			18	1	***************************************		***************************************	1
Isopoda								1
Amphipoda			14			1		1
Decapoda			2	1	1			
Gastropoda								
Pelecypoda			1	2			8	11
Coleoptera			16	16				3
Lepidoptera								
Tipulidae				1	1			3
Simulidae	2		1	3				
Tabanidae								
Culicidae								
Chironomidae			5	6	1	7	8	10
Plecoptera	6	25	3	10				
Siphlonuridae				2				
Stenonema							10	2
Limnephilidae				8				
Hydropsyche	82	36	12	15	79	91	46	60
Chimarra			3	12				4
Hemiptera						***************************************		
Diptera								
Porifera							·	***************************************
Megaloptera	8	25	6	3				······································
Sialidae								
Bivalvia								
Odonata		1	19	6			8	
Ephemeroptera	2	13		14	16		20	3
Nematoda								

Figure 4-132 **Biometric Indices**

	Wood River (Reference Station)				Blackstone River Station				
	1998	1999	2000	2001	1998	1999	2000	2001	
Total Number	100	100	100	100	100	100	100	100	
Taxa Richness	6	5	12	15	6	4	6	12	
Shredder/total	0.06	0.25	0.33	0.35	0.01	0.01	0.00	0.08	
EPT Index	90	74	18	61	95	91	76	69	
FBI	4.20	4.36	4.76	4.43	4.36	4.62	5.00	5.33	
% Contribution	82%	36%	19%	16%	79%	91%	46%	60%	
Scrapers/Filterers	0.05	0.36	0.55	0.78	0.20	0.00	0.54	0.12	
EPT/Chiron.			3.6	10.17	95	13	9.5	6.9	
Community Similarity									
Community Loss	Ref	0.95	0.88	Ref	0.98	0.99	0.96	0.92	
Jaccard Coef	Ref	1.000	1.000	Ref	0.200	0.125	0.286	0.421	
Taxa Richness			6		6	3	3	3	
Shredders/total			6		0	0	0	0	
EPT Index			6		6	6	6	6	
FBI			6		6	6	6	6	
% Contribution			0		0	0	0	0	
Scrapers/filter			6		6	0	6	0	
EPT/Chiron			6		6	6	6	6	
Community loss			3		3	3	3	3	
Total			81.3%		68.8%	50.0%	62.5%	50.0%	

Sources:

1998: Gould, 1998 1999, 2000: Pomeroy, 2000 2001: da Silva, S., 2002

5.0 DATA GAPS – INITIAL RECOMMENDATIONS

The final determination of data gaps depends in part on the selection of a water quality model. Different models require different data as input parameters. In addition, the degree of resolution (i.e., the lengths of individual river sections that will be modeled) needs to be determined. Therefore, the recommendations for data collection are preliminary and designed only to be a starting point for discussion.

5.1 Fecal Coliform, Copper and Lead

The relative contributions of fecal coliform, copper, and lead from major sources should be updated by resampling the BRI stations 12 to 21, as well as the Woonsocket WWTP. BRI stations were well-spaced to reflect the population density bordering the Blackstone River and to address other logical sources such as tributaries and impoundments (Figure 4-2). In addition, major storm sewers should be sampled.

5.1.1 Parameters

Parameters to be determined should consist at least of the following parameters (unless stated otherwise in Section 5.1.2):

- Flow
- Fecal coliform
- Hardness
- Total and dissolved copper (both components should be monitored to allow for calibration of the partitioning coefficient within the water quality model)
- Total and dissolved lead
- Total suspended solids
- Depending on the selected water quality model, other parameters may be required such as pH, dissolved organic carbon, major cation concentrations, and major anion concentrations.

These stations should be sampled several times during wet and dry weather.

5.1.2 Sampling Stations

The data from the BRI study are now 10 years old. Changes in contaminant loadings may have occurred that could have influenced the total loads in the river (such as the upgrades of the Woonsocket WWTF that may have affected its effluent quality). Further, dissolved metal concentration data are limited to only the dry weather event of the BRI study; there are no wet weather dissolved metals data.

At the same time, the BRI is the most comprehensive dry and wet weather study of the entire watershed. Therefore, a sampling program should incorporate the stations from the BRI to allow for comparisons. Additional stations should be added to address the goals of this TMDL project, however.

Suggested stations for a sampling program are listed below. This list may be modified after the water quality model to be used for this study has been determined and the segmentation for the modeling has been decided.

- 1. BRI Station 12 (Blackstone River): Determine loads coming from Massachusetts. This station could be moved to a location just downstream of the Tupperware Dam.
- 2. BRI Station 14 (Branch River): Determine the contributions of the Branch River to the Blackstone River. Specifically, fecal coliform concentrations appear to be high during dry and wet weather conditions.

- 3. Branch River (just downstream of Slaterville Dam): To determine the loading from the Branch River watershed, prior to receiving discharges from the Town of Slatersville. This station is particularly relevant for fecal coliform, and may not be needed for copper and lead.
- 4. BRI Station 13 (Blackstone River): Determine the concentrations in the Blackstone River prior to entering the main urban area of the City of Woonsocket, yet after the confluence with the Branch River.
- 5. BRI Station 15, or further downstream (Mill River): As close to its confluence with the Blackstone River as possible (considering that it partly runs underground in the City of Woonsocket).
- 6. Station at the MA/RI border (Mill River): Station just downstream of Harris Pond, to determine the loads entering the Rhode Island section of the river from Massachusetts.
- 7. BRI Station 16, or further downstream (Peters River): As close to its confluence with the Blackstone River as possible (considering that it partly runs underground in the City of Woonsocket).
- 8. Station at the MA/RI border (Peters River): To determine the loads entering the Rhode Island section of the river from Massachusetts.
- 9. BRI Station 17 (Blackstone River): Downstream of the main urban area of the City of Woonsocket as well as downstream of the confluence with Mill River and Peters River (since these two tributaries run underground before they enter the Blackstone River, they may receive discharges that are downstream from the BRI stations 15 and 16, respectively.)
- 10. BRI Station 24 (Woonsocket Wastewater Treatment Plant): The treatment plant was a considerable source for metals in the past.
- 11. BRI Station 18 (Blackstone River): Downstream of the Woonsocket WWTF, but upstream of the main urban area of the Town of Manville.
- 12. BRI Station 19 (Blackstone River): Downstream of the main urban area of the Town of Manyille.
- 13. Station between BRI 19 and 20 (Blackstone River): The distance between Stations 19 and 20 is large. A station could be added in the vicinity of the communities of Ashton or Berkeley.
- 14. BRI Station 20 (Blackstone River): Concentrations upstream of the Central Falls urban area and inflows of CSOs.
- 15. Abbot Run Brook: At the confluence with the Blackstone River. One or two additional stations could be considered within the Abbot Run Brook watershed since the brook flows from Rhode Island into Massachusetts and back into Rhode Island.
- 16. BRI Station 21 (Blackstone River): Slaters Mill.

In addition, the following stations could be considered:

17. Osram Sylvania Outfall: The lead and copper concentrations Outfall 200 of the Osram Sylvania Products Company were high. However, the plant has been downsized. Coordination with RIPDES is recommended to evaluate if Osram is a source at present.

- 18. Atlantic Thermoplastics: The fecal coliform concentrations in the outfall were high (although the flow from the outfall was low). Sampling could be conducted by RIDEM as part of compliance monitoring.
- 19. Major stormwater drainage pipes: Key stormwater drainage pipes from municipalities (other than CSOs in Central Falls) could be included in this survey. A survey prior to monitoring activities may be needed to develop a list of key pipes. Storm sewer should be targeted from various land uses.

As discussed in Section 2.9.5, the Cities and Towns of Woonsocket, Central Falls, Cumberland, Lincoln, and Pawtucket, as well as RIDOT were contacted to obtain existing mapping of stormwater. Woonsocket, Central Falls, and Pawtucket had reasonably complete stormwater mapping. Lincoln and Cumberland had limited data with detailed information from recent subdivisions. RIDOT has good mapping on reaches of state roads associated with drainage improvement projects. The mapping is not available in digital format providing limited usefulness in developing a GIS layer. Stormwater outfalls on river targeted river segments can be digitized to provide a figure showing potential sampling locations. Complete mapping to determine drainage areas for individual outfalls would be cumbersome requiring several approximations based on topography.

- 20. Sources in the vicinity of CERCLA and waste disposal sites: EPA is planning to collect samples in the Blackstone River adjacent to the Peterson and Puritan site. Generally, however, information about contributions from CERCLA, NPL, and waste disposal sites (Figure 2-14 and Section 2.9.6) is not available. A survey may be needed to assess the likelihood of contributions to the Blackstone River.
- 21. Stations that address the role of impoundments in Rhode Island: The data from Massachusetts indicate that impoundments are a significant source of metals during high flow events. The role of the impoundments in Rhode Island should be investigated to assess if the impoundment could also be a source. Water quality sampling should be complemented with sediment samples from major impoundments.
- 22. Key sources in Massachusetts: The State of Massachusetts may want to participate during sampling activities by monitoring at least some of the key sources for fecal coliform and metals, such as UBWPAD and the outflow from Rice City Pond. Based on the existing data discussed in Section 4, it appears that it will also require decreases in the loading to the Blackstone River within the watershed in Massachusetts in order to improve substantially in Rhode Island.

After the first few sampling events, the data should be evaluated for the following:

- Addition of stations: Additional stations could be added to increase the density of stations along the river.
- Elimination of stations: Some of the stations could be eliminated if they do not contribute to locating sources.
- Point source survey: High concentrations and loads should be investigated in specific river segments by searching for specific point sources, which could be added to the monitoring program or which could be monitored individually.
- Model requirements: Additional data needs should be assessed to improve the accuracy of the water quality modeling.

5.2 Fish Tissues

Tissues from fish should be analyzed to evaluate bioaccumulation of hazardous contaminants. Fish should be collected at several representative stations along the river. At each location, at least five each of a representative predator and benthic species, of a size to be determined, should be collected. Skin-on fillets from these fish could be composited prior to analyses. Analyses should, at a minimum, include PCBs, metals (cadmium, copper, lead, mercury), arsenic, and pesticides. PCBs are on the Freshwater Fish Consumption Advisory List, issued by the Massachusetts Department of Public Health on June 2002 (www.state.ma.us/dph/beha/fishlist.htm) for the Blackstone River above the Blackstone Gorge.

5.3 Biodiversity Impacts

It appears that organic loading was a primary cause for the patterns observed in the macroinvertebrate data. These data were the basis for placing the Blackstone River on the 303(d) List for biodiversity impairments. A large point source at the time for organic loading was the Woonsocket WWTF. Since the fall of 2001, the WWTF was upgraded and the effluent was improved, resulting in lower organic loading to the river. It therefore appears wise to conduct the monitoring for biodiversity impacts in the Blackstone River in a two-phased approach:

5.3.1 Phase 1: Macroinvertebrate Monitoring at existing Station

Macroinvertebrate monitoring should be conducted at the station below the Manville Dam during the summer, using the identical approach that was used for the monitoring conducted between 1991 and 2001. In addition, relevant instream water quality data should be collected at the station including dissolved oxygen, temperature, pH, nutrient concentrations. In addition to the Blackstone River station, the Wood River station should be sampled.

Data should be compared to the historic data. Data should further be evaluated alongside existing water quality from the Blackstone River during dry and wet weather and with water quality data from the effluent of the Woonsocket WWTF.

If indeed the WWTF was the primary cause of the impairment at the station, the benthic community conditions in the Blackstone River should be improved.

5.3.2 Phase 2: Expanded Macroinvertebrate Monitoring along the Blackstone River

If the Phase 1 macroinvertebrate survey results in the same findings as the surveys conducted between 1991 and 2001 monitoring period, a more extensive survey is recommended to identify the stressor(s) for the biodiversity impairments along the Blackstone River. Specifically, this survey would consist of the following components:

- Macroinvertebrate sampling at the following stations:
 - Wood River (Biological Reference Station)
 - Blackstone River, just downstream of the Massachusetts-Rhode Island border
 - Blackstone River biomonitoring station (existing station downstream of the Manville Dam)
 - Blackstone River, just upstream of Slaters Mill
- Ambient water quality monitoring which includes the following parameters:
 - Dissolved metals (clean metals)
 - Metals in sediment
 - Chemical oxygen demand (COD) and biological oxygen demand (BOD)

- Total organic carbon (TOC)
- Dissolved organic carbon (DOC)
- Nitrogen
- Phosphorous

Monitoring should include dry and wet weather conditions and should be conducted at the same stations as for the macroinvertebrate sampling. In addition, the Woonsocket WWTF effluent should be tested. Finally, sampling should be coordinated with other water quality monitoring surveys on the river.

- Diurnal parameters should be monitored for dissolved oxygen, temperature, and pH at the following stations:
 - Reference station
 - Blackstone River Biomonitoring Station (below Manville Dam)
- Instream acute and chronic toxicity should be tested using indicator species at the macroinvertebrate sampling stations.

5.4 Valley Falls Pond

To develop and evaluate management alternatives for Valley Falls Pond requires additional data. At present, there is only a nutrient data set from this system from a single season. However, several of the listed concerns for this system relate directly to nutrient loads and levels, i.e., phosphorus, nutrients, and diversity. In addition, there are no data available on the configuration and flows within this wetland and pond system (depths, channels, flows, exchange with the river, watershed inputs). In addition, nutrient issues require additional information on nutrient cycling processes and related effects, such as recycling rate, benthic versus watercolumn algal blooms, watercolumn dissolved oxygen. To address the nutrient issues in Valley Falls Pond a targeted nutrient analysis needs to be conducted which would include:

- Direct land inputs of nutrients
- Bathymetric survey of the pond, including water level changes with different flows in the Blackstone River
- Determination of exchange with river (includes placement of a gauge in the pond)
- Additional sampling of key nutrient parameters in the pond and adjacent river (nitrate+nitrite, orthophosphate, ammonium, particulate nitrogen, particulate phosphorus, total nitrogen, total phosphorus, chlorophyll, dissolved oxygen, temperature, depth). The parameters should be investigated during dry and wet weather conditions.
- Survey of pond to determine macrophyte issues (versus watercolumn chlorophyll)
- Estimate of summer recycling of nitrogen and phosphorus
- Light penetration
- Sediment organic matter pools/deposition rates
- Exchange with the emergent wetland portions of the system.

These data would need to be integrated into a simple model to determine the relative effects of the local watershed, the river, and recycling on controlling the habitat quality of this system. Source reduction and management alternatives could be developed thereafter.

REFERENCES

Documents

- ASA (Applied Science Associates, Inc.), 1992a, Receiving Water Quality Modeling for the Combined Sewer Overflow Facilities.
- ASA (Applied Science Associates, Inc.), 1992b, Blackstone River Water Quality Study 1991 Field Program Results.
- Berger (Louis Berger Group, Inc.), 1997, Conceptual Design Report Amendment for the Combined Sewer Overflow Control Facilities Program. Prepared for the Narragansett Bay Commission.
- Clements, W.H., D.S. Cherry, and J. Cairns, Jr. 1988, Structural alterations in aquatic insect communities exposed to copper in laboratory streams. *Environ. Tox. and Chem.*, 7(9):715-722.
- Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe, 1979, Classification of Wetlands and Deep-Water Habitats of the United States.
- Cummins, K. W., 1973, Trophic relations of aquatic insects. Annual Reviews of Entomology, 18:183-206.
- da Silva, S., 2002, Establishment and Filed Testing of a Rapid Bioassessment Screening of Rhode Island Freshwater Benthic Macroinvertebrates, 2001 Results. Prepared for the Rhode Island Department of Environmental Management.
- Dodds, W. K., Smith, V. H., and K. Lohman, 2002, Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. *Canadian Journal of Fisheries and Aquatic Sciences*, 59:865-874.
- EEI (Ecology and Environment, Inc.), 1987, Biological Survey of the Blackstone River, Woonsocket, Rhode Island. Prepared for Ocean State Power.
- EEI (Ecology and Environment, Inc.), 1988, Effects of Ocean State Power Water Withdrawal on Dissolved Oxygen in the Blackstone River. 195 Sugg Road, P.O. Box D, Buffalo, NY, 14225.
- Gould, M., 1998, Establishment and Filed Testing of a Rapid Bioassessment Screening of Rhode Island Freshwater Benthic Macroinvertebrates, 1998 Results, 1998. Prepared for the Rhode Island Department of Environmental Management.
- Johnston, H.E. and D.C. Dickerman, 1974, Availability of Groundwater in the Branch River Basin, Providence County, Rhode Island.
- Kerr, M. and Lee V., 1996, Water Quality in Rhode Island's Urban Rivers: Blackstone, Moshassuck, Pawtuxet, Ten Mile, Woonasquatucket River Rescue Results 1990-1995.
- Maietta, R.J., 1993, *The Blackstone River Fish Toxics Monitoring 1993*. Massachusetts Department of Environmental Protection.
- MADEP (Massachusetts Department of Environmental Protection), 1998, *Blackstone River Basin Water Quality Assessment Report*, Executive Office of Environmental Affairs, Bureau of Resource Protection, Division of Watershed Protection.

- MADEP (Massachusetts Department of Environmental Protection), 1990, *Unpublished Data Water Quality Survey 1989*. Westboro, MA.
- MADEQE, (Massachusetts Department of Environmental Quality Engineering), 1985, Blackstone River Basin 1985 Water Quality Survey Data and Wastewater Discharge Survey Data. Division of Water Pollution Control, Westboro, MA.
- McCafferty, W. P., 1998, Aquatic entomology: the fisherman's and ecologists' illustrated guide to insects and their relatives. Jones and Bartlett Publishers, Sudbury, Massachusetts.
- NBC (Narragansett Bay Commission), 1997 to 2001, Tributary Monitoring of Fecal Coliform, 1997 to 2001.
- Pomeroy, S., 2000, Establishment and Filed Testing of a Rapid Bioassessment Screening of Rhode Island Freshwater Benthic Macroinvertebrates, 1999 Results and 2000 Results. Prepared for the Rhode Island Department of Environmental Management.
- RIDEM (Rhode Island Department of Environmental Management), 1995, Background levels of priority pollutant metals in Rhode Island soils.
- RIDEM (Rhode Island Department of Environmental Management), 1996, Rules and Regulations for Groundwater Quality.
- RIDEM (Rhode Island Department of Environmental Management), 2000, State of the State's Waters-Rhode Island, 2000 Section 305(b) Report (Section III): Stream Sampling Sites for 1991-2000, Chemical Monitoring.
- RIDEM (Rhode Island Department of Environmental Management), unpubl. data, *Providence-Seekonk River Total Maximum Daily Load (TMDL) Project*.
- RIDEM (Rhode Island Department of Environmental Management), 2001a, RIPDES Stormwater Permits Database for Permitted Facilities in Blackstone River.
- RIDEM (Rhode Island Department of Environmental Management), 2001b, Discharge Monitoring Report Data for Permitted Facilities in Blackstone River.
- Rhode Island Statewide Planning Program, 1998, Rivers Policy and Classification Plan (Report Number 92).
- Rhode Island Statewide Planning Program, 1999, An Analysis of Rhode Island Land Use. Techn. Paper 147.
- URI (University of Rhode Island), 1992, Department of Civil and Environmental Engineering, System Wide Modeling for the Providence Area Combined Sewer System.
- URI (University of Rhode Island), unpubl. data, Cooperative Extension, URI Watershed Watch Lakes Monitoring Data 1993-2000.
- USACE (U.S. Army Corps of Engineers), 1994, Blackstone River Restoration Study.
- USEPA (U.S. Environmental Protection Agency), 2001, (Refers to summary data on each of the NPL site maintained on web page). The web site is "EPA Region 1, Superfund Program, Summary of NPL sites".

- USEPA (U.S. Environmental Protection Agency), 1989, Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. United States Environmental Protection Agency Office of Water, EPA 444/4-89-001, Washington, D.C.
- USFWS (U.S. Fish and Wildlife Services), 1989, Final Environmental Impact Statement 1989-2021: Atlantic Salmon Restoration in New England. Region 5, Newton Corner, Massachusetts.
- USGS (U.S. Geological Survey), 2000, Multiple Station Analyses: Water Resources of the Blackstone River Basin.
- Wetzel, R. G., 2001, Limnology: Lake and River Ecosystems. Third edition. Academic Press, Orlando, Florida.
- Winner, R. W., Boesel, M. W., and M. P. Farrell, 1980, Insect community structure as an index of heavy-metal pollution in lotic systems. *Canadian Journal of Fisheries and Aquatic Sciences*, 37:647-655.
- Wright, R.M., 1988, Development of a One Dimensional Water Quality Model for the Blackstone River: Part 2; Trace Metal Modeling in the Blackstone River. Narragansett Bay Project, Rhode Island Department of Environmental Management, Providence, RI.
- Wright, R.M. et al., 1991a, Problem Assessment and Source Identification and Ranking of Wet Weather Discharges Entering Providence and Seekonk Rivers, 1991.
- Wright, R.M., I. Runge, Y-S. Lee, and R.R. Chaudhury, 1991b, The Blackstone River 1990.
- Wright, R.M., P. Nolan, D. Pincumbe, E. Hartman, and O.J. Viator, 2001, *The Blackstone River Initiative: Water Quality Analysis of the Blackstone River Under Wet and Dry Weather Conditions.* May 2001.

Personal Communication

Gaucher, J. T., City Engineer, City of Woonsocket, January 2002.

King, John, Dr., University of Rhode Island, April 8, 2002.

WATER QUALITY - BLACKSTONE RIVER

Final Report 1: Existing Data Volume II: Appendices

Submitted to: Rhode Island Department of **Environmental Management**

January 2004

Submitted by:

The Louis Berger Group, Inc.

in association with

Applied Science Associates, Inc.

University of Rhode Island University of Massachusetts - School of Marine Science and Technology

Rhode Island Department of Environmental Management

WATER QUALITY - BLACKSTONE RIVER

FINAL REPORT 1: EXISTING DATA Volume II: Appendices

Submitted to:

Rhode Island Department of Environmental Management

Office of Water Resources

235 Promenade Street

Providence, Rhode Island 02908

Submitted by: The Louis Berger Group, Inc. 295 Promenade Street Providence, RI 02908

in association with:

Applied Science Associates, Inc.

University of Rhode Island
University of Massachusetts - School of Marine Science and Technology

Table of Content Volume II: Appendices

Appendix 1:	University of Rhode Island: Wet Weather Study (Wright et al., 1991a)
Appendix 2:	Systemwide Modeling for the Providence Area Combined Sewer System (URI, 1992)
Appendix 3:	University of Rhode Island: The Blackstone River 1990; Pollutant Discharges and Water Quality Review (Wright et al., 1991b)
Appendix 4:	Blackstone River Water Quality Study, 1991 (ASA, 1992b)
Appendix 5:	Providence - Seekonk River Total Maximum Daily Load (TMDL) Project (RIDEM, unpubl. data)
Appendix 6:	River Rescue Project: Water Quality in Rhode Island's Urban Waters (1990 to 1995) (Kerr and Lee, 1996)
Appendix 7:	URI Watershed Watch Lakes Monitoring Data 1993 to 2000 (URI, 1993 to 2000)
Appendix 8:	State of the State's Waters- Rhode Island, 2000 Section 305(b) Report (Section III): Stream Sampling Sites for 1991-2000 (RIDEM, 2000)
Appendix 9:	Multiple Station Analyses: Water Resources of the Blackstone River Basin, MA (USGS, 2000)
Appendix 10:	Water Quality Sampling of Tributaries, 1997 - Present (NBC, 1998 - 2001)
Appendix 11:	The Blackstone River - Fish Toxics Monitoring, Massachusetts Department of Environmental Protection (Maietta, 1993)
Appendix 12:	Rapid Bioassessment Screening of Rhode Island Freshwater Benthic Macro-invertebrates (Gould, 1998; 1999; 2000)
Appendix 13:	Sediment Core Data (Dr. John King, University of Rhode Island, unpublished data)
Appendix 14:	RIPDES Permitted Discharges, Effluent Monitoring Data, 1997-2001 (Unpublished data)
Appendix 15:	The Blackstone River Initiative: Water Quality Analysis of the Blackstone River Under Wet and Dry Weather Conditions (Wright et al., 2001)

Appendix 1

University of Rhode Island: Wet Weather Study

Wet Weather Sampling

(Wright et al., 1991a)

Blacksto

Rhode Island DEM

Source: RIGIS, MASSGIS

File: BW SMPL.apr

May 2002

Blackstone River Water Quality

Figure A1-1 URI WET WEATHER STUDY, 1991

(111 001 100)	77	2	<u>ي</u>	22 °	S	22 :	일 :	3 8	8	ţ	-	280	3	12	-	Ċ.	စ္က	5	8	2 3	- 4	200	9	က္ထ		3.1	27	390	2	
Enterococci (col/100 ml)													•																	
E.Coli (col/100 ml)	ı	•						-	-			2,000	9	110		52	150	180	190	440	3 4	320	220	200		180	2	720	25	
Fecal Coliform (MPN/100ml)	47	40	8	4 43	9	57	3 90	2.800	3,700	980		2,100	200	240		62	230	310	440	260	2 5	370	640	200		250	2	800	3/0	
(J/gm) &HN	0.13		0.33	0.53		0.49	70.0	5.6	0.33		0.12	Ç	Z	0.14		0.25	0.20	0.23	0.15	0.17	0.0	0.28	0.29	0.04		0.28	0.32	0.33	O.20	
PO4 (m9/L)	60.0		0.23	0.24	į	0.12	,	 	0.17		0.15	0	70.0	0.10		0.22	0.56	0.52	0.42	0.42	0.48	0.49	0.47	0.32		0.50	0.48	0.47	0.42	
(ח/6ש) EON	2.86		2.99	3.01		2.72	7	5.7	2.27		1.84	č	2.0.7	2.00		2.17	3.51	3.79	3.76	3.38	4 02	4.31	4.20	4.11		4.36	4.74	4.77	4.07	
BOD2 (mg/l)	2.2		2.4	9	:	3.0	ć	2.0	0.4		2.0	5	3							T									Ť	·
Mickel-total (ug/l) [≁]																		·												
Nickel-part. (ug/l) *	L	L												_												L			╧	
Nickel-diss. (ug/l) *	L										_																		_	
* (I\gu) lesos-bes-L		_																												
Lead-part. (ug/l) *	L	L			ations						_															_			1	
Lead-diss. (ug/l) *	L	L			ncentr																								_	
Copper-total (ug/l) *	L	L			netal co									<u> </u>			_			_										
Copper-part. (ug/l) *	L	L			d for n										,															
Copper-diss. (ug/l) *	L	_			* No data collected for metal concentrations																								_	
* (I/gu) lstot-muimordD	L	L			o data o									<u> </u>						_									_	
Chromium-part. (ug/l) *	L	L	_		ž															_									_	
Chromium-diss. (ug/l) *	L	L												_						_	_								1	
* (I\gu) IstoT-muimbsO	L	L																								<u> </u>			1	
Cadmium-part. (ug/l) *	L	L									_			<u></u>						_						<u></u>			1	
Cadmium-diss. (ug/I)*	<u> </u>	2	~	0 0	1 (0)	0	4 "	0 ~	10	2	4	ი 1	<u></u>	8		4	3	2	0	_		00	-	_		3	2	- -		
TSS (mg/l)	8	7.	-0	7.6	13.	ω̈́.	o ,	- 2	12	13.	12.	ை ப		6.8		8.4	17.	13.	12	13.	7 7	14.0	14.	1.		10.	11.	12.1	12.	
WOIT (<i>e</i> ?o)	L	L	<u>.</u> _																_									_	_	
əmiT	8:05	12:10	15:15	18:20	0:35	4:15	7:58	16:05	20:00	23:51	3:55	7:58	20:25	21:00		22:15	15:15	6:55	9:40	12:15	12:00	23:40	4:15	7:15		14:50	23:00	5:50	11:00	
Date	5/10/89	5/10/89	5/10/89	5/10/89	5/11/89	5/11/89	5/11/89	5/11/89	5/11/89	5/12/89	5/12/89	5/12/89	68/71/6	5/13/89		5/15/89	6/17/89	6/13/89	6/13/89	6/13/89	6/13/89	6/13/89	6/14/89	6/14/89		6/14/89	6/14/89	6/15/89	6/12/89	
Dry Weather, Rainfall, or Period affer rain	Dry	Rain	Rain	Rain	Rain	Rain	Rain	Rain	Rain	Rain	Rain	24h	24h	48h	48h 48h	72h 72h	Dry	Rain	Rain	Rain	24h	24h	24h	24h	24h 24h	48h	48h	48h (1)	48n (1)	72h (1)
	H	S	— (O nz	Σ		7									i	H	S	-	0 0	۷ 2	_	က						_;_	

Table A1-1
URI Storm Sampling of the Blackstone River (Station BRSL), at the MA/RI State Line (Wright et al., 1991) -TSS, Metals, Bacteria, Nutrients

Dry Weather, Rainfall, or Period after rain	Dry Weather	Count. all storms	Mean(**) all Storms	Minimum, all storms	Maximum, all storms	Wet Weather - during storm	Count, all storms	Mean(**) Storm 1	Mean(**) Storm 2	Mean(**) Storm 3	Mean(**) all Storms	Minimum, all storms	Maximum, all storms	Wet Weather - up to 24h after storm	Count, all storms	Mean(**) Storm 1	Mean(**) Storm 2	Mean(**) Storm 3	Mean(**) all Storms	Minimum, all storms	Maximum, all storms	Wet Weather - up to 48h affer storm	Count, all storms	Mean("") Storm 1	Mean(") Storm 2	Mean("") Storm 3	Mean(**) all Storms	Minimum, all storms	Maximum, all storms	Wet Weather - 3/4 days after storm	Count, all storms	Mean(**) Storm 1	Mean("") Storm 2	Mean(**) all Storms	Minimim all stoms	
əfsQ			SI	SI	US.	storm					JS	S	<u>ا</u>	24h after storn				_	JS	S	ns L	18h after ston	***************************************			_	JS	S	ر ا	vs after storm				_ 9	g.	2
-Time														اع								اء								(2)						_
Flow (cfs)	[_[_[_
(I/ōɯ)		2	13	8.2	17.8		15		10.4	12.8	11.6	7.2	13.6		22		6.6	13.1	11.5	5.2	14.0		25	,	7.6	12.7	11.2	5.2	14.0		Ŧ	-	8.4	4.8		
Cadmium-diss. (ug/l)*													1	}							1	f								-	1					_
Cadmium-part. (ug/l) *													\dashv	}							\dashv	}					-		\forall	-	1					
* (l\gu) lstoT-muimbsO			_				-				-		-	-			-		-		+	-	+				+		+	-	\dagger					_
Chromium-diss. (ug/l) *			_								1		-	-	-				-		\forall	ŀ	-				-		\dashv	-	+					
Chromium-part. (ug/l) *		-	<u> </u>	 							-		\dashv	-	-						\dashv	-	1				+		+		+				-	_
Copper-diss. (ug/l) *		_	_	-			H				+		-	-	+						\dashv	-	+				+		+	}	+					_
Copper-part. (ug/l) *											+		$\frac{1}{2}$		1						4	}	+				-		\dashv	-	+					_
Copper-total (ug/l) *											_		-		1				_		\downarrow		1				-		4	ŀ	_					_
Lead-diss. (ug/l) *											-		4		-						\downarrow	-	_				-		\downarrow	-	+					_
Lead-part. (ug/l) *			_								_		_	}							4		1				_			-	-					_
* (I\gu) lstof-bsed				<u> </u>																										-	_					
Nickel-diss. (ug/l) *											-												_				_				1					
Nickel-part. (ug/l) *																																				
Mickel-total (ug/l) *																																				_
BOD2 (mg/l)		1	2.2	2.2	2.2		9		2.50		2.50	9.	4.00		7		2.36		2.36	1.50	4.00			0	2.30		2.40	3.50	9.4 S		0					_
NO3 (mg/L)		2	3.19	2.86	3.51		6		2.56	3.64	3.10	1.84	3.79		15		2.48	3.92	3.20	1.84	4.31		18	0	7.47	9.4	3.23	1.84	4.74			7	77	2.17		
PO4 (mg/L)		2	!	0.09			6		0.17					L	15				i	0.07		L	18					0.07					0.22	0.22	<u> </u>	
(ח/6m) 2HN				0.13			6		0.34				ı	L	15					0.0		L	18					0.04	_				67:0	0.25		
Fecal Coliform (MPN/100ml)				47			14		165				_		21				- 1	88 2	_	L	24					9 9					70	62		
E.Coli (col/100 ml)			ļ	150			14		441		•				21					32		L	24		ň 6	3 6	35	32.0	8, Z							
Enterococci (col/100 ml)				30			4 14		1 210				1		1 21					2 8	1	L	4 24				•	0 8.0	- 1	L	_		76	25	_	

 ^(**) Mean is geometric for fecal coliform.
 (1) New rainstorm between appr. 6/15/89, 0:00, and 6/15/90, 23:00h, with 0.8" of rain. These data were excluded from the statistical summary.
 (2) Storm 2 only.

Table A1-2
URI Storm Sampling of the Blackstone River (Station WSTP), Woonsocket Sewage Treatment Plant (Wright et al., 1991) -TSS, Metals, Bacteria, Nutrients

E <i>nt</i> erococci (post-chlorination) (col\100 ml)		τ				n c	٥	0.1		ଯ	0.1	540	4	2700		1570	200	4-	8,900	0	~		0 0	>		-	100	1.030	,	
E.Coli (post-chlorinated) (col/100 ml)	5300	13000	0 00	000,00		ç	8 0	0			-	19,000		31000		15100			37,000				0 0	>		20	•	5 0		
Fecal Coliform (post-chlorinated) (MP0V100ml)	16,750	14,000	000	000,54		5	017	. 6		10	0	23,000	-	36,000		16,500	0	11	49,000	0	0		0	>		09	0	000,		
(J/6m) £HN	5.32		6.13	2.85		5.20	7.76		7.24		6.15		12.2	0.89		1.45	ı		1.31									1.14	1	
PO4 (mg/L)	10.36		11.14	10.76		10.80	10.96		11.33		10.48		8.21	7.51		5.89			14.93									16.99	1	
(J/gm) EON	17.88		11.16	15.76		14.70	16 71	<u>.</u>	16.45		16.01	,	14.17	29.60		41.55	29.54		27.63	-								11.47		
BOD2 (m3\l)	14.0					8.0													23.0	20.0		8.0	,	4. ⊃.		10.0	0.9			
Nickel-total (ug/l) *	L																												L	
Nickel-part. (ug/l) *	_										_																		_	
Nickel-diss. (ug/l) *														L			L			_										
* (l\gu) stot-bsa_																														
Lead-part. (ug/l) *	-				rations																									
* (l/gu) . ssib-bsə .l					ncent																					_			L	
Copper-total (ug/l) *					stal co																									
Copper-part. (ug/l) *					No data collected for metal concentrations																									
Copper-diss. (ug/l) *					lecte																									
Chromium-total (ug/l)					datacc																									
Chromium-part. (ug/l) *					ž									L																
Chromium-diss. (ug/l) *																														
* (l/gu) lstoT-muimbsD																														
Cadmium-part. (ug/l) *																														
Cadmium-diss. (ug/l)*	L																													
SST (1/6m)	15.0	50.6	20.0	0.5 0.	22.0	0	28.0	38.0	30.0	24.0	9.3	13.0	16.0	12.0		8.0									_					
Flow (cfs)														Γ						T				•						
	8:45	13:00	16:02	22:00	1:35	4:50	2 30	16:40	20:25	0:40	4:25	8:35	c1:12	21:50		23:00	16:10	7:45	10:10	15.35	18:40	0:10	4:45	8:15		15:25	23:30	3:20		
Date	5/10/89	:		5/10/89										5/13/89		5/15/89		:	6/13/89	:			6/14/89	6/14/89		:		6/15/89		
Dry Weather, Rainfall, or Period after rain	Dry			Z Zain			Z Kaln	Rain	Rain	Rain	Rain	24h	24h 24h	48h	48h 48h	72h 72h	Dry		Rain				3 24h	24h 24h	24P	48h		48h (1)		72h (1)

Table A1-2
URI Storm Sampling of the Blackstone River (Station WSTP), Woonsocket Sewage Treatment Plant (Wright et al., 1991) -TSS, Metals, Bacteria, Nutrients

	Date	Flow	(8i2) SST	Cadmium-diss. (ug/l)*	Cadmium-part. (ug/l) *	* (Ngu) IstoT-muimbsO	Chromium-diss. (ug/l)*	Chromium-part. (ug/l)*	*(l/gu) lsioi-mium-fotal (ug/l) *	Copper-diss. (ug/l) *	Copper-total (ug/l) *	* (l/gu) .************************************	Lead-part. (ug/l) *	* (I/gu) l sioi-bea d	Nickel-diss. (ug/l) *	Nickel-part. (ug/l) *	Mickel-total (ug/l) *	(Ngm) &dO8 (1, 4, 6)	(J/gm) 60N (23.7 2 23.7 2 29	10.56 (mg/L)	(J,0m) 8HN (mg/L)	Fecal Coliform (post-chlorinated) (MPN/10ml) (MP0.1/NPM)	E.Coli (bost-chlorinated)	(col/100 ml) Enterococci (post-chlorination)
S Wet Weather - during storm T Count, all storms	orm			6					-	-	-							2.0	6	6	6		12	12
Mean(**) Storm 1 C Mean(**) Storm 2 S Mean(**) Storm 3			33.6															8.0	15.1	l	5.9	10	4 5	63 226 42 2,968
Mean(**) all Storms Minimum, all storms Maximum, all storms			33.6 9.3 50.6	60 67 15														8.0 8.0 23.0	19.9 11.2 27.6	12.6 10.5 14.9	9.7 0.3 7.8	51 0 49,000		
Wet Weather - up to 24h after storm	after storm	-	= =				\dagger	$\ \cdot\ $	$\ \cdot\ $	$\ \cdot\ $	$\left\{ \right. \right\}$	$\left\{ \left. \right \right\}$	$\mid \mid$					5.0	15	l i	15			
Mean(**) Storm 1 Mean(**) Storm 2 Mean(**) Storm 3			30.1															8.0	15.0	10.5	5.4	2	5,7	63 233 89 1,272
Mean(**) all Storms Minimum, all storms Maximum, all storms			9.3 50.6															8.0 4.0 23.0	15.2 5.0 27.6	13.1 8.2 17.6	0.3	8 0 49,000		
Wet Weather - up to 48h affer storm Count, all storms Mean(**) Storm 1 Mean(**) Storm 2	after storm		12	61: "5														7.0	18	18	18	2 4		
Mean(**) Storm 3 Mean(**) all Storms Minimum, all storms Maximum, all storms			28.6 9.3 50.6															2.4 4.0 23.0	13.6 15.2 3.1 29.6	16.0 13.1 7.5 17.6	3.0 3.9 0.3 7.8	3 11 0 49,000	3 4,631 1 6,111 0 0 0 37,000	31 1,001 11 705 0 0 00 8,900
Wet Weather - 3/4 days after storm Count, all storms	after storm (2)																	0.0	-	7	1		1	<u></u>
Mean(**) Storm 1 Mean(**) Storm 2 Mean(**) Storm 3			8.0																41.6	5.9	1.5	16,500	0 15,100	00 1,570
Mean(**) all Storms Minimum, all storms	_		8.0								_								41.6	5.9	1.5	16,500	0 15,100	1,570

 ^(**) Mean is geometric for fecal coliform.
 (1) New rainstorm between appr. 6/15/89, 0:00, and 6/15/90, 23:00h, with 0.8" of rain. These data were excluded from the statistical summary.
 (2) Storm 2 only.

	lω	0	ω τ	- m	- c	2 0	0.0	n C		0	0	0	:	- CO		ιo:	0	0 0	<u> </u>	d			_	0	: 0	N	0	က္း		
Enterococci (col/100 mt)					61							_		35	27			20				_	~			29	86	83		
E.Coli (col/100 ml)	49	45	90	330	240	990	2,900	2,800	220,000	180,000	790		-	280	390	30	150	150	540	130	230	220	330	430	30,	420	250	3,600		
Fecal Coliform (Im001\IVQM)	55	83	19	410	390	068	3,100	3,000	290,000	250,000	830	0.1		310	200	190	220	180	029	180 85	240	490	350	430		ეე <u>ი</u>	270	4,600		
(J/gm) EHN	0.17		0.17	0.12	ç	7.0	0.16	0 15)	90.0		0.0		0.12	0.03	0.17	0.16	0.16		0.17	0.17	0.19	0.01	0.17		0.22	0.25	0.19		
P O4 (mg/L)	0.17		0.15	0.18	ç	<u>.</u>	0.13	0 12		0.10		0.04		0.13	0.09	0.35				0.34	0.36	0.44	0.47	0.32	l	0.41		0.50		
/O3 (mg/L)		<u>l</u>	2.54	2.63			2.39	2 15	i	1.86		1.74		1.98	2.11	4.07	3.13	2.92		3.06	3.42	3.57	3.54	3.99		4.09	4.02	4.30		
BOD2 (mg/l)	\$		2.0	1.6		7.7	2.5			2.7		1.60																		
Nickel-total (ug/l) •													-																	
Mickel-part. (ug/l) *													-																	
Nickel-diss. (ug/l) *																														
Lead-total (ug/l)											_																			
read-рап (I/Gu) *	L				ions																									
* (l\gu) . ssib-bs9					centrat																									
Copper-total (ug/l) *					etal cor																									
Copper-part. (ug/l) *	L				data collected for metal concentrations																									
Copper-diss. (ug/l) *	L				sollecte																									
* (Ngu) Istot-muimordD					o data (
Chromium-part. (ug/l)*																														
Chromium-diss. (ug/l) *																														
* (I/gu) IstoT-muimbsD	L																													
Cadmium-part. (ug/l) *																														
* (l/gu) . ssib-muimb sD	L																													
SST (Ngm)	6.2	7.4	0	7.6	2.0	12.8	12.0	14.0	17.6	22.0	18.0	10.0		7.4	6.8	15.2	9.0	9.4		4. 0	7 6	0.6	8.0	9.0		9.5	9.4	8.7		
Flow (cfs)		10	10.	<u> </u>	<u> </u>	0.10				10	_				10	I.C.	_	ю.	2	<u> </u>							10	25		
-fime		1			1:30									22:26	23:25			10:45	- 1						- 1	16:00		12:35		
əfsQ	5/10/89	5/10/89	5/10/89	5/10/89	5/11/89	5/11/89	5/11/89	5/11/89	5/12/89	5/12/89	5/12/89	5/12/89		5/13/89	5/14/89	6/12/89	6/13/89	6/13/89	6/13/89	6/13/89	6/13/89	6/14/89	6/14/89	6/14/89		6/14/89	6/12/89	6/12/89		
רוץ Weather, Rainfall, סר סר Period affer rain	싦	Rain	Rain	Rain Rain	Rain	Rain Rain	Rain	Rain	Rain	Rain	24h	24h	147	84 184 184	72h 72h	Dry	Rain	Rain	Kain	24h 24h	24h	24h	24h	24h	24h	48h 48h	48h (1)	48h <i>(1)</i>	72h <i>(1)</i>	72h <i>(1)</i> 72h <i>(1)</i>
	t	S	⊢ (o ⊯	Σ	7		_	_		_				<u> </u>	t	S	-	0	~ :	•	6					_	_		

Table A1-3 URI Storm Sampling of the Blackstone River (Station BRCF), Central Falls (Wright et al., 1991) -TSS, Metals, Bacteria, Nutrients

Dry Weather, Rainfall, or Period after rain Date Time	Dry Weather	T Count all storms				S Wet Weather - during storm	┙	C Mean(**) Storm 1		Mean(**) all Storms	Minimum, all storms	Wet Weather - up to 24h after storm		Count, all storms Mean(**) Storm 1	Mean(**) Storm 2	Mean(**) Storm 3	Mean(**) all Storms	Minimum, all storms Maximum, all storms	Wet Weather - up to 48h after storm	Count, all storms	Mean(**) Storm 1	Mean(") Storm 2	Mean(") Storm 3	Minimum all storms	Maximum, all storms	Wet Weather - 3/4 days after storm (2)	Count, all storms	Mean(**) Storm 1	Mean(**) Storm 2	Mean(**) Storm 3	Mean(**) all Storms	Minimum, all storms	Maximum, all storms	(**) Mean is geometric for fecal coliform.
Cadmium-part. (ug/l) * Cadmium-Total (ug/l) * Chromium-diss. (ug/l) * Chromium-part. (ug/l) * Chromium-total (ug/l) *										-																		-						Ē
Copper-total (ug/l) * Lead-diss. (ug/l) * Lead-part (ug/l) * Lead-total (ug/l) * Mickel-diss. (ug/l) *																																		
Mickel-fotal (ug/l) *		L	3.29	2.5	4.1		5 8	224 236			1.6	- 1	l	6 15			L	2.7 4.0	ı	6 17					2.7 4.1	ı	0 1		2.1		2.1			
PO4 (mg/L) NH3 (mg/L) Fecal Coliform (MPN/100m)		٠	0.26 0.17 1	0.2	0.2		8	0.15	0.16	0.15	0.1 0.1 63.0	0.2	-	15 15	0.13	0.14	0.14	0.0 0.0 0.0 0.5 0.5 290.0		17] 17]		0.13	0.15	4 0	0.5 0.2 290,000		1		0.0 50	-	0.1 0.0			
E.Coli (col/100 ml)			102 40	30.0	49.0		15 15				3.0 45.0	-1		23 22		266 249		0 45 000 220.000 1		25 24	;	38 29,265		0 44.00			1		200 390		500 390			
(lm 001\loo)	Γ	٢	7 8	5.0	35.0		15	13	203	158	5.0	490	7	83	1	480	295	200	Γ	25		106	439	7 4	2009		7		27		27	_		

^(**) Mean is geometric for fecal coliform.
(1) New rainstorm between appr. 6/15/89, 0:00, and 6/15/90, 23:00h, with 0.8" of rain.
These data were excluded from the statistical summary.
(2) Storm 2 only.

150 170 170 170 170 170 170 170 8 8 S 2,000 70 8 31 27 390 43 (IIII not/loo =nterococci ,060 630 630 600 7 7 390 230 230 350 530 270 700 1,000 1,200 1,100 1,100 1,100 1,200 800 200 8228 (IM UUT/100) iloo.a ,060 470 640 740 9 490 300 450 730 740 540 2,100 9,000 2,200 830 2828 (IMUUT/NYM) monio ecg₁ 0.15 0.47 0.51 1.44 1.26 0.06 0.50 0.59 0.59 0.06 0.14 0.22 0.16 0.23 0.22 0.25 0.26 0.17 0.17 0.01 0.18 0.16 0.19 0.23 (⁊/6ɯ) 0.54 0.52 0.02 0.23 0.21 0.25 0.23 2HN 1.16 0.19 0.25 0.17 0.18 0.13 0.12 0.12 0.16 0.29 0.29 0.36 0.32 0.34 0.45 0.45 0.47 0.43 0.55 0.49 35 23 35 59 46 59 46 .48 .69 .69 .83 .83 .51 .51 0.93 (၂/6ա) **†**0c 9.39 9.56 9.44 9.66 9.82 9.79 10.45 9.38 9.05 9.05 9.00 8.99 2.86 2.94 2.72 2.72 2.48 2.46 2.32 2.13 2.02 2.41 2.41 3.67 3.67 4.08 4.08 4.14 4.14 4.51 9.98 6.15 2.92 2.92 4.54 (ŋ/6w) 4.50 4.87 4.88 4.58 103 Nutrients Ŋ (J/6w) N Ÿ S ç Ş Ş ç 4. 2.0 2.5 2.7 1.7 3.0 30D2 18.22 18.30 28.80 19.22 5.67 7.19 7.62 5.38 5.79 5.67 6.41 2.60 6.31 5.81 5.94 Bacteria, (I/gu) Istor 5.0 **AICKGI** 12.20 9.1 0.64 2.32 8 2.02 3.15 99 0.85 (n6n) :ued 98.0 3.51 0.71 1.27 0.79 3.27 0.34 **J.61** .81 Metals, **AICKGI** 16.20 15.90 16.50 18.20 16.50 16.60 17.20 4.60 4.60 2.90 20 5.60 5.70 5.10 5.00 5.40 (I/6n) ssip-96. 65. 5.00 5.80 5.60 1991) -TSS, /ickel 13.20 11.10 8.99 9.85 9.63 9.38 8.86 8.86 6.09 4.92 3.85 5.27 5.40 5.58 5.67 13.38 15.20 10.28 5.18 6.87 6.61 9.68 6.18 6.44 3.73 2.20 8.28 17.79 9.90 16.30 2.51 7.53 6.67 (I/6n) le3o; ead (Wright et al., 2.87 8.88 10.70 7.78 2.78 3.47 3.61 4.78 4.19 2.35 1.93 4.70 4.70 3.75 3.75 6.83 6.83 6.78 6.78 6.78 5.10 3.48 7.19 4.50 1.27 3.87 5.3 3.60 5.05 4.08 4.23 5.90 2.07 8. 4. (I/8u) haq DE9. 10.40 1.20 96. 1.50 5 1.40 96 86. 09.1 1.50 3.30 99. 2.80 4.50 4.50 2.50 2.40 2.40 3.00 4.10 5.60 4.80 10.60 5.40 99. (I/6n) 'ssip DE9. Ē (j/bn 6.74 9.87 14.53 10.43 11.52 12.59 12.59 11.89 12.87 12.81 13.35 11.73 13.68 (Station BRSM), Slater's 11.11 12.95 12.12 12.58 12.41 22.70 16.74 13.04 10.56 9.78 3.05 2.42 3.02 7.27 7.27 8.66 9.57 8.58 8.84 8.87 fotal 6 Copper (j/6n 3.25 2.18 1.74 4.73 4.59 2.63 2.63 3.52 2.63 5.95 5.94 5.09 3.41 3.41 4.55 3.33 10.70 1.94 4.04 4.46 2.88 7.75 8.02 8.52 2.57 2.57 3.47 3.98 3.64 3.68 17. 3.31 3.34 .pad. obber (yőr 9.40 9.10 11.80 5.40 6.90 6.90 6.10 6.10 10.00 9.70 9.60 10.40 12.00 10.50 9.00 6.10 5.20 5.00 9.80 7.80 7.20 6.80 9.40 8.80 9.40 8.80 8.40 .esib Copper 78 4.25 5.00 11.69 5.16 5.43 4.61 5.60 184 5.91 7.64 5.61 8 2.61 3.43 8.67 40. 4.57 2.46 5.3 5.0 7.3 6.1 (1/6n) ls1o1-Blackstone River mulmord 24.70 3.16 9.82 9. 2.57 2.33 3.83 4.86 4.51 5.62 bsur (ng/l) 1.97 3,58 1.48 .93 8.01 3.66 4.11 2.16 2.25 4.44 4.89 1.38 4.03 3.99 Chromium 2.43 2.48 2.08 0.92 0.46 2.61 1.87 3.08 2.03 99.0 99.0 99.0 0.38 1.44 2.14 (I/Bn) :ssip of the muimondO 0.59 0.58 0.76 0.70 0.78 1.42 1.12 0.62 0.67 0.85 0.85 0.93 0.59 0.76 0.80 1.10 0.88 1.16 0.88 0.88 1.01 1.24 1.03 1.15 1.35 .83 1.17 1.36 1.9 0.97 (I/gu) letoT 0.61 Sampling muimbe 0.15 0.19 0.13 0 0.07 0.22 0.85 3.26 part. (ug/l) 0.50 0.60 0.36 0.44 0.42 0.52 0.52 0.54 0.26 0.28 0.49 0.49 0.37 0.62 0.61 0.61 0.41 0.32 0.32 0.29 0.24 0.50 0.50 0.54 ò Storm 9 աոլաբեշ 0.43 0.75 0.12 0.07 0.16 0.16 0.24 0.26 0.26 0.20 0.20 34 2,000 0.88 0.61 0.52 0.57 0.57 0.56 0.57 .57 5.26 35 0.64 0.62 0.62 0.62 0.54 0.54 0.92 (I/Bn) 'ssip 굨 muimba 10.4 0.0 7.2 7.3 7.3 7.3 7.3 7.3 9.6 6.7 6.8 13.3 5.1 0.11 0.12 0.13 8.0 9.3 7.8 (₁/6w SSI 1,245 1,146 1,384 1,384 1,510 1,957 1,957 1,957 1,160 1,31 748 748 258 231 203 398 511 406 390 457 457 748 748 586 586 558 349 295 ,015 956 ,015 956 (SID MOI-14:25 18:56 1:22 4:30 7:30 11:00 18:00 21:50 1:25 5:25 9:30 13:50 17:35 21:40 15:21 23:30 3:55 11:22 3:30 əmiT 10/18/88 10/21/88 10/22/88 10/22/88 10/22/88 10/22/88 10/22/88 10/23/88 10/23/88 10/23/88 10/23/88 5/10/89
5/10/89
5/10/89
5/10/89
5/11/89
5/11/89
5/11/89
5/11/89
5/11/89
5/11/89
5/11/89
5/11/89
5/11/89
6/11/89
6/13/89
6/13/89
6/13/89
6/13/89 10/25/88 6/14/89 6/14/89 6/15/89 6/15/89 6/16/89 Date boirse Rainfall, **\$ \$ 4 4 4 4** Weather, SHOKE ω⊢oα≥ SHORN

Copper (ug/l) Copper (ug/l) Copper (ug/l) Copper (ug/l) Lead (ug/l)			8.40 2.77 11.17 3.07 2.65 5.72 9.80 0.83 10.63 <2 5.27 0.63 0.20 511 41	5.70 1.14 8.14 1.20 1.31 2.51	9.80 4.73 14.53 6.40 4.70 11.10 18.20 1.00 19.20 <2 9.38 1.35 0.28 740		6 6	9.55 2.48 12.03 1.55 2.73 4.28 16.05 1.48 17.53 <2 9.06 1.34 0.64 2,783 4,	6.20 4.73 11.01 3.44 5.15 8.60 4.28 1.75 6.03 2.22 2.73 0.18 0.21 1,647	8.13 3.58 11.71 6.27 4.40 10.66 5.10 0.28 5.38 3.98 0.30 0.12 424	7.96 3.60 11.59 3.75 4.09 7.85 8.48 1.17 9.65 5.26 0.61 0.32 1,248 2	4.40 1.50 7.27 1.20 1.27 2.47 2.90 0.28 5.01 1.40 2.32 0.11 0.01 250	13.30 8.52 14.80 9.40 10.70 15.20 16.20 3.51 18.22		<u>25 24 24 24 16 14 16 6 29 29 29 </u>	9.64 2.59 12.23 1.50 3.02 4.52 16.52 1.59 17.47 9.34 1.55 0.56 884	6.07 4.89 11.02 3.35 5.38 8.72 4.27 1.92 6.20 2.61 0.18	8.00 4.45 12.45 4.53 5.14 9.66 5.13 0.54 5.66 4.09 0.35 0.14	7.90 3.98 11.90 3.12 4.51 7.63 8.64 1.35 9.78 5.34 0.70	4.40 1.50 7.27 1.20 1.27 2.47 2.90 0.27 5.01 1.40 2.02 0.11 0.01 9	14.95 9.40 10.70 15.20 17.50 3.51 18.30 3.00 9.82 1.86		30 30 30 30 30 19 17 19 6 37 37	10.10 3.86 13.96 1.60 4.29 5.89 16.53 4.24 19.36 9.60 1.51 0.45 672 1,71	5.89 4.76 10.69 3.18 5.17 8.35 4.44 1.94 6.37 2.54 0.18 0.20 1,034 1	8.22 4.31 12.53 4.66 4.97 9.63 5.26 0.50 5.76 4.21 0.37 0.16 260	8.07 4.31 12.39 3.15 4.81 7.95 8.74	4.40 1.50 7.27 1.20 1.27 2.47 2.90 0.27 5.01 1.40 2.02 0.11 0.01 9	13.30 10.70 22.70 9.40 11.30 15.20 17.50 12.20 28.80 3.00 10.45 1.86 1.44 19,000 1		3 4 4 4 4 4 4 7 2 2 2 0 4 4 4 4 4	10.40 4.49 14.89 1.55 4.57 6.12 17.20 2.02 19.22 8.07 1.05 0.53 1,351 7	5.10 3.21 8.31 1.30 1.67 2.97 1.30 1.30 2.60 2.43 0.16		1.54 7.75 3.85 11.60 1.43 3.12 4.54 9.25 1.66 10.91 5.25 0.60 0.34 4.26 442	
		<u>۾</u>	0.83	0.61	1.00		0.	1.48	1.75	0.28	1.17	0.28	3.51		4	1.59	1.92	0.54	1.35	0.27	3.51		17	4.24	1,94	0.50	2.22	0.27	12.20		2	2.02	1.30		1.66	
1		3	9.80	5.50	•		6	16.05	4.28	5.10	8.48	2.90	16.20		9	16.52	4.27	5.13	8.64	2.90	17.50		19	16.53	4.44	5.26	8.74	2.90	17.50		2	17.20	1.30		9.25	
		3	5.72	2.51	11.10		14	4.28	8.60	10.66	7.85	2.47	15.20		24	4.52	8.72	9.66	7.63	2.47	15.20		30	5.89	8.35	9.63	7.95	2.47	15.20		4	6.12	2.97		4.54	
		က	2.65	1.31	4.70		14	2.73	5.15	4.40	4.09	1.27	10.70		24	3.02	5.38	5.14	4.51	1.27	10.70		30	4.29	5.17	4.97	4.81	1.27	11.30		4	4.57	1.67		3.12	
		3	3.07	1.20	6.40		14	1.55	3.44	6.27	3.75	1.20	9.40		24	1.50	3,35	4.53	3.12	1.20	9.40		30	1.60	3.18	4.66	3.15	1.20	9.40		4	1.55	1.30		1.43	
-total		е	11.17	8.14	14.53		14	12.03	11.01	11.71	11.59	7.27	14.80		24	12.23	11.02	12.45	11.90	7.27	14.95		30	13.96	10.69	12.53	12.39	7.27	22.70		4	14.89	8.31		11.60	
-part. (ug/l)		8	2.77	1.14	4.73		14	2.48	4.73	3.58	3.60	1.50	8.52		24	2.59	4.89	4.45	3.98	1.50	8.52		30	3.86	4.76	4.31	4.31	1.50	10.70		4	4.49	3.21		3.85	
.ssib- (l\gu)		8	8.40	5.70	9.80		15	9.55	6.20	8.13	7.96	4.40	13.30	ľ	52	9.64	6.07	8.00	7.90	4.40	13.30		31	10.10	5.89	8.22	8.07	4.40	13.30		4	10.40	5.10		7.75	
***************************************		က	3.67	1.08	5.30		6	4.63	4.89	5.03	4.85	2.61	8.67	ļ	16	5.11	5.05	6.32	5.50	2.61	8.7		20	9.29	4.99	6.15	6.81	2.61	27.78		3	6.63	2.46		4.54	
Chromium -part. (ug/l)		ღ	1.95	0.32	3.55		6	2.11	4.23	2.25	2.86	1.64	8.01		16	2.71	4.43	3.99	3.71	1.64	8.0		20	6.86	4.39	4.00	5.08	1.64	24.70		3	4.22	2.16		3.19	
Chromium -diss. (ug/l)		3	1.73	0.76	2.64		6	2.52	99.0	2.78	1.99	0.38	2.78		16	2.41	0.62	2.33	1.79	0.38	2.8		20	2.43	0.60	2.15	1.73	0.38	3.08		3	2.41	0.30		1.35	
muimbs2 (Ngu) IstoT-		8	0.83	0.62	1.16		15	0.59	0.76	1.05	0.80	0.52	1.27		52	0.68	0.78	1.13	0.86	0.52	1.3		31	0.81	0.77	1.16	0.91	0.52	1.47		4	1.05	0.47		0.76	
Cadmium -part. (ug/l)		3	0.37	0.10	0.52		15	0.11	0.47	0.37	0.32	0.07	0.60		22	0.15	0.48	0.46	0.36	0.07	9.0		31	0.27	0.48	0.43	0.39	0.07	0.85		4	0.30	0.27		0.28	
Cadmium -diss. (ug/l)		3	0.46	0.12	0.64		15	0.48	0.29	0.68	0.48	0.07	0.78		22	0.53	0.31	0.67	0.50	0.07	6.0		31	0.54	0.30	0.73	0.52	0.07	1.28		4	0.75	0.20		0.48	
SST (I/gm)		3	6.93		12.0		19	3.5	12.1	6.6	8.5	2.8	19.8		33	6.1	11.4	8.9	8.8	2.1	19.8		42	8.5	11.0	8.9	9.4	2.1	25.4		4	6.0	13.0		9.5	
Flow (cfs)		3	930	142	1,403		19	360	1950	1176	1162	203	3167		33	415	2,215	1,115	1,248	203	3,412		42	474	2298	1089	1287	203	3412	(2)	4	322	2,149		1,235	
9miT														er storm								ər storm	j									_				
Date		,	ms	шs	smi	Wet Weather - during storm					ans	sm.	SILLIS	Wet Weather - up to 24h after storm					- SIL	SEL	sms	Wet Weather - up to 48h after storm					шs		ms	Wet Weather - 3/4 days after storm					TIS.	
Period after rain	191	Count, all storms	Mean(*) all Storms	Minimum, all storms	Maximum, all storms	ner - duri	Count, all storms	Mean(*) Storm 1	Mean(*) Storm 2	Mean(*) Storm 3	Mean(*) all Storms	Minimum, all storms	Maximum, all storms	Br - up t	Count, all storms	Mean(*) Storm 1	Mean(*) Storm 2	Mean(*) Storm 3	Mean(*) all Storms	Minimum, all storms	Maximum, all storms	ner - up t	Count, all storms	Mean(*) Storm 1	Mean(*) Storm 2	Mean(*) Storm 3	Mean(*) all Storms	Minimum, all storms	Maximum, all stoms	18r - 3/4 c	Count, all storms	Mean(*) Storm 1	Mean(*) Storm 2	Mean(*) Storm 3	Mean(*) all Storms	
Dry Weather, Rainfall, or	Dry Weather	Count, a	Mean(*)	Minimun	Maximu	et Weath	Count, a	Mean(*)	Mean(*)	Mean(*)	Mean(*)	Minimun	Maximu	et Weatl	Count, a	Mean(*)	Mean(*)	Mean(*)	Mean(*)	Minimun	Maximu	et Weath	Count, a	Mean(*)	Mean(*)	Mean(*)	Mean(*)	Minimun	Maximur	at Weath	Count, a	Wean(*)	Wean(*)	Wean(*)	Wean(*)	

^(*) Mean is geometric for fecal coliform.

(1) New rainstorm between appr. 6/15/89, 0:00, and 6/15/90, 23:00h, with 0.8° of rain.

These data were excluded from the statistical summary.

(2) Storms 1 and 2 only.

Figure Set 1

FLOW VOLUME

Event 1: October 22-26, 1988

Event 2: May 10-15, 1989

Event 3: June 12-15, 1989

Table A1-5
RAW WET WEATHER STUDY PRECIPITATION CHEMISTRY DATA

Event I Start, 10/21/88 End, 10/23/88	Prudence 4:30 PM 4:15 PM	1:25 PM		
mm rain ppm nitrate ppm sulfate ppm chloride ppm sodium ppm ammonium ppm potassium pH conductivity, umho/cm	8.6 0.18 1.51 5.84 5.21 ND 0.18 5.09 36.4	14.7 0.18 0.71 0.94 0.51 ND 0.06 4.89 10.8		
Fluxes, mg/m2 nitrate sulfate chloride sodium ammonium potassium	1.5 13.0 50.2 44.8 0.0 1.5	2.6 10.4 13.8 7.5 0.0		
Event II Start, 5/10/89 End, 5/13/89	Prudence 9:00 AM 10:00 AM	7:55 AM	N.Smithfld 8:55 AM 9:30 AM	
mm rain ppm nitrate ppm sulfate ppm chloride ppm sodium ppm ammonium ppm potassium pH conductivity, umho/cm	62.0	67.8	60.9	61.9
	1.10	0.79	1.11	1.08
	2.68	1.51	1.99	1.96
	1.06	0.15	0.11	0.13
	0.52	0.09	0.04	0.04
	0.11	0.09	0.11	0.12
	0.06	0.03	0.02	0.02
	4.19	4.34	4.29	4.30
	32.2	18.2	23.3	23.4
Fluxes, mg/m2 nitrate sulfate chloride sodium ammonium potassium	68.2	53.6	67.6	66.9
	166.2	102.4	121.2	121.3
	65.7	10.2	6.7	8.0
	32.2	6.1	2.4	2.5
	6.8	6.1	6.7	7.4
	3.7	2.0	1.2	1.2
Event III	Prudence	Kent Hts	N.Smithfld	Scituate
Start, 6/13/89	6:45 AM	6:55 AM	7:52 AM	9:20 AM
End, 6/16/89	10:00 AM	1:50 PM	12:05 PM	10:50 AM
mm rain ppm nitrate ppm sulfate ppm chloride ppm sodium ppm ammonium ppm potassium pH conductivity, umho/cm	36.2	46.2	30.2	32.2
	1.79	2.00	1.35	1.45
	3.11	4.52	2.80	1.91
	1.19	1.46	0.50	0.74
	0.60	0.57	0.20	0.38
	0.39	0.38	0.25	0.27
	0.07	0.07	0.05	0.05
	4.11	3.95	4.17	4.06
	39.2	52.9	31.5	39.0
Fluxes, mg/m2 nitrate sulfate chloride sodium ammonium potassium	64.8	92.4	40.8	46.7
	112.6	208.8	84.6	61.5
	43.1	67.5	15.1	23.8
	21.7	26.3	6.0	12.2
	14.1	17.6	7.6	8.7
	2.5	3.2	1.5	1.6

The mm rain in Table $\mbox{\ensuremath{H}}$ are the actual totals at each site for each storm.

Figure A1-1b

Figure Set 2

TOTAL SUSPENDED SOLIDS CADMIUM CHROMIUM COPPER LEAD NICKEL

Event 1: October 22-26, 1988 Event 2: May 10-15, 1989 Event 3: June 12-15, 1989

Note:

Unless otherwise noted, graph lines pertain to Blackstone River Station BRSM (Slater's Mills)

Page A1-18

Page A1-19

Page A1-23

Figure Set 3

DISSOLVED AMMONIA DISSOLVED NITRATE DISSOLVED ORTHOPHOSPHATE

Event 1: October 22-26, 1988 Event 2: May 10-15, 1989 Event 3: June 12-15, 1989

Note:

Unless otherwise noted, graph lines pertain to Blackstone River Station BRSM (Slater's Mills)

Page A1-31

Page A1-32

Page A1-33

Page A1-34

Page A1-35

Figure Set 4

FECAL COLIFORM

Event 1: October 22-26, 1988 Event 2: May 10-15, 1989 Event 3: June 12-15, 1989

Note: Unless otherwise noted, graph lines pertain to Blackstone River Station BRSM (Slater's Mills)

A BCDEF GHIJKLING Figure A1-20 Indicator Inputs From Blackstone River (Event 1) Event Time (h) Log Enterococci/Sec rod gactertophage/Sec Sample Run B CD E FOH! J KL M N O Log C. pertingens/Sec A B CD E FOH IJ K L W N O A B C DEFONIJK L MNO Log E. coli/Sec Log Fecal Coliforms/Sec

Appendix 2

Systemwide Modeling for the Providence Area Combined Sewer System

Wet Weather Sampling

(URI, 1992)

Figure A2-1 URI Sampling for CSO Modeling and IIC Facility (pre-construction), 1990 (URI, 1992; Wright et al., 1993)

	Station No. Station Name Appr. Location			·			Blacksto	BRSM one River (Slater's	r, Downs						
	Dry Weather, Rainfall, or Period after Rain	Date	Time (h)	Temperature (deg. C)	Conductivity (umho/cm)	Fecal Coliform (MPN/100 ml)	Flow (cfs)	Diss. Oxygen (mg/l)	TSS (mg/l)	Nitrite + Nitrate (mg/! as N)	PO4 (mg/1 as P)	BOD5 ** (mg/l)	Cu, total (ug/!)	Pb, total (ug/l)	Ni, total (ug/l)
1 . 1	Dry ·	5/29/90	1029	16.5	170	68	823	9.6	2.2	1.196	0.053	<1	6.0	1.8	5.5
S	Rain	5/29/90	1506	16.5	165	90	779	9.6	3.0	1.001	0.060	<1	5.1	2.7	4.6
፲	Rain	5/29/90	1821	16.0	155	4,000	844	9.3	4.0	1.013	0.063	<1	5.2	1.7	4.4
0 R	Rain	5/29/90 5/29/90	2059 2329	15.8 15.5	155 150	3,300 2,600	887 945	9.2 9.0	4.6 5.6	0.973 0.992	0.059 0.052	3 <1	6.2 6.2	4.8 3.8	3.8 4.9
'n	Rain Rain	5/30/90	0245	15.2	159	2,600 570	991	8.6	5.2	1.066	0.032	<1	5.6	2.5	4.5
"	Rain	5/30/90	0617	15.2	153	730	1,159	8.9	7.2	1.128	0.086	<1	6.1	3.1	4.3
1 1	24h	5/30/90	1015	15.1	154	2,000	1,285	9.1	3.2	0.910	0.086	4	6.6	3.3	4.6
	24h	5/30/90	1404	15.5	145	680	1,552	9.6	7.0	0.823	0.065	<1	7.3	4.3	3.9
	24h	5/30/90	1853	15.4	16.5	3,700	1,721	9.6	4.6	0.887	0.070	<1	7.5	4.0	4.7
	24h	5/30/90	2150	14.5	135	3,400	1,882	9.5	4.0	0.914	0.051	<1	8.1	4.1	4.6
	24h	5/31/90	0220	14.0	130	1,700	2,034	10.1	12.2	0.837	0.082	<1	8.5	4.4	4.0
	24h	5/31/90	0613	13.8	131	3,700	2,019	9.0	12.4	0.926	0.077	4	4.0	1.2	4.0
	48h	5/31/90	1022	14.8	137	2,100	2,003	9.6	10.6	0.731	0.053	2	9.8	4.8	5.1
	48h	6/1/00	0020	16.0	120		1 500	0.0	11.6	0.605	0.104	_		2.0	4.0
	48h	6/1/90	0930	16.0	132		1,580	9.9	11.6	0.605	0.104	3	7.1	3.0	4.0
	72h 72h	6/2/90	0855	16.8	148		1,171	11.2	5.2	0.623	0.068		5.9	2.4	4.2
1 1	96h	0/2/30	0000	10.0	140		1,1/4	11.2	J.Z	0.023	0.000		J. 9	۷.4	H.Z
	96h														
s	Dry	6/29/90	1620	24.2	290	220	349	8.4	5.5	1.504	0.302	2	7.5	1.5	6.1
+	Rain	6/29/90	2228	23.7	285	290	333	8.2	4.2	1.553	0.242	3	7.7	3.7	6.4
	24h	6/30/90	0141	23.0	280	460	357	7.6	4.0	1.600	0.231	4	8.1	3.9	6.1
R	24h	6/30/90	0432	22.8	280	200	178	7.7	6.5	1.723	0.287	2	9.2	5.5	6.9
M	24h	6/30/90	0731	28.9	280		432	7.5	2.5	1.520	0.214		9.4	7.2	6.5
2	24h	6/30/90	1140	22.0	270	160	310	7.8	4.0	1.834	0.239	<1	9.1	12.6	6.8
s	Dry Rain	7/11/90 7/12/90	2017 1042	22.5 21.0	285 270	820 1,000	108 103	7.9 8.1	5.2 4.8	1.589 1.684	0.204	<1 <1	9.9 79.4	3.2 22.0	6.3 11.7
+	Rain	7/12/90	1345	21.0	269	250	119	7.8	3.4	1.472	0.274	<1	8.6	22.0	5.1
اها	Rain	7/12/90	1652	21.0	275	5,000	326	8.2	5.4	1.712	0.293	<1	10.7	7.2	6.2
R	Rain	7/12/90	1940	20.0	246	23,000	449	7.6	12.8	1.503	0.289	<1	9.3	3.0	5.5
М	Rain	7/12/90	2249	20.0	320	9,100	365	8.6	6.2	1.622	0.300	<1	9.9	7.3	5.3
	Rain	7/13/90	0215	20.2	280	1,500	365	8.2	6.6	1.586	0.246	<1	10.1	6.6	6.1
3	Rain	7/13/90	0554	20.0	267	730	341	8.1	7.2	1.532	0.244	<1	10.5	4.6	6.3
	2 4 h	7/13/90	1112	20.6	290	680	407	8.0	6.6	1.771	0.382	<1	9.6	1.2	6.5
	24h	7/13/90		21.2	290	550	398	8.1	7.0	1.716	0.385	<1	12.5	6.7	10.8
1 1	24h	7/13/90		21.7	280	870	407	8.8		1.585		<1	11.9	5.7	6.2
	24h	7/13/90 7/14/90		21.1	249	820	365	8.2		1.642		1	12.9	6.0	5.9
	24h 24h	7/14/90		20.1 19.3	228 206	780 570	398 318	8.3 8.3		1.487 1.459	0.315 0.238	1	11.6 14.2	5.6 6.8	5.1 5.7
	48h	,,17,00				370	210		0.0	1.733	v. <u>2</u> 30	1	17.2	0.0	J./
	72h	7/15/90	0747	21.5	250		318	8.7	8.6	1.778	0.229		10.6	6.2	6.1
	72h													_	
	96h														
	96h	7/16/90	1236	16.5	288		606	7.9	5.0	1.849	0.234		11.5	5.2	6.5
$\vdash \vdash$	120h	- inc :-													
	Dry	9/22/90		15.5	215	110	108	10.0		1.166	0.250	<1	14.2	4.5	8.8
<u>\$</u>	Rain	9/22/90		15.2	220	210	147	10.0		1.919	0.276	<1	10.5	2.2	7.8
T 0	Rain Rain	9/22/90 9/22/90		15.0 15.1	230 230	340 10,000	65 637	9.9 9.8		1.330 1.496	0.223	<1 5	6.9	2.1 2.7	7.0 8.6
0 R	Rain 24h	9/23/90		15.1	190	31,000	114	9.8		1.496	0.306	5 <1	11.4 8.9	<u>2.7</u> 4.4	8.6 7.4
m	24h	9/23/90		15.1	219	5,200	130	9.8		1.279	0.298	<1	7.6	2.9	7.4 7.5
"	24h	9/23/90		14.9	209	950	204	6.6		1.627	0.261	<1	9.4	3.3	7.5
4	24h	9/23/90		15.8	230	570	217	9.9	1.2	1.364	0.293	<1	9.0	2.3	6.5
	24h	9/23/90		16.2	238	630	230	9.6		1.399	0.305	<1	7.9	2.7	6.4
	24h	9/23/90	2120	15.8	238	410	230	9.6		1.516	0.296	<1	7.9	2.7	5.7
[48h	9/24/90		15.4	232	510	•••	9.5		1.516	0.308	<1	9.1	1.8	6.8
	48h	9/24/90		15.0	235	660		9.4		1.519	0.242	<1	5.3	1.6	5.2
Ш	48h	9/24/90	0955	15.1	229	100	172	9.7	8.0	1.470	0.283	<1	5.5	1.0	4.5

	Dry Weather, Rainfall, or Period after Rain	Date	Time (h)	Temperature (deg. C)	Conductivity (umho/cm)	Fecal Coliform (MPN/100 ml)	Flow (cfs)	Diss. Oxygen (mg/1)	TSS (mg/l)	Nitrite + Nitrate (mg/l as N)	PO4 (mg/1 as P)	BOD5 ** (mg/l)	Cu, total (ug/l)	Pb, total (ug/l)	Ni, total (ug/l)
l	Dry Weather	· · · · · ·													
s	Count, all storms		4	4	4	4	4	4	4	4	4	4	4	4	4
T	Mean(*), all storms		185	19	234	192	347	9.0	3.4	1.364	0.202	0.9	9.4	2.8	6.7
A	Minimum, all storms		1	16	170	68	108	7.9	8.0	1.166	0.053	0.5	6.0	1.5	5.5
T	Maximum, all storms		1,620	24	290	820	823	10.0	5.5	1.589	0.302	2.0	14.2	4.5	8.8
1	Wet Weather														
S	- during storm										_				
T	Count, Storms 1,3,4		16	16	16	16	16	16	16	16	16	16	16	16	16
!	Mean(*) Storm 1		1,121	16	156	1,043	934	9.1	4.9	1.029	0.068	0.9	5.7	3.1	4.4
C	Mean(*) Storm 2		2,228	24	285	290	333	8.2	4.2	1.553	0.242	3.0	7.7	3.7	6.4
S	Mean(*) Storm 3		0	20	275	2,244	295	8.1	6.6	1.587	0.269		19.8	7.6	6.6
	Mean(*) Storm 4		1,796	15	227	894	283	9.9	2.3	1.582	0.268	2.0	9.6	2.3	7.8
	Mean(*) Storms 1,3,4		96	17	213	1,279	504	9.0	4.6	1.399	0.202	1.5	11.7	4.4	6.3
	Minimum, Storms 1,3,4		0	15	150	90	65	7.6	1.8	0.973	0.052	0.5	5.1	1.7	3.8
	Maximum, Storms 1,3,4		2,329	21	320	23,000	1,159	10.0	12.8	1.919	0.306	5.0	79.4	22.0	11.7
	Wet Weather														1
	- up to 24h after storm		34	- 24		24									
1	Count, Storms 1,3,4 Mean(*) Storm 1			34	34	34	34	34	34	34	34	34	34	34	34
	Mean(*) Storm 2		1,036 647	15 24	123 279	1,508	1,342	9.3	6.1	0.956	0.070	1.3	6.4	3.3	4.3
	Mean(*) Storm 3		047	21	265	256 1,312	322 335	7.8 8.2	4.2 6.6	1.646 1.598	0.243 0.289	2.4 0.6	8.7 16.2	6.6	6.5
1	Mean(*) Storm 4		1,078	15	222	1,362	219	9.4	2.0	1.446	0.289	1.0	8.8	6.6 2.8	6.6 7.2
	Mean(*) Storms 1,3,4		78	17	194	1,391	632	9.0	4.9	1.333	0.214	1.0	10.5	4.2	6.0
	Minimum, Storms 1,3,4		0	14	17	90	65	6.6	1.0	0.823	0.051	0.5	4.0	1.2	3.8
i l	Maximum, Storms 1,3,4		2,329	22		31,000	2,034	10.1	12.8	1.919	0.385	5.0	79.4	22.0	11.7
	Wet Weather					01,000	2,004		12.0	1.515	0.000		7 7.4	22.0	11.7
	- up to 48h after storm														
	Count, Storms 1,3,4		39	39	39	38	37	39	39	39	39	37	39	39	39
	Mean(*) Storm 1		1,027	15	125	1,547	1,328	9.4	6.8	0.915	0.071	1.5	6.7	3.4	4.4
	Mean(*) Storm 2		• • •			,	,				- · • · •		J.,	J. 1]
	Mean(*) Storm 3		0	21	265	1,312	310	8.2	6.6	1.598	0.289	0.6	16.2	6.6	6.6
	Mean(*) Storm 4		871	15	225	950	180	9.4	1.7	1.460	0.281	0.9	8.3	2.5	6.7
	Mean(*) Storms 1,3,4		72	17	195	1,245	420	9.0	5.0	1.324	0.214	1.0	10.4	4.2	5.9
	Minimum, Storms 1,3,4		0	14	17	90	65	6.6	0.8	0.605	0.051	0.5	4.0	1.0	3.8
]	Maximum, Storms 1,3,4		2,329	22	320	31,000	2,034	10.1	12.8	1.919	0.385	5.0	79.4	22.0	11.7
	Wet Weather														
	- Days 3 to 5 after storm														
	Count, Storms 1,3														
	Mean(*) Storm 1														l
	Mean(*) Storm 2														l
	Mean(*) Storm 3														
	Mean(*) Storm 4														
	Mean(*) Storms 1,3														
	Minimum, Storms 1,3 Maximum, Storms 1,3														
ш	Maximum, Storms 1,5	(*)	Moan is			oal colifo									

Mean is geometric for fecal coliform.

Data reported by New England Testing Laboratory, Inc.

Not determined.

Figure A2-1b

Table A2-2

Page A2-6

Page A2-9

Page A2-10

Page A2-12

Page A2-13

Page A2-14

Systemwide Modeling for the Providence Area Combined Sewer System (URI, 1992)

Table A2-3

Total Wet Weather Loading from Blackstone River

Constituent	Units	Storm 1	Storm 2	Storm 3	Storm 4
Fecal Coliform	x10E14 microbial density/event	146.00	0.36	52.30	30.30
Total Suspended Solids		223,000.00	612.00	22,300.00	1,790.00
BOD .	pounds/event	37,000.00	811.00	1,580.00	1,380.00
Copper		144.00	0.77	36.00	5.60
Lead		63.90	4.82	18.20	
Nickel		61.30	0.97	12.20	3.00
Nitrate+Nitrite		7,870.00	167.00	4,400.00	1,520.00
Orthophosphate		1,400.00	25.50	912.00	275.00

^{--- =} No available.

Appendix 3

University of Rhode Island: The Blackstone River 1990

Pollutant Discharges and Water Quality Review

(Wright et al., 1991b)

Figure Set 1

MAPS OF SAMPLING LOCATIONS

Dry Weather Studies used for Data Comparison (*)

- Map 1: 1985 study by MA Department of Environmental Quality Engineering for MA river portion (MADEQE, 1985)
- Map 2: 1985 trace metal and organic surveys in 1985 by University of Rhode Island (Wright, 1988)
- Map 3: 1989 trace metal survey by MADEP (MADEP, 1990).

Note: No map is available for the Ecology and Environment (1988) study

(*) The wet weather study by URI in 1988/89 (Wright et al, 1991) was also used in the data comparison as discussed in Section 3.1; data and maps are presented in Appendix 1.

Figure A3-1 Sampling Locations for the 1985 MA DEQE Study (MA DEQE 1985)

Figure A3-2 Sampling Locations for the 1985 URI Study (Wright 1988)

Figure A3-3 Sampling Locations for the 1989 MA DEP Study (Lewis and Brubaker 1990)

Figure Set 2

DATA

Dry Weather Studies used for Data Comparison (*)

- Cadmium
- Chromium
- Copper
- Lead
- Nickel
- Zinc
- Dissolved Oxygen

(*) The wet weather study by URI in 1988/89 (Wright et al, 1991), also used in the data comparison, is discussed in Section 3.1; data and maps are presented in Appendix 1.

Actual Steady State Profiles in the Blackstone River from Worchester, MA, to Pawtucket, RI: Cadmium and Chromium Figure A3-4:

Actual Steady State Profiles in the Blackstone River from Worchester, MA, to Pawtucket, RI: Copper and Lead Figure A3-5:

Actual Steady State Profiles in the Blackstone River from Worchester, MA, to Pawtucket, RI: Nickel and Zinc Figure A3-6:

Actual Steady State Profiles in the Blackstone River from Worchester, MA, to Pawtucket, RI: Dissolved Oxygen

Figure A3-7:

Appendix 4

Blackstone River Water Quality Study, 1991

Water Quality Data

(ASA, 1992b)

Figure A4-1 Location of field program sampling stations on the Blackstone River.

Distance from Slaters Mill dam at the mouth of the river in Pawtucket is given (in miles) in parentheses.

Blackstone River Flow USGS Gauge, Woonsocket, RI

Figure A4-2

Blackstone River flow at the USGS gauge in Woonsocket, Rhode Island for the period of July 1 through July 15, 1991.

Figure A4-3 . Woonsocket WWTF effluent flow as a function of time for the period July 8-July 12, 1991. Flows concurrent with the period of the field study are highlighted in black.

			
Time	Date	RIVER	WWTF
		FLOW	Flow
(EDDM)	, , ,	(-C-)	/- C-3
(EDT)	(m-d-yr)	(cfs)	(cfs)
17:00	07/09/91	132.4	9.0
18:00	07/09/91	134.8	10.7
19:00	07/09/91	139.6	9.7
20:00	07/09/91	146.8	11.6
21:00	07/09/91	151.6	10.5
22:00	07/09/91	154	11.1
23:00	07/09/91	154	10.4
00:00	07/10/91	154	7.9
01:00	07/10/91	156.4	7.6
02:00	07/10/91	156.4	5.5
03:00	07/10/91	154	4.0
04:00	07/10/91	149.2	5.3
05:00	07/10/91	146.8	5.7
06:00	07/10/91	144.4	5.9
07:00	07/10/91	144.4	8.0
08:00	07/10/91	144.4	9.5
09:00	07/10/91	142	8.6
10:00	07/10/91	137.2	13.8
11:00	07/10/91	132.4	12.2
12:00	07/10/91	130	14.2
13:00	07/10/91	128.6	11.8
14:00	07/10/91	127.2	12.4
15:00	07/10/91	127.2	11.4
16:00	07/10/91	127.2	10.4
	i `	1	

		-		
	Time	Date	RIVER FLOW	WWTF Flow
ار:	(EDT)	(m-d-yr)	(cfs)	(cfs)
	17:00 18:00 19:00 20:00	07/10/91 07/10/91 07/10/91 07/10/91	128.6 128.6 130 132.4	9.4 10.2 10.7 10.9
	21:00	07/10/91 07/10/91	132.4 134.8	10.6 10.8
	23:00	07/10/91 07/11/91	134.8 134.8	8.8 8.3
	01:00 02:00	07/11/91 07/11/91	134.8 137.2	8.4 6.1
	03:00 04:00	07/11/91	134.8 134.8	5.1 5.3
	05:00 06:00	07/11/91	132.4 128.6	5.0 5.2
	07:00 08:00	07/11/91 07/11/91	127.2 125.8	7.5 9,7
	09:00	07/11/91	125.8	10.6
	10:00 11:00	07/11/91 07/11/91	127.2 127.2	12.6 12.1
	12:00 13:00	07/11/91 07/11/91	127.2 127.2	12.9 11.9
	14:00	07/11/91	125.8	10.6

07/11/91

07/11/91

15:00

16:00

125.8

125.8

12.4

10.6

Time of Travel Experiment

Table A4-1

Figure A4-4

Time histories of dye concentration at stations 6, 8, and 10 following the dye release at 0540 EDT on July 10, 1991 at station 3a. The time of travel for the centroid of the dye cloud between station 3a and each downstream station is also shown.

Means, standard deviations, maximum and minimum values of the in-situ measurement parameters: Dissolved oxygen, temperature, and pH. Means, standard deviations, maximum and minimum values of the analytical parameters. Table A4-2

	:						
Specific Conductance (umho/cm)	310.38 9.16 297.00 323.00	313.89	8.85 302.00 331.00	309.25	9.61 297.00 328.00	1650.00 83.22 1510.00 1730.00	
Total Suspende Solids (mg/L)	7.14 2.16 3.70 10.80	7.61	1.99 4.50 11.30	7.18	2.07 4.90 11.30	14.35 6.80 5.10 25.30	
Chlorophyll a (ug/L)	42.50 15.29 6.00 56.00	45.25	7.81 28.00 56.00	34.29	15.51 8.00 52.00		
Nitrite (as N) (mg/l)	0.004 0.007 0.000 0.020	0.002	0.000	0.003	0.004	0.028 0.010 0.010	
Nitrate (as N) (mg/l)	1,36 0,20 1,10 1,73	E	0.12 1.10 1.52	. 1.28	0.20	0.12 0.01 0.40	
Ammonia (as N) (mg/l)	0.45 0.04 0.40 0.52	0.44	0.00	0.46	0.05	20.50 1.12 19.00 22.50	
Total Kjeldahl Nitrogen (as N) (mg/L)	1.25 0.74 0.17 2.95		0.12 1.00 1.40	E	0.66 0.88 3.05	22.41 2.21 19.50 26.50	
Biochemical Oxygen Demand (5-day)	3.25 0.80 2.00 4.30			ō e	0.63 2.40 4.40	7.83 1.80 5.40 10.00	
pH (units)	7.83 1.04 9.34 6.73	, 7,	6.87 8.98 6.86	787	9.03 9.03 7.01	7.23 0.30 6.85 7.87	
Temperature	23.96 0.79 22.80 25.00	23.88 0.89 22.50 25.00	23.53 1.24 22.00 25.50	23.50 1.36 22.00 26.00	22.00 26.00	29.75 0.62 29.00 31.00	29.81 0.62 29.00 31.00
Dissolved Oxygen	11.87 0.94 10.50	8.33 0.19 8.00 8.60	9.38 7.50 9.10	8.60 1.14 7.00 10.30	6.80 10.40	1.20 0.12 1.05 1.40	5.15 0.97 2.60 5.70
Statistic	mean std dev min max	mean std dev min max	mean std dev min max	mean std dev min mex	mean std dev min max	mean std dev min max	mean std dev min max
River Mile	14.1	13.9	13.59	12.35	12.23	wwff CI Contact outlet	wwtf downstream of spillway
Station	-	ā	N	38	ო .	4	

Table 4.2 Continued.

							,	٠	
Specific Conductance	(mp/oqun)	412.44 34.55 373.00 497.00		411.56 29.59 362.00 451.00	415.11 12.83 397.00 432.00	403.00 21.25 364.00 432.00	394.88 30.76 335.00 432.00	:	384.50 36.29 317.00 432.00
Total Suspende Solids	(mg/L)	6.61 2.06 3.80 9.50	415.25 38.14 360.00 497.00	7.42 1.70 4.20 9.30	6.63 2.53 2.40 11.70	5.74 3.71 0.00 11.80	8.19 2.58 5.10 12.70		7.83 4.93 1.50 15.20
Chlorophy!!	(1/6n)	38.00 13.38 12.00 52.00	34.50 12.56 14.00 52.00	33.00 6.24 24.00 40.00	28.50 11.17 8.00 44.00	30.67 13.00 0.00 44.00	31.25 10.63 14.00 44.00		42.33 5.71 30.00 48.00
Nitrite (as N)	(mg/l)	0.012 0.006 0.020	0.018 0.004 0.010 0.020	0.019 0.007 0.010 0.030	0.019 0.003 0.010 0.020	0.023 0.007 0.020 0.040	0.026 0.007 0.020 0.040		0.048 0.011 0.030 0.060
Nitrate (as N)	(mg/l)	1.13 0.12 0.91 1.32	1.20 0.23 0.91 1.52	1.16 0.14 0.90 1.32	1.14 0.13 0.91 1.38	1.22 0.14 1.03 1.46	1.18 0.16 1.02 1.46		1.32 0.22 1.04 1.68
Ammonia (as N)	(l/6m)	2.02 0.59 1.48 3.60	1.88 0.92 0.00 3.60	1.94 0.45 1.30 2.65	1.84 0.23 1.26 2.08	1.74 0.30 1.30 2.08	1.75 0.25 1.30 2.08		1.60 0.28 1.14 2.08
Total Kjeldahl Nitrogen (as N)	(mg/L)	2.79 0.65 2.00 4.40	2.56 1.17 0.00 4.40	2,55 0,49 1.68 3.15	2.43 0.20 2.05 2.65	1.90 0.98 0.20 3.15	2.38 0.33 1.94 2.85		1.88 0.95 0.33 2.85
Biochemical Oxygen Demand (5-day)	(l/gm)	- 	3.09 1.20 0.00 4.10		2.54 0.93 3.40	:	3.04 1.25 0.00 4.20		4.02 1.11 2.40 5.20
Ħ.		7.61 0.46 8.21 6.85	7.60 0.39 8.28 7.12	7.68 0.37 8.37 7.21	7.63 0.30 8.22 7.31	7.72 0.29 8.15 7.32	7.76 0.29 8.14 7.32		7.92 0.36 8.35 7.38
Temperature	(deg C)	23.92 1.60 22.00 26.00	23.83 1.38 22.00 26.00	24.13 1.11 22.00 25.30	24.04 0.65 22.80 25.00	24.42 0.79 23.50 26.00	24.41 0.96 23.00 26.25	23.00 0.94 21.50 24.00	24.50 0.45 24.00 25.00
Dissolved	(mg/L)	8.24 1.40 6.52 10.70	7.90 1.37 6.30 9.50	8.24 1.24 6.45 9.72	7.91 1.19 6.35 9.38	8.16 0.71 6.85 9.35	8.36 0.66 7.45 9.40	8.39 0.61 7.80 9.40	8.78 1.34 6.70 10.80
Statistic		mean std dev min max	mean std dev min mæx	mean std dev min max	mean std dev min mex	mean std dev min max	mean std dev min max	mean std dev min max	mean std dev min max
River	(iu)	11.97	11.67	11.23	10.73	10.17	9.74	9.61	8.19
Station		ĸ	o	~	60	6	9	10a	Ę

Figure A4-5 Mean surface dissolved oxygen concentrations along the study area during the field program.

Figure A4-6 Dissolved oxygen concentrations vs time at each station.

Dissolved Oxygen Station 10

Dissolved oxygen vs time at station 10.

Figure A4-7 Mean dissolved oxygen concentration as a function of distance along the river. The saturation DO concentration is approximately 8.45 mg/L (at 24°C).

(J/Bm) 28T

-=

-6

- 100

Mean total suspended solids (TSS) and biochemical oxygen demand (BOD5) concentrations as functions of distance along the river. Figure A4-9

~=

~5

− σ

(J/Bm) SST

Page A4-10

Nitrate and Nitrite Mean Value by River Mile

> Ammonia July 10-11, 1991 Surveys

> > 6

WWTF = 20.9 mg/L

(J\@m) &HV

9.

3.0

(J/Bm) EHN

−=− 1700, July 10 −±− 2300, July 10 →← 0500, July 11 →← 1700, July 11

13 12 12 10 River Mile (mi from Staters Milt dam)

. ≢

Figure A4-13 Mean ammonia, nitrate and nitrite concentrations as functions of distance along the river.

Mean total Kjeldahl nitrogen (TKN) concentration as a function of distance along the river.

-=- 1700, July 10 --- 2300, July 10 --- 0500, July 11 -+- 1700, July 11

Figure A4-14

Figure A4-15

Figure A4-17

-=- 1700, July 10 -1- 2300, July 10 -*- 0500, July 11 -+- 1700, July 11

Station 9 Nitrogen vs Time

8

Page A4-17

Table A4-3

Mean values of DO consumption, nitrate production, and NBOD and CBOD determined from the long term BOD analyses.

Elapsed	Mean DO	Mean NO3	Mean	Mean
Time	Consumption	Concentration	NBOD	CBOD
(days)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
0	0.00	1.20	0.00	0.00
5	3.61	1.11	-0.43	4.05
10	6.80	1.15	-0.24	7.04
14	10.90	1.79	2.68	8.22
20	13.81	1.78	2.64	11.18

Table A4-4 Flow-weighted mean concentrations and fluxes of analytical parameters at the upstream boundary to the study area (station 1) and the Woonsocket WWTF.

	Upstream Boundar (Mean Flow = 136		WWTF Effluent Input (Mean Flow = 8.2 cfs)		
Parameter	Mean	Mean	Mean	Mean	
	Concentration	(g/sec)	Concentration	(g/sec)	
	(mg/L)	•	(mg/L)		
Total Suspended					
Solids	7.2	27.7	16.4	3.8	
BOD5	3.2	12.4	9.0	2.1	
Ammonia	0.5	1.8	23.7	5.5	
Total Kjeldahl					
Nitrogen	1.8	6.9	26.0	6.0	
Nitrate	1.4	5.3	0.15	0.03	
Nitrite	0.003	0.01	0.03	0.01	
Conductivity	310.8		1903.8		

Table A4-5

In-situ Measurement Program Data Listings

Survey	Station	Date	Time (EDT)	Temperature (deg C)	DO (mg/L)	pH (units)
A B C	4 4 4	7/9/91 7/10/91 7/10/91	1840 45 730	29.5 29 29	1.3 1.1 1.25	6.93 6.85 7
D E F	4 4 4	7/10/91 7/10/91 7/10/91	1325 1824 2343 655	30.2 30 29.5 29.8	1.4 1.1 1.05 1.1	7.87 7.24 7.4 7.26
G H	4	7/11/91 7/11/91	1345	31	1.3	7.3
A B C D E F G H	4-Outfall 4-Outfall 4-Outfall 4-Outfall 4-Outfall 4-Outfall 4-Outfall 4-Outfall	7/9/91 7/10/91 7/10/91 7/10/91 7/10/91 7/10/91 7/11/91 7/11/91	1840 45 730 1325 1824 2343 655 1345	30 29 29 30.2 30 29.5 29.8 31	5.7 5.6 5.4 5.4 5.4 2.6 5.5	
A B C D E F G H	5 5 5 5 5 5 5 5	7/9/91 7/10/91 7/10/91 7/10/91 7/10/91 7/11/91 7/11/91 7/11/91	2000 239 925 1500 1938 121 820 1715	25 22 22.2 26 26 23.5 22.75	9.28 6.9 8.35 10.7 8.9 6.52 7.05	7.33 6.85 7.18 7.97 8.15 7.71 7.44 8.21
A B C D E F G H	6 6 6 6 6 6	7/9/91 7/10/91 7/10/91 7/10/91 7/10/91 7/11/91 7/11/91	2011 301 940 1505 1943 135 835	25.5 22.5 22 23.8 26 24 23	9.5 6.68 7.3 9.4 9.45 6.7 6.3	7.39 7.12 7.21 7.94 8.28 7.77 7.49
A B C D E F G H	7 7 7 7 7 7 7	7/9/91 7/10/91 7/10/91 7/10/91 7/10/91 7/11/91 7/11/91 7/11/91	2020 317 1005 1518 1954 159 910 1645	25 23.5 22 23.5 25.3 25 23.5 25.25	9.72 7.2 7.25 9 9.65 7.25 6.45 9.4	7.44 7.21 7.21 7.87 8.37 7.77 7.62 7.95

Survey	Station	Date	Time (EDT)	Temperature (deg C)	DO (mg/L)	pH (units)
A B C D E F G H	8 8 8 8 8 8	7/9/91 7/10/91 7/10/91 7/10/91 7/10/91 7/11/91 7/11/91 7/11/91	2029 326 1017 1520 2000 209 1000 1630	24 24 22.8 23.5 24.8 25 24 24 24.25	9.38 7.58 6.35 9.3 9.3 7.7 6.35 7.3	7.43 7.31 7.38 7.92 8.22 7.78 7.59 7.37
A B C D E F G H	9 9 9 9 9 9	7/9/91 7/10/91 7/10/91 7/10/91 7/10/91 7/11/91 7/11/91 7/11/91	2037 336 1025 1550 1550 220 1020 1600	23.5 23.5 24 24.8 24.8 24 24.75 26	9.35 7.98 6.85 8.6 8.6 8.1 7.5	7.45 7.32 7.39 8 8.15 7.76 7.78 7.93
A B C D E F G H	10 10 10 10 10 10 10	7/9/91 7/10/91 7/10/91 7/10/91 7/10/91 7/11/91 7/11/91 7/11/91	2044 347 1040 1610 2014 231 1040 1515	23.5 23 24 25.2 24.5 24 24.8 26.25	9.18 7.9 7.7 8.35 8.8 7.45 8.1 9.4	7.48 7.32 7.42 7.97 8.14 7.75 7.91 8.05
A B C D E F G H	10a 10a 10a 10a 10a 10a 10a	7/9/91 7/10/91 7/10/91 7/11/91	2216 400 2046 313	21.5 23 24 23.5	9.4 8.25 8.1 7.8	
A B C D E F G H	11 11 11 11 11 11 11	7/9/91 7/10/91 7/10/91 7/11/91 7/11/91	2230 1640 2103 338 1103	24 25 25 24 24.5	8.2 10.8 9 6.7 9.2	7.38 8.35 8.14 7.61 8.13

Table A4-6

Listing of Analytical Results from Rhode Island Analytical Laboratory, Inc.

ASA Associates

ASA Associates

DATE RECEIVED: 07/10 & 7/11/91 DATA REPORTED: 09/03/91

INVOICE #: D3672

P.O. #:

UNITS:	TOTAL SUSPENDED SOLIDS (mg/1)	BOD ₅ * (mg/l)	AMMONIA (AS N) (mg/l)	TOTAL KJELDAHL NITROGEN (mg/l)	NITRATE (AS N) (mg/l)	NITRITE (AS N) (mg/l)	SPECIFIC CONDUCTANCE (µmhos/cm)
SAMPLE ID							•
7/10/91:							
A1	10.8	3.8	0.45	5.00	1.73	<0.01	301
A1R	<0.5	0.6	<0.01	0.13	0.01	<0.01	<0.1
A2	4.7		0.34	1.40	1.10	<0.01	309
A2R	4.5		0.38	1.15	1.33	<0.01	307
A3	4.8	3,4	0.38	0.90	0.92	0.01	294
A4	7.2	5.4	21.0	24.5	0.16	0.02	1,600
A5	9.5		2.04	2.65	1.18	0.02	411
A6	7.6	3.5	2.12	3.25	0.91	0.02	402
A7	9.2		2.12	3.15	1.13	0.02	410
A8	4.3	2.6	1.84	2.65	1.38	0.02	399
A9	10.1		1.34	2.10	1.38	0.02	364
A10	9.1	3.5	1.30	2.10	1.38	0.02	335
A11	3.0	2.4	1.72	2.15	1.42	0.06	317

^{*}Due to the precision of the ${\rm BOD}_5$ test, results are normally reported to the nearest whole number. The decimals used above are only for comparative purposes and are beyond the scope of the test.

RI ANALYTICAL LABORATORIES, INC.

Page 2

CERTIFICATE OF ANALYSIS

DATE RECEIVED DATA REPORTED	: 07/10 &			INVO	PICE #: D30	672	
UNITS:	TOTAL SUSPENDED SOLIDS (mg/l)	BOD ₅ * (mg/l)	AMMONIA (AS N) (mg/l)	TOTAL KJELDAHL NITROGEN (mg/l)	NITRATE (AS N) (mg/l)	NITRITE (AS N) (mg/l)	SPECIFIC CONDUCTANCE (µmhos/cm)
SAMPLE ID						ı	
7/10/91:							
B1	7.3	2.8	0.40	1.13	1.57	0.01	309
B2	6.6		0.43	1.00	1.52	0.01	302
В3	6.5	2.4	0.49	1.05	1.58	<0.01	304
B3R	7.7	2.4	0.45	1.00	1.15	<0.01	300
B4	15.2	7	19.0	19.5	0.10	0.01	1,540
B5	9.3		1.48	2.00	1.15	<0.01	373
B6	7.3	3.2	1.72	2.35	1.51	0.02	388
B7	9.0		2.00	2.75	1.26	0.02	398
B8	7.7	2.8	2.08	2.65	1.13	0.02	400
В9 .	0.9		2.08	2.85	1.26	0.02	399
B10	6.8	3	1.60	2.10	1.26	0.02	361
C1	7.1	2.3	0.42	1.13	1.40	<0.01	297
C2	8.2		0.49	1.05	1.33	<0.01	308
C3	8.7	3	0.52	1.25	1.47	0.01	303
C4	5.1	5.6	19.0	20.5	0.13	0.03	1,510

^{*}Due to the precision of the ${\hbox{BOD}}_5$ test, results are normally reported to the nearest whole number. The decimals used above are only for comparative purposes and are beyond the scope of the test.

	TOTAL			TOTAL	WYMD3 MD	NYMOTME	CDECTETC
	SUSPENDE		AMMONIA	KJELDAHL	NITRATE	NITRITE	SPECIFIC
	SOLIDS	BOD ₅ *	(AS N)	NITROGEN	(AS N)	(AS N)	CONDUCTANCE (,mhos/cm)
UNITS:	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(µmios/cm)
SAMPLE ID							
7/10/91:							
Ć5 [′]	5.6		1.80	2.35	1.26	0.02	386
C5R	6.0		1.72	2,75	1.19	0.01	380
C6	4.9	3.6	**	**	1.52	0.01	360
C7	6.7		1.56	1.68	1.13	0.02	362
C8	2.4	3.4	1.72	2.05	1.18	0.02	397
C9	<0.5		2.04	2.45	1.13	0.02	394
C10	5.1	3.4	1.94	2.60	1.17	0.03	403
D1	5.0	3	0.52	0.90	1.10	<0.01	306
D2	8.5		0.49	1.04	1.20	<0.01	310
D3	8.0	3.6	0.42	0.88	1.28	<0.01	311
D4	11.8	10	21.5	23.8	0.07	0.04	1,730
D5	3.8		2.04	2.95	0.99	0.01	424
D6	6.9	3.7	1.94	2.60	0.98	0.02	440
D6R	5.3	3.7	2.00	3.15	1.08	0.02	431
D7	8.9		1.30	1.90	1.32	0.01	370

*Due to the precision of the BOD_5 test, results are normally reported to the nearest whole number. The decimals used above are only for comparative purposes and are beyond the scope of the test.

**No sulfuric acid preserved sample provided.

RI ANALYTICAL LABORATORIES, INC.

Page 4

CERTIFICATE OF ANALYSIS

ASA Associa DATE RECEIV DATA REPORT	ED: 07/10 &	7/11/91	INVOICE #: D3672 P.O. #:					
UNITS:	TOTAL SUSPENDE SOLIDS (mg/l)	D BOD ₅ * (mg/l)	AMMONIA (AS N) (mg/l)	TOTAL KJELDAHL NITROGEN (mg/l)	NITRATE (AS N) (mg/l)	NITRITE (AS N) (mg/l)	SPECIFIC CONDUCTANCE (µmhos/cm)	
SAMPLE ID								
7/10/91:								
D8	4.7		1.80	2.25	1.09	0.01	420	
D9	8.2		1.48	1.80	1.08	0.02	382	
D10	6.4	4.2	1.84	2.60	1.02	0.03	404	
D11	8.7	5.2	1.14	1.80	1.17	0.03	363	
D12	6.0	0.7	0.42	0.70	0.20	<0.01	94.2	
7/11/91:								
E1	3.7	3.6	0.42	1.04	1.13	0.02	306	
E2	8.3		0.38	1.22	1.32	0.01	313	
E3	4.9	3.6	0.40	1.06	0.92	0.01	297	
E4	25.3	10	22.5	26.5	0.02	0.04	1,730	
E5	5.1		2.12	3.05	0.91	0.02	423	
E6	14.1	4.1	2.12	3.15	0,98	0.02	426	
E7	7.2		2.65	3.05	1.02	0.03	445	
E7R	6.7		2.60	3.05	0.90	0.03	451	
E8	7.6	3.1	2.00	2.65	1.03	0.02	432	
E9	6.4		1.60	1.94	1.46	0.02	392	
E10	12.7	4.2	1.56	1.94	1.13	0.02	397	
E11	15.2	4.8	1.56	2.15	1.15	0.05	394	

*Due to the precision of the ${\rm BOD}_5$ test, results are normally reported to the nearest whole number. The decimals used above are only for comparative purposes and are beyond the scope of the test.

ASA Associates

DATE RECEIVED: 07/10 & 7/11/91 INVOICE #: D3672

DATA REPORTED: 09/03/91 P.O. #:

UNITS:	TOTAL SUSPENDE SOLIDS (mg/l)	D BOD ₅ * (mg/l)	AMMONIA (AS N) (mg/l)	TOTAL KJELDAHL NITROGEN (mg/l)	NITRATE (AS N) (mg/l)	NITRITE (AS N) (mg/l)	SPECIFIC CONDUCTANCE (µmhos/cm)	_
SAMPLE ID			•					
7/11/91:							•	
F1	8.0	4.2	0.45	2.95	1.40	<0.01	323	
F1R	<0.5	0.2	0.01	0.17	0.02	<0.01	<0.1	
F2	8.7		0.43	1.06	1.40	<0.01	323	
F3	5.2	3,1	0.45	1.06	1.33	<0.01	317	
F4	15.3 .	8.4	20.5	21.0	0.01	0.03	1,690	
F 5	6.7		1.76	2.60	1.09	0.01	406	
F6	4.4	3.5	2.00	2.45	1.08	0.02	408	
F7	5.6		2.08	2.45	1.09	0.02	432	
F8	7.2	2.6	2.00	2.35	1.13	0.02	426	
F8R	6.0	2.8	1.94	2.35	0.91	0.02	427	
F9	3.6		1.80	2.45	1.03	0.02	420	
F10	7.3	2.6	1.68	2.10	1.03	0.02	396	
F1.1	1.5	2.6	1.64	2.35	1.04	0.06	397	
G1	5.8	2.0	0.45	1.10	1.20	<0.01	321	
G2	7.7		0.49	1.10	1.20	<0.01	331	
G3	5.1	3	0.43	3.05	1.10	<0.01	328	
G4	24.0	9.6	20.0	22.5	0.05	0.03	1,670	

*Due to the precision of the ${\rm BOD}_5$ test, results are normally reported to the nearest whole number. The decimals used above are only for comparative purposes and are beyond the scope of the test.

RI ANALYTICAL LABORATORIES, INC.

Page 6

CERTIFICATE OF ANALYSIS

ASA Associat DATE RECEIVE DATA REPORTE	D: 07/10 8	§ 7/11/91 91	INVOICE #: D3672 P.O. #:				-	
UNITS:	TOTAL SUSPENDI SOLIDS (mg/1)	BOD ₅ * (mg/l)	AMMONIA (AS N) (mg/l)	TOTAL KJELDAHL NITROGEN (mg/l)	NITRATE (AS N) (mg/l)	NITRITE (AS N) (mg/l)	SPECIFIC CONDUCTANCE (µmhos/cm)	
SAMPLE ID		•						
7/11/91:								
G5	4.4		1.60	2.35	1.09	0.01	412	
G6	6.8	3.1	1.52	2.25	1.32	0.01	401	
G7	4.2		1.52	2.25	1.32	0.01	405	
G8	8.1	2.8	1.94	2.60	1.08	0.02	424	
G9	5.7		2.04	2.60	1.30	0.03	426	
G9R	5.0		2.00	2.65	1.08	0.02	432.	
G10	6.3	3.4	2.00	2.75	1.02	0.03	431	
G11	5.9	4.9	1.48	2.25	1.68	0.05	404	
H1	9.4	4.3	0.52	1.56	1.33	<0.01	320	
H2	11.3		0.52	1.18	1.40	<0.01	322	
нз	11.3	4.4	0.55	1.14	1.40	<0.01	314	
H4	10.9	6.6	20.5	21.0	0.40	0.02	1,730	
H5	9.1		3.60	4.40	1.32	0.01	497	
H7	9.3		1.64	2,65	1.30	0.01	431	
Н8	11.7	2.8	1.26	2.35	1.31	0.02	411	
Н9	11.8		1.30	2.25	1.24	0.04	418	
H10	14.9	4.3	1.74	2.15	1.44	0.04	422	
H12	8.5	1.8	0.63	0.75	0.37	<0.01	93.2	

*Due to the precision of the BOD_5 test, results are normally reported to the nearest whole number. The decimals used above are only for comparative purposes and are beyond the scope of the test.

ASA Associates

DATE RECEIVED: 07/10 & 7/11/91 DATA REPORTED: 09/03/91

INVOICE #: D3672

P.O. #:

SAMPLE ID: A6

DAY	DO (MG/L)	ACCUMULATED DO CONSUMED BY SAMPLE (MG/L)	NO ₃ -N (MG/L)	
0	11.5			
5	7.6	3.9	1.11	
10	4.6	6.9	1.22	
14	0.4/8.8	11.1	2.67	
20	4.0	15.9	2.00	

SAMPLE ID: B6

DAY	DO (MG/L)	ACCUMULATED DO CONSUMED BY SAMPLE (MG/L)	ио ₃ -и (MG/L)
0	9.5		
5	6.6	2.9	1.24
10	3.2/8.5	6.3	1.38
14	3.7	11.1	2.05
20	1.7	13.1	1.74

RI ANALYTICAL LABORATORIES, INC.

Page 8

CERTIFICATE OF ANALYSIS

ASA Associates		
DATE RECEIVED:	07/10 & 7/11/91	INVOICE #: D3672
DATA REPORTED:	09/03/91	P.O. #:

SAMPLE ID: C6

		ACCUMULATED		
		DO CONSUMED		
DAY	DO	BY SAMPLE	ио ₃ -и	
	(MG/L)	(MG/L)	(MĞ/L)	
0	11.4			
5	7.7	3.7	1.09	
10	4.7	6.7	1.29	
14	2.8/8.6	8.6	2.15	
20	5.7	11.5	1.75	

SAMPLE ID: D6

DAY	DO (MG/L)	ACCUMULATED DO CONSUMED BY SAMPLE (MG/L)	NO ₃ -N (MG/L)
0	11.1		
5	7.8	3.3	0.98
10	5.5	5.6	1.02
14	0.7/8.5	10.4	1.40
20	5.2	13.7	1.99

RI ANALYTICAL LABORATORIES, INC.

ASA Associates DATE RECEIVED: DATA REPORTED:	07/10 & 7/11/91 09/03/91	INVOICE #: P.O. #:	D3672
	SAMPLE ID: DER		

		SAMPLE ID: D6R		
DAY	DO (MG/L)	ACCUMULATED DO CONSUMED BY SAMPLE (MG/L)	NO ₃ -N (MG/L)	
0 5 10 14 20	, 11.3 7.8 5.5 0.8/8.5 5.2	3.5 5.8 10.5 13.8	1.13 0.88 1.04 1.72	

SAMPLE ID: F6

		ACCUMULATED DO CONSUMED	
DAY	DO (MG/L)	BY SAMPLE (MG/L)	ио _з -и (MG/L)
0	11.3		
5	6.7	4.6	1.05
10	1.9/8.6	9.4	1.21
14	3.6	14.4	1.94
20	1.5	16.5	2.00

RI ANALYTICAL LABORATORIES, INC.

Page 10

CERTIFICATE OF ANALYSIS

ASA Associates DATE RECEIVED: DATA REPORTED:	07/10 & 7/11/91 09/03/91	 INVOICE #: D3672 P.O. #:	
·			

SAMPLE ID: G6

DAY	DO (MG/L)	ACCUMULATED DO CONSUMED BY SAMPLE (MG/L)	NO ₃ -N (MG/L)
0	9.9		
5	6.5	3.4	1.14
10	3.0/8.5	6.9	1.03
14	5.2	10.2	1.25
20	3.2	12.2	1.24

RI ANALYTICAL LABORATORIES, INC.

Page 11

5. SUMMARY

The measurement program produced eight views of the river during the summer season when temperatures in the river were relatively high, approximately 24°C., and flows were low, between 130-150 cfs. The data should therefore be descriptive of the river during near-worst case conditions. DO concentrations were relatively close to saturation values over the study area. Lowest DO levels were above 70% of saturation. Mean DO at the sag point between stations 6-8 was 93% of the saturation level. Mean DO varied between a low value of 7.9 mg/L at stations 6 and 8 to a high value of nearly 11.9 mg/L at station 1. The largest change in mean DO occurred across the Thundermist dam, where DO dropped from a supersaturated concentration of 11.9 mg/L at station 1 to the the saturation value of 8.33 mg/L several yards below the dam at station la. Mean DO was relatively constant at between 7.9-8.8 mg/L at stations below the Thundermist dam. Significant diurnal variations of DO observed along most of the river were probably due to phytoplankton productivity. Chlorophyll aconcentrations ranged between 20-55 ug/L during the study. Chlorophyll a was higher at stations I and 2, 38 and 45 ug/L respectively, declining to a low mean value of 28 ug/L at station 8. The concentration then rose to above 40 ug/L at the downstream station 11.

TSS levels were variable through the area, with no trends evident. TSS concentrations in the WWTF effluent were similar to those in the river, suggesting that the WWTF has a minor impact on TSS in the river. WWTF effluent also had no measurable impact on BOD in the river, which averaged between 2.5 to 4.5 mg/L. The WWTF did significantly change TKN and conductivity levels in the river. TKN increased from 1.31 mg/L above the outfall to 2.8 mg/L downstream of the outfall. Conductivity levels upstream of the facility were approximately 300 mg/L, increasing to greater than 400 mg/L below the facility. The mean ammonia concentration of the WWTF outfall samples was 20.5 mg/L. This produced an increase in the river from 0.46 mg/L at station 3 to 2.02 mg/L at station 5.

Nitrate was relatively constant between 1.13 and 1.32 mg/L over the river. Dilution from the WWTF outfall accounts for the slight drop from 1.28 to 1.13 mg/L seen between between stations 3 and 5. The mean nitrate concentration in WWTF samples was 0.12 mg/L. Nitrite concentrations are small, increasing from 0.01 mg/L at station 1 to 0.05 mg/L at station 11.

The dye time of travel experiment was conducted over a period of nearly 40 hours following the release of dye at station 3a. Analysis of the data yielded travel times of 5.3, 10.3 and 23.9 hours between station 3a and stations 6, 8, and 10, respectively. The corresponding mean current speeds were 5.95, 9.03, and 3.28 cm/sec between stations 3a-6, 6-8 and 8-10, respectively. Measurements of water depth at the center of the river were also made to assess the bottom. The measurements indicated that the bottom in nearly all areas of the river were composed of rocks and gravel. Mean depths at the center of the river typically ranged between 4-6 ft above station 8 to greater than 7 feet below station 8. The deepest areas of the river (11-12 ft) were shortly upstream of stations 9 and 10.

Appendix 5

Providence - Seekonk River Total Maximum Daily Load (TMDL) Project

(RIDEM, unpubl. data)

Table A5-1 Providence River Seekonk River TMDL Sampling Data (RIDEM, unpublished data)

Sampling Station: DEM-SM (Slaters Mill Pawtucket, RI)

			i					l I					$\overline{}$
Date	5-Day Biochemical Oxygen Demand (mg/l)	Total Suspended Solids (mg/l)	Total Particulate Carbon (mg/l)	Silicon dioxide (SiO2 mg/l)	Nitrate-Nitrite (mg/l as N)	Ammonia (mg/ as N)	Total Particulate Nitrogen (mg/l)	Total Nitrogen (mg/l)	Orthophosphate (mg/l as P)	Total Phosphorous (mg/l)	Dry Weather (1)	Net Weather (2)	Mixed Weather (3)
31-May-95				2.26	1.908	0.168	0.138	3.028	0.289	0.255			•
01-Jun-95	2 5		1.41 0.75				0.118	3 014		0.230			•
02-Jun-95	2		1.54	2.38	1.846	 0.172	0.176	3 354	0.272	0.270		 	•
09-Jun-95	2		1.74	2.37	1.757	0.277	0.205	3 105	0.388	0.321		•	ļ
14-Jun-95	2		1.35	2.56	1.358	0.168	0.156	2.455	0.379	0.362			•
22-Jun-95	1		1.59	2 49	1.339	0.019	0.217	2.111	0.254	0.237	•		
27-Jun-95	1		2.24	2.46	1.212	0.162	0.302	2.551	(ed)	(ed)	•	•••••	†*******
28-Jun-95	1		2.20	2.46 2.40 2.33	1.318	0.093	0.309	3.014 3.354 3.105 2.455 2.111 2.551 2.569	(ed)	(ed)	•	*********	†
29-Jun-95	8		2.26	2.33	1.618	0.065	0.212	2.628	0.177	0.173	•		l'''''
14-Jul-95	1		2.01	0.59	1.813	0.053	0.226	2.751	0.074	0.175	•		Ĭ
18-Jul-95	1		2.11 2.50	0.59 1.81 2.04	1.532	0.100 0.130 0.040 0.058	0.227 0.232	2.628 2.751 2.517 2.301 2.378 2.760 2.854	0.160	0.258	<u> </u>	•	<u> </u>
19-Jul-95	1		2.50	2.04	1.388	0.130	0.232	2.301	0.163 0.150	0.289 0.258	<u> </u>		•
20-Jul-95	3		1.90	1.68 1.85	1.455	0.040	0.207 0.183	2.378	0.150	0.258	I		•
27-Jul-95	1		1.97	1.85	1.878	0.058	0.183	2.760	0.170	0.271	•		
08-Aug-95	(ed)		1.16	2.17	1.876	0.287	0.124	2.854	0.157	0.242		•	
09-Aug-95	4		1.54	0.53	1.636	0.169	0.171	2.486	0.101	0.427			•
10-Aug-95	4		0.64	2.30	2.275	0.109	0.102	2.486 2.603 2.130 2.823	0.111	0.169	l		•
16-Aug-95 22-Aug-95	1		2.09	1.39	1.607	0.033	0.255	2.130	0.123 0.137	0.214	•		
22-Aug-95	1		2.09	1.46	2.156	0.035	0.263	2.823	0.137	0.237	•		I
23-Aug-95	3		2.32	0.83	1.992	0.036	0.281			0.273	•		
24-Aug-95	1		1.90	1.50	2.198	0.045	0.428	(ed)	0.154	(ed)	•		ļ
30-Aug-95	4		1.80	1.56 2.16 2.29	2.310	0.131	0.358	3.114	0.174	0.471	•		
08-Sep-95	3		2.45 2.24	2.16	1.835	0.022	0.459	3.671	0.249	0.474	•		
14-Sep-95	3		2.24	2.29	1.994	0.088 0.057	0.350 0.252	3.951	0.319 0.204 0.075	0.523		•	
19-Sep-95	4		1.66	1.76	1.984	0.057	0.252	2.509	0.204	0.302	ļ	•	ļ
20-Sep-95	4		1.78	1.07	1.909	0.178	0.316	2.755	0.075	0.247		•	
21-Sep-95	1		2.33	2.21	2.256	0.010	0.369	(ed) 3.114 3.671 3.951 2.509 2.755 2.716	0.113	0.243	ļ		•
02-May-96	1		0.52	1.62	0.473	0.253	0.060	1.100	0.050	0.137			ļ <u>.</u>
14-May-96	1		1.17	1.76	0.551	0.213	0.132	1.072	0.045	0.100			ļ
28-May-96	2		1.58	1.77	1.133	0.106	0.269	1.700	0.065	0.117	•		ļ
29-May-96	1		1.00	1.65	1.254	0.107 0.165	0.109	1.902	0.053	0.137 0.150	ļ .		ļ
30-May-96			1.35	1.64	1.225	0.165	0.143	2.376 1.730	0.074	0.150			ļ <u>.</u>
05-Jun-96	7		0.91	2.23	1.101	0.148	0.090	1./30	0.111	0.192			
18-Jun-96 24-Jun-96		6.55	1.83 1.11	3.00	1.802	0.087 0.229	0.207 0.158	2.446 2.641 2.351 2.308	0.133	0.240 0.250			
24-Jun-96 25-Jun-96	1	0.00	1.11	2.75	1.835 1.534	0.229	0.158	2.041	0.144	0.250	ļ		
26-Jun-96		6.09 5.70 7.62	1.16 1.25	2.70 2.86 2.22	1.534	U. 105	0.140 0.155	2.301	0.158 0.165 0.144	0.273			 <u></u> -
26-Jun-96 11-Jul-96		7 62	2.18	2.00	1.397	0.182 0.005	0.155	2.308	U. 100	0.045			ļ .
15-Jul-96	<u></u> 2	17.61	2.16	1 66	0.515	0.062	0.347	2.102	0.059	(ed)	-		ł
16-Jul-96	1	16.03	2.29	1.66 1.89	0.538	0.086	0.229	1.199	0.039	0.228			ł
17-Jul-96		51.93	4.85	2.33	0.491	0.082	0.455	1.337	0.086	0.226		•	ł
31-Jul-96	1	5.62	1.14	2.61	1.289	0.057	0.433	1.875	0.165	0.254			
15-Aug-96		4.48	1.15	2.29	1.168	0.314	0.179	1.944	0.132	0.248			
19-Aug-96	3	6.56	0.78	2.49	1.591	0.403	0.122	2.462	0.187	0.271	•		† <u>-</u>
20-Aug-96	3	2.71	0.89	2.46	1.534	0.259	0.154	2.419	0.154		•		†******
21-Aug-96		37.53	6.32	2.38	1.568	0.236	0.675	4.961	0.112	0.324			t
05-Sep-96	1	4.19	0.79	2.66	1.988	0.082	0.125	2.542	0.151	0.214			ļ
19-Sep-96	1	32.55	1.48	1.87	0.710	0.135	0.188	1.361	0.052	0.281	l	•	1
02-Oct-96	1	5.07	0.53	3.02	1.361	0.195	0.065	2.083	0.122	0.208	•		ļ
15-Oct-96	3	3.90	0.39	3.13	0.775	0.134	0.055	1.443	0.067	0.139			
16-Oct-96	1	3.61	0.56	3.13	0.738	0.231	0.068	1.399	0.109	0.139			1
17-Oct-96	1	3.68	0.57	3.01	1.858	0.748	0.089		0.314	0.177	•		I
14-Nov-96	1	5.34	0.75	3.21	0.753	0.553	0.104		0.098	0.161	•		L
											_	_	

Table A5-1 **Providence River Seekonk River TMDL Sampling Data**

(RIDEM, unpublished data)

Sampling Station: DEM-SM (Slaters Mill Pawtucket, RI)

Date Coxyge Cox
--

Statistical Summary - all data													
Count	49	19	53	52	52	52	53	50	50	49		•	•
Mean	2.0	11.93	1.67	2.13	1.475	0.153	0.215	2.396	0.150	0.249	•	•	•
Minimum	1	2.71	0.39	0.53	0.473	0.005	0.055	1.072	0.045	0.100	•	•	•
Maximum	8	51.93	6.32	3.21	2.310	0.748	0.675	4.961	0.388	0.523		•	•

Statistical Summary - Dry Weather													T 1
Count	25	10	26	26	26	26	26	24	24	23			
Mean	1.9	8.02	1.72	2.21	1.548	0.156	0.235	2.452	0.144	0.233	•	·	
Minimum	1	2.71	0.39	0.59	0.473	0.005	0.055	1.165	0.050	0.117	•		1
Maximum	8	37.53	6.32	3.21	2.310	0.748	0.675	4.961	0.314	0.474	•	1	

Statistical Summary - Wet Weather													
Count	9	4	11	11	11	11	11	11	11	11		•	
Mean	2.0	26.76	1.978	1.996	1.441	0.153	0.240	2.419	0.158	0.284		•	
Minimum	1	1.74	1.111	1.075	0.277	0.057	0.124	0.388		0.150		•	
Maximum	4	51.93	4.848	2.747	1.994	0.287	0.455	3.951	0.388	0.523		•	

(ed) = edited

^{... =} No data.

(1) Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day.

⁽²⁾ Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or rainfall of more than 1.0" on days 2 and 3 prior to sampling.

⁽³⁾ Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Table A5-2

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by RIDEM in 1995 and 1996 are marked

Year	day	Jan	Feb	Mar	Арг	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1995	1	0.54		Tr		0.77						0.02	0.13
1995	2	0.30				Tr		0.03				0.78	
1995	3			Tr			0.06		0.04			0.03	0.11
1995	4	Tr	0.81		0.06		0.32		0.73		0.01	0.11	0.06
1995	5		Tr	0.12		0.05			0.42		1.08		
1995	6	0.02		0.03			0.07		0.54		1.92		0.35
1995	7	0.90		Tr	0.10		0.98		0.01		0.17	1.09	
1995	8			0.04	0.24		0.30	0.01	li e sue	14 - 15 Feb		Tr	
1995	9			0.87	0.56		Tr	1					1.03
1995	10		Tr		0.01	0.04						ŀ	
1995	11	0.10		Tr		0.39	0.10	0.30				0.05	
1995	12	0.08		Tr	0.08	Tr	0.46		Tr			0.69	
1995	13				0.53	Tr	0.21			0.12		0.05	
1995	14	Tr		Tr	0.02	0.09	0.04			0.35	0.30	1.15	0.35
1995	15	0.05	0.57	0.02		0.35					0.61	0.52	Tr
1995	16	0.26	0.28	0.01		Tr			Makada			l	0.05
1995	17	0.01		0.44		0.30	1	0.05		2.72	Tr		0.01
1995	18	0.01		0.05	Tr	0.02		0.37				0.15	
1995	19	Tr			0.58 Tr	0.22						0.25	0.05
1995	20	1.22	Tr		Tr		0.28				0.04]	0.03
1995	21	0.09	0.01	0.40	0.39			Tr			1.29	Tr	Tr
1995	22	0.02	0.04	Tr	0.01				13344	0.49			
1995	23	0.07	0.19	Tr				Tr		0.02		ŀ	
1995	24		0.20	Tr		0.03	Tr					Tr	0.01
1995	25	Tr	Tr			0.02	0.06	Tr		0.04			
1995	26		Tr			Tr	0.01	Tr		0.32		l İ	
1995	27	Tr	0.05					Tr	0.01			Tr	
1995	28	[[0.99		0.58	Tr		0.01	l		0.95		
1995	29				Tr	0.52		0.40				0.21	
1995	30			0.05	0.18	0.03	I						
1995	31			Tr					Tr				

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1996	1				0.07	0.02		Tr	0.28	0.14			0.20
1996	2 3	0.07	0.03	0.30	0.52	0.02				0.13	0.02		1.16
1996		0.22	0.09	0.02		0.25					Tr		
1996	4	Tr				Tr		0.35		0.01			į
1996	5 6 7	Tr		0.19	Tr	0.03						0.01	
1996	6	i l		0.83	Tr	0.26			Tr				0.87
1996		0.06		0.48	0.42					1.21		0.16	1.15
1996	8	0.12 Tr	Tr	0.03	0.03	0.18				0.02		0.08	0.36
1996	9		0.12		0.32		Tr	0.04	Tr		0.30	0.53	
1996	10	0.05			0.13	0.27	0.05	0.01	0.07	0.01	0.01		
1996	11		0.27		Tr	0.15							0.08
1996	12	1.08			0.04	0.10	Tr			0.04			0.04
1996	13				0.04			3.57	0.93	0.13	Tr		0.03
1996	14		0.16		0.01					0.03] Tr	1	0.16
1996	15			0.17				Tr					Tr
1996	16	Tr	0.05		2.00	0.47							Tr
1996	17	0.03			Tr	0.14	0.03			0.93	·		0.68
1996	18						0.06			1.91			
1996	19	0.98		0.04			0.10		44.14	,,,,,	0.25	0.16	1.17
1996	20			0.64			0.46				2.81	0.10	0.01
1996	21	Tr	0.73	0.01	Tr	0.19	0.14		Tr		2.01		0.01
1996	22	l '''	U.75		Tr	0.13	0.14			0.41	0.10		
1996	23		0.02	Tr			0.02 Tr	0.45	0.05	0.41			
1996	24	0.85	0.57	• •	0.04	Tr	0.35		0.39	0.25			0.46
1996	25	0.85 Tr	5.5.	Tr	Tr	.,	0.04		0.01	0.17	0.01	0.02	0.10
1996	26			0.01	0.03		0.01	0.07	0.01	0.17		1.42	0.10
1996	27	1.42	0.02	0,0.	3.00	'	Tr	0.01	0.01			Tr	0.03
1996	28	Tr	0.13				Tr		0.45	0.03	0.21	'''	
1996	29	0.11			0.69	Tr	Tr		5.10	0.24			Tr 0.07
1996	30	0.02			0.50	0.36	0.22				0.09	Tr	5.57
1996	31	0.01						0.45			Tr		0.02

Appendix 6

River Rescue Project: Water Quality in Rhode Island's Urban Waters (1990 to 1995)

(Kerr and Lee, 1996)

Rhode Island DEM

Source: RIGIS, MASSGIS

File: BW SMPL.apr

May 2002

Figure A6-1 **RIVER RESCUE** STUDY 1990-1995

Data for

Metals,
Dissolved Oxygen,
Temperature,
Calcium,
Magnesium,
Hardness,
Total Suspended Solids

Page 1

0.01 1.33 0.20 0.10 4 days 0.07 0.03 0.15 Rain before Sampling 0.30 0.05 2.04 0.92 0.47 3 days 0.51 0.45 (inches) 0.11 0.71 0.05 0.54 0.07 0.15 99.0 0.69 z days 0.07 0.04 90.0 0.10 l day 0.61 0.21 0.51 (Buildines of du) 0.01 0.85 0.01 0.0 Same day Chronic Criteria Exceedence of Norms for marked a Acute Criteria Exceedence of Chronic Criteria Norms for Copper Exceedence of Acute Criteria Exceedence of ug/12.2 4.4 9.8 4.2 5.5 6.7 3.9 4.9 3.8 6.3 6.8 7.4 7.3 7.6 11.8 6.8 7.1 4.7 5.1 Nickel (fatot) 1916 9.6 9.6 9.6 9.6 3.3 5.5 4.0 3.5 6.2 2.3 3.1 5.8 5.3 5.3 4.6 5.4 3.9 3.0 3.8 рвэд (total) 13.1 20.6 10.8 24.5 7.8 9.9 8.3 7.5 11.6 6.5 9.6 9.8 9.9 10.6 9.7 8.3 11.8 9.6 12.8 6.4 8.8 Copper MA Blackstone River, Main Street, Blackstone, (fotal) ug/1 1.70 4.20 1.90 2.80 1.70 3.10 2.20 4.00 1.20 6.00 2.10 2.00 2.30 2.30 3.50 2.20 1.90 2.50 1.50 2.60 Сһготіит (fotal) ug/1 3.46 1.13 0.67 0.47 0.53 0.49 0.52 0.55 0.41 0.76 0.64 3.49 0.54 0.50 0.36 0.88 0.67 0.67 0.83 Cadmium **B**2 29.0 22.2 23.2 23.2 18.2 19.0 28.2 21.2 33.4 29.3 Hardness 32.7 34.8 38.5 30.9 32.1 44.4 47.4 47.4 44.4 (total) 2.3 2.0 2.0 2.0 1.8 2.3 2.2 2.1 2.5 2.8 2.8 3.0 2.6 1.4 2.0 2.4 1.9 Magnesium (10131) mg/l 11.5 4.3 8.0 6.0 6.0 10.8 10.7 11.5 9.3 8.0 5.5 9.6 8.1 13.3 13.4 14.3 14.8 9.4 Calcium SST ("Saturation in water) 107 100 1111 97 89 85 86 91 86 Diss. Oxygen (Saturation Level) 9.4 9.3 13.5 11.8 13.1 13.5 13.8 13.1 14.6 12.3 12.1 9.5 12.8 12.1 13.3 13.8 8.6 8.0 8.0 8.0 8.0 Diss. Oxygen (measured in water) 11.0 11.1 11.8 12.9 13.8 12.6 14.4 12.6 12.7 9.1 7.7 10.8 10.5 12.1 11.9 8.5 8.1 8.0 8.0 11.2 9.5 Diss. Oxygen -1.0 14.0 9.0 4.0 6.0 14.0 0.0 8.5 8.5 8.5 (C) 19.5 16.0 30.0 19.0 26.0 29.0 1.5 2.0 8.0 5.0 Temperature Vater 0.6 13.0 26.0 23.0 27.0 27.0 23.0 3.0 8.0 4.0 2.0 2.0 4.0 7.0 7.0 5.0 7.0 3.5 2.0 Тетрегасиге Нq 15:30 15:45 10:00 15:30 15:00 12:00 15:30 15:00 15:00 15:00 00:00 14:20 15:00 11:00 10:30 əmiT Ξ 13-Nov-90 25-Nov-90 1-Oct-90 15-Oct-90 6-Jan-91 20-Jan-91 4-Feb-91 29-Apr-91 12-May-91 10-Nov-91 25-Nov-91 8-Dec-91 29-Dec-91 17-Mar-91 1-Apr-91 22-Jun-91 22-Jul-91 17-Feb-91 4-Mar-91 9-Jun-91 8-Jul-91 Date 3-4 days Same day 3-4 days Dry tor statistics) Dry Same day Dry Dry 3-4 days
Dry
2 days
Dry
Dry
3-4 days
Dry Dry -4 days Dry Dry 1 day Dry 2 days Dry 1 day after Rainfall (used Dry Weather, Days 1990 [66] KEYB

Table A6-1: River Rescue Project - Water Quality in the Tributaries, 1990-1995 (Kerr and Lee, 1996)

Table A6-1: River Rescue Project - Water Quality in the Tributaries, 1990-1995 (Kerr and Lee, 1996)

		eysb 4								2.04	0.03	0.35	3					0.10	_	60.0				92.0	0.04			0.13	0.20		0.90
	mpling	ջչեն է	•••••	0.17	0.09			ŗ	0.17 2.73			0.41			0.29	1: 4	0.04	0.01			0.60	0.25		2.32	1					60.0	
	Rain <i>before</i> Sampling (inches)	syab 2					80.0	0.67				100			0.65	0.10	0.09			0.87		0.63		0.10		0.09					0.81
	Rain be	yab I			900	0.93	0.13	0.73	0.23			0 24		0.12	0.01	0.01	0.12	0.01	0.13				200	5	0.23	0.54		1 06			
		Same day (up to sampling)			300	0.0	0.05												0.13							90.0		0.00			
	r Lead	Exceedence of Chronic Criteria			1		1	- -		1	-		-	-							+			+							
	Norms for Lead	Exceedence of Acute Criteria	(Exceedance marked as"1")																												
		Exceedence of Chronic Criteria	dance m	١.	†		1	- -		, <u> </u>	-		-			- -		-			-			T			-				
	Norms for Copper	Exceedence of Acute Criteria	(Exce		Ţ	-		- -		-		_						1													
		Nickel (total)	l/gn		4.1	4.8	3.8	5.4	7.3	5.3	7.0	0.7	2.8	4.6	5.1	J.C	63	7.1			+-										
		Drad (faloi)	l/gn	1	7.7	2.2	2.5	9.9	5.8 6.3	11	2.2	c.1 6.9	5.6	7.0	18.7	3.5	6.4														
Ą		Copper (fotal)	l/gn	:	II.8	7.3	5.4	10.5	6.5 12.6	7.2	9.4	5.9 5.9	4.0	2.5	7.0	2.0	8.6	6.0													
B2 Blackstone River, Main Street, Blackstone, MA		டுர்மைய்ற (நிதி)	ng/l	9	1.70	1.00	1.40	2.70	3.80	1.10	3.15	2.31	1.92	1.09	3.87	1 57	1.98	0.41													
et, Black		muimbs) (Istot)	l/gn	8	3.	09'0	0.20	0.60	0.40	0.37	0.43	0.17	0.24	0.20	0.30	0.24	0.17	0.15													
B2 Aain Stre		Нагdness	mg/l	3 00	C.07	32.2	30.8	19.9	33.8	29.4	28.4	29.8 28.4		13.4	13.0	21.9	22.2	31.0													
River,	ļ	muizənyaM (İstot)	mg/I	ć	0.7	2.6	2.5	2.1	2.8	1.2	0.1	1.4	4.0	8.0	0.7	3 -	: ::	1.5													
ackstone	•••••	Calcium (tetal)	mg/l	~	0.1	9.8	8.2	5.5	8.9	8.6	9.7	9.0		4.0	0.4.0	7.0	7.0	10.0													
BI		SST	mg/l			3.4	1.3	2.6	7.7	3.4	2.5	1.9	1.4	9.0	1.2	4.9	2.4	3.6	5.2	7.5											
		Diss. Oxygen (%Saturation in water)	%	98	00	. 8	83	2 E	25	68	24 8	83	06	82	8 8	6	76	75	99	9 %	85	88	8 88	94	96	80	93	89 105	115	98 98	88 88
	•••••	Diss. Oxygen (Saturation Level)	mg/l	14.6	12.8	11.7	9.9	9.5 8.4	8.6	9.3	10.4	14.0	14.6	15.0	13.8	9.2	10.1	8.0	8.6	9.5 10.3	12.3	13.5	14.4 14.6	13.5	11.0	10.7	8.0	8.1	9.3	11.0	14.6
		Diss. Oxygen (measured in water)	mg/l	11.6	12.4	10.5	8.2	ر. 7×	7.9	8.3	9.8	11.7	13.1	12.4	12.5	8.7	7.7	0.9	5.7	9.1	10.5	11.8	12.7	12.6	10.6	8.5	7.5	7.2 8.8	10.7	9.5	12.8
	***************************************	Temperature - Air	(2)	-3.0	5.1.0	12.5	20.0	0.02	20.0	20.0	19.5	1.0	-6.0	-7.0	6.0	21.0	15.5	27.0	19.0	2.5 8.5	4.5	7.0	6.5	7.5	14.0	11.5	27.0	28.5 25.0	20.5	15.0	-10.0
		Тетрегасиге - Water	0	0.0	2.0	8.5	16.0	24.0	23.0	19.0	13.5	1.5	0.0	-1.0	3.5	19.5	15.0	27.0	23.0	14.0	6.5	3.0	0.0	3.0	11.0	12.5	26.5	26.0 24.0	19.0	11.0	
		Нq			7.1	6.9	8.9	7.3	7.0	7.0	7.1	6.9	8.9	7.0	7.0	6.9	6.9	7.0	7.0	6.9 7.0	7.0	6.9	6.9 6.9	6.7	6.9	6.8	7.1	7.2	7.4	7.0	6.9
		Тіте	(h)	12:00	16:45	11:00	13:20	15:30	18:20	18:00	10:30	13:15	13:30	15:30	17:15	14:15	10:05	10:00	9:20	17:00	16:15	12:00	16:25 11:00	16:45	16:45	15:11	05:51	13:35	17:00	15:10 13:00	13:05 14:10
	•	Date		12-Jan-92 7-Feh-92	8-Mar-92	7-Apr-92	3-May-92	/-Juli-92 12-Jul-92	12-Aug-92	7-Sep-92	3-Oct-92 9-Nov-92	6-Dec-92	10-Jan-93	7-Feb-93	/-Mar-93 4-Apr-93	10-May-93	7-Jun-93	11-Jul-93	18-Aug-93	12-Sep-93 11-Oct-93	8-Nov-93	13-Dec-93	24-Jan-94 2-Feb-94	13-Mar-94	11-Apr-94	17-May-94	20-Jun-94	12-Jul-94 6-Aug-94	9-Sep-94	9-Nov-94 3-Dec-94	
		Dry Weather, Days after Rainfall (used for statistics)		Dry	ay			Drv			3-4 davs			Dry					Dry			_	D D	8	Dry		DIN C		Dry	Dry Dry	s, s
		XEV B		1992	1			_i	!				1993	!_		<u> </u>	i				<u> </u>	1	1994	<u> </u>		<u> </u>					1995

Page 3

									Ī	Blacks	one Rive	B2 er, Main S	B2 Blackstone River, Main Street, Blackstone, MA	ckstone, 1	Ų Į Į											
					***************************************	! ~~~~~~~												Norms for Copper		Norms for Lead	Lead	æ	Rain before Sampling (inches)	fore Sampl (inches)	ing	
ХЕ УВ	Dry Weather, Days after Rainfall (used for statistics)	Date	ЭшіТ	Hq	Temperature - Water Temperature	Temperature - Air Dies Owesen	Oxygen (measured in water) The contract of th	(Saturation Level) Diss. Oxygen	("Saturation in water) (TSS	Calcium	(16131) 	Hardness	muimbs) (Istot)	muimord) (falot)	Copper (total)	Lead (Isloi)	Nickel (total)	Exceedence of Acute Criteria	Exceedence of Chronic Criteria	Exceedence of Acute Criteria	Exceedence of Chronic Criteria Same day	(gailqmss ot qu)	Yeb I	2 days	syab & syab 4	e fron L
			(h)		(C)	(C)	mg/l m	mg/l %	=	Ĕ	Ĕ	=				- 50	- 50	(Exce	nce	ced as"	£					
	All Samples	sa					ł			ł	ł	ł					À									
s	Count	09				59								39	39	38	39	35	37	-	38					
L	Mean		,		11.0		10.4 11	11.5 91						2.32	9.4	4.5	5.9									
∢ ⊦	Minimum		~ (°	6.7				99 0.	9.0	5 2.0	0.4			0.41	2.5	6.0	2.8									
	Frequency of	Prequency of Exceedance of Cu Criteria (%)					14.4	15.0 141				49.I	3.88	9.00	24.5	18.7	12.2	%06	95%	3% 1	100%					
S	Dry Weather	her - more than 4 days after rainstorm	days after rai	instorm																1						Τ
T	Count			20	34		34 3	34 34			İ		22	22	22	20	22	19	20	0	20					
-	Mean				11.9	13.0							0.76	2.22	8.9	3.9	5.9									
ပ	Minimum						5.7 8	99 0.	9.0	5 4.0	0.4	13.4	0.15	0.41	2.5	1.6	2.8									
n	Maximum Frequency of	Maximum Frequency of Exceedance of Cu Criteria (%)		_	27.0 3	30.0		15.0 141					3.88	00.9	24.5	7.0	12.2	7070	7010	700	70001					
	Dry Weather	her - 3 to 4 days after rainstorm	fter rainstorm															0/00	2170	Т	828					Τ
	Count					=		12 12					6	6	6	6	6	∞	6	c	0					
	Mean			7									0.49	1.88	8.5	3.3	5.5			>	-					I
	Minimum							8.6 82	1.1	2.0	9.0	17.0	0.33	0.88	5.2	Ξ	3.6									T
	Maximum			7				_					0.70	3.80	12.6	6.3	7.4									
	Frequency of	Frequency of Exceedance of Cu Criteria (%)	Criteria (%)															%68	100%	0% 1	100%					
	Wet Weather	her - Same day of rainstorm	rainstorm																							
	Count							3 3	0			2	2	2	2	2	2	2	2	0	2					Г
	Mean					ļ						28.0	0.61	3.00	12.2	5.5	5.5									
	Minimum			٠,	5.0	2.0	10.5 12.1	1 86		5.5	8	21.2	0.55	2.00	11.6	4.7	3.9									-
	Frequency of 3	Maximum Frequency of Exceedance of Cu Criteria (%)	Zriteria (%)	_				12.8 102		0		34.8	0.67	4.00	12.8	6.2	7.1	100%	100%	71	70001					
	Wet Weath	Wet Weather - 0 (same day) to I days after rainstorm	to I days afte.	r rainst	orm													1			2,23	ŀ				Т
	Count			4			8				1		5	2	5	5	5	8	5	0	5					Τ
	Mean			7	ı,	15.9	9.7 10	4 94	2.6	7.7	2.1	27.8	89.0	3.10	13.5	6.5	7.4									
	Minimum			7									0.46	2.00	10.5	4.7	3.9									
	Maximum				24.0 2			_					1.13	4.20	20.6	9.6	11.8									_
	Frequency of	Frequency of Exceedance of Cu Criteria (%)	Criteria (%)															100%	100%	0% 10	100%					
	Wet Weath	Wet Weather - 2nd day only after rainstorm	after rainstor	#,																						
	Count	***************************************		4	- 1	ĺ	į					3	3	3	3	3	3	3	3	1	3					
	Mean				7.5							22.7	0.50	3.02	8.8	9.3	4.9									П
	Minimum		-	7		. 0.01-	7.2 9.5	9.5 76	1.2	0.4	0.7	13.0	0.30	1.70	7.0	3.3	4.2									
	Frequency of]	Frequency of Exceedance of Cu Criteria (%)	Triteria (%)									7.76	7/.0	3.8/	0.11	18./	4.0	100%	100%	130%	100%					
	/		(44)														1	ı	4	Т	0200					٦

Table A6-1: River Rescue Project - Water Quality in the Tributaries, 1990-1995 (Kerr and Lee, 1996)

Table A6-2: River Rescue Project - Water Quality in the Tributaries, 1990-1995 (Kerr and Lee, 1996)

		syab 4				0.39	_	0.17	0.00	08.0	0.00	0.73				0.01		0.02		0.01	92.0	0.08	0.26					0.13	
	npling	sysb £			0.08	0.01					0.05						0.23	60.0			2 32	0.04	90.0		0.55				
	Rain before Sampling (inches)	չչեն Հ	***************************************		0.00		790		2.04	0.35	0.41	1 43	0.29			0.01					0.01		0.44	0.02		0.22		90.0	70.0
	Rain be	Yeb I	***************************************	80 0			0.08	0.29			0.01	0.58	0.65		0.05			0.87	09:0					0.13	0.05		0.40	0.56	0.30
		Same day (up to sampling)			0.02		0.03	0.04			0.24		0.01			0.15?						0.08						0.13	
	is for ad	Exceedence of Chronic Criteria	s"1")	-	1	-		-	1	1	-		-			1													
	Norms for Lead	Exceedence of Acute Criteria	. 0									-	-							•									
	Norms for Copper	Exceedence of Chronic Criteria	eedance 1	<u> </u>	. –	-			<u>.</u>	-																			
	Norn Cop	Exceedence of Acute Criteria	(Ехсі	_	1	1			-	-				,	-														
		Nickel (total)		3.4	6.4	2.2	2.6	5.7	3.4	3.7	2.4	3.1	3.2		1.7	4.2													-
		bead (feiot)	l/gn	1.4	2.0	2.5	2.2	1.6	1.0	1.7	3.0	3.9	3.1		2.2	0.3								***************************************					
		Copper (total)		0.9	9.8	8.2	31.3	8.4	9.2	5.9	3.4	8.4	13.3		15.4	6.0													
venue	***************************************	muimord) (Istot)	l/gn	00	1.30	1.30	1.30	1.00	09:0	09.0	1.86	1.66	1.96		0.67	0.61													
B _{lon} Blackstone River, Lonsdale Avenue		muimbe) (sotal)	l/gn	0.50	0.30	0.40	0.30	0.30	0.25	0.28	0.09	0.25																	
Blons River, Lc	•••••	Hardness	mg/l	22.0	23.5	25.0	29.5	34.9	27.6	32.5	22.3	10.9			24.0	23.1													
ckstone]		muisənyaM (İstot)	mg/l	2.0	2.0	2.3	2.8	2.6	1:1	1.2	1.2	0.8	0.5		0.1	1.4													
Bla	•••••••••••••••••••••••••••••••••••••••	muiəls) (lsioi)	mg/l	5.5	6.1	6.2	7.2	9.7	9.2	11.1	7.0	3.0	1.0	·	0.0	7.0													
		SST	mg/l																										
		Diss. Oxygen (%Saturation in water)	%	105	112	103	100	162	96	86	88	£ %	46	5	ر ا		86	108	68		96		97	108	55	95 84	66	99	;
		Diss. Oxygen (Saturation Level)	mg/l	14.6	12.1	11.3	10.1	8.0	9.3	11.8	13.1	13.8	13.5		7. 8		8.3	9.5	11.8	17:0	14.2		9.6	8.0	8.4	9.5	11.4	13.1	}
		Diss. Oxygen (measured in water)	mg/l	15.4	13.7	I	10.1	12.9	8.9	11.6	11.6	11.7	12.7	d	× 0 × -		8.1	8.2	10.5	13.9	13.7	10.6	9.6	8.6	4.6	9.0	11.3	9.8	;
		Temperature - Air	(C)		10.0			30.0	20.0	6.0	3.0	-3.0 6.0	5.0	6	30.0		25.0	14.0	10.0	-10.0	2.0	15.0	20.0	33.0	27.0	22.0	9.0	0.0	;
		Тетрегаїнге - Water	(C)	0.0	7.0	10.0	15.0	27.0	19.0	8.0	4.0	2.0	3.0	6	25.0		25.0	18.0	8.0	-1.0	1.0	10.0	16.0	27.0	24.0	18.0	9.5	0.4	
	************	Hq		7.1		ì		7.0	6.9	7.0			6.9		7.0		ı		7.0	1	9.9	8.9	8.9		i	7.1		6.9	
		Time	(F)	17:00	15:00	13:30	10:30	13:30	9:45	15:45	11:25	13:15	13:00	77.60	17:45		17:00	10:00	8:00	10:00	8:00	11:00	16:30	16:00	9:30	16:30 9:30	14:00	15:00	
		Date		9-Feb-92	3-Mar-92	4-Apr-92	lay-92 m-92	13-Jul-92	5-Sep-92	7-Nov-92	5-Dec-92	9-Jan-93 14-Feb-93	6-Mar-93	10 1/2	1ay-93 un-93	12-Jul-93	16-Aug-93	sep-93 ct-93	6-Nov-93	17-Jan-94	13-Mar-94	10-Apr-94	10-May-94	9-Jul-94	14-Aug-94	ep-94 ct-94	11-Nov-94	8-Jan-95	
				9-F	3-M	4-A	2-M 7-J	13-	5-Si	Ž-7	S-D	14-F	W-9		12-lv	12-J	16-A	S-11 8-0-8	Ž-	17-1	13-N	10-A	10-N	9-11	14-A	2-11-8 Q-6	Z-1	1-11 g8	
		Dry Weather, Days after Rainfall (used for statistics)		Dry	Dry	3-4 days	Dry 1 day	l day	2 days	2 days	2 days	3-4 days 1 day	l day	Z	, D	ż	Dry	l day Dry	l day	Dry	3-4 days	Dry	2 days	Dry	3-4 days	D Di	l day	1 day	
		VEAR		1992	<u>. </u>			<u>. </u>	.1		1001	1993	I			<u> </u>			i	1994	<u></u>		i	L.,			L	1995	

Table A6-2: River Rescue Project - Water Quality in the Tributaries, 1990-1995 (Kerr and Lec, 1996)

		syab 4	,	T				_	T	Τ									•	T												-				
	mpling	syab £	:	1																																
	Rain <i>before</i> Sampling (inches)	sysb 2	;													İ																				
	Rain be	ysb I																																		:
		Same day (an sampling)																																		
	s for	Exceedence of Chronic Criteria			14			030%	200	,	,			100%		2				100%	Ì	0	+				4	-		-	100%		3			100%
	Norms for Lead	Exceedence of Acute Criteria	narked as	l	-			70%	₹	c				%		0				%		0					-	•			25%		0			%0
	s for per	Exceedence of Chronic Criteria			14			03%	200	۶				100%		2			-	100%	Ì	0	1				4	-	H		100%		2			%19
	Norms for Copper	Exceedence of Acute Criteria	(Exce		14			03%	2	v				%001		2				100%		0					4				100%		2			%29
		Nickel (total)	: 04	þ	15	3.7	2.2	6.4	1	5	4.3	2.6	6.4			2	2.7	2.2	3.1		Ì	0					4	3.9	2.9	5.7			3	3.2	2.4	<u>,</u> ;
		Бяэ Ј (Баој)		,	15	3.7	0.3	21.7		5	2.1	1.4	2.7	İ		2	3.2	2.5	3.9			0					4	8.3	1.6	21.7			3	1.9	1.0	3.0
		Copper (total)			15	10.3	3.4	31.3		~	10.7	6.0	16.4			2	8.3	8.2	8.4			0					4	14.9	6.7	31.3			3	6.2	3.4	7.7
'enue		Chromium (total)			15	1.27	09.0	2.70		2	1.06	0.67	1.30			2	1.48	1.30	1.66	1		0							1.00				3	1.02	0.60	00.1
nsdale Av		MuimbeO (total)			Ξ	0.30	60.0	0.50		3	0.37	0.30	0.50					0.25			ŀ	0							0.11						0.09	
Blons Blackstone River, Lonsdale Avenue	***************************************	Hardness	mg/l		ŀ		10.9			2		22.0						10.9				0							16.8			ŀ			22.3 (
kstone F		muisəngaM (latoi)	mg/l	·	1		0.3			8		1.0						8.0				0							0.3						11.	
Blac		muiola) (Istot)			14	6.5	1.0	11.1	İ	5	8.9	5.5	8.0			2	4.6	3.0	6.2			0				İ	3	8.4	1.0	2.6			3	9.1	7.0	11:1
		SST	mg/l		٥					0						0						0					0						0			ļ
i		Diss. Oxygen (%Saturation in water)	%		28	95	55	162		11	101	84	112			4	85	55	103			0					6	92	99	162			4	8	8 8	3
		Diss. Oxygen (Saturation Level)	mg/l		28	11.0	8.0	14.6		11	10.2	8.0	14.6			4	11.9	8.4	14.2		ı	0					6	11.7	8.0	13.8			4	11.0	9.3	1.57
		Diss. Oxygen (measured in water)	mg/l		30	10.5	4.6	15.4		13	10.6	8.1	15.4			4	10.4	4.6	13.7			0					6	10.5	8.1	13.3			4	10.4	8.9	21
	*******************************	Temperature - Ait	9		30	14.0	-10.0	33.0		13	17.7	-10.0	33.0			4	8.6	-3.0	27.0		- 1	0				1	6	11.4	5.0	30.0	İ		4	12.3	3.0	227
		Temperature - Water	0		30	11.8	-1.0	27.0	E	13	14.2	-1.0	27.0			4	9.3	1.0	24.0			0				nstorm	6	9.6	2.0	27.0			4	11.8	19.0	}
		Щd			30	6.9	6.4		r rainsto	13	7.0	8.9		(%)	torm	4	6.7	6.4		ê .	ľ	0			્ર	after rai	6	6.9	6.8	7.0	(0)	Storm	4	6.9	8.9 7.0	
		ЭшіТ	(h)		29	9.0	0.3	0.7 Oriteria (9	days afte	13	9.0	0.4	0.7	Interia (ter rains	4		0.3	0.6 منطنہ ہے۔	riteria ()	urnstorm	o			Criteria (9	to I days	8	0.5	0.3	0.6	лепа (3	ayter raın	4	9.0	0.7	hiteria (9
								e of Cu (- more than 4 days after rainstorm					ce of Cu	- 3 to 4 days after rainstorm				به ن ون	- Cama dan of mineria (%	fo fan a				e of Cu (- 0 (same day) to I days after rainstorm				7 :0	o o o o	- zna day onty after rainstorm				e of Cu (
		Date			31			ecedano	er - mor				•	exceedan					oucheen'	Syceedam	- 34m				xceedanc	er - 0 (sa				andooo	xcecuant		***************************************			xceedanc
		after Rainfall (used for statistics)		All Samples	ıt	-	Minimum	0.7 Frequency of Exceedance of Cu Criteria (%)	Dry Weather		-	mnm	Maximum	Frequency of Exceedance of Cu Criteria (%)	Dry Weather	ıt.		mnm	Maximum Frequency of Exceedance of Cir Critaria (9)	Wet Weather	T Catill				Frequency of Exceedance of Cu Criteria (%)	Wet Weather	٠	_	mmu	mum	Wort Woother 7.3 3	weath			mum mum	Frequency of Exceedance of Cu Criteria (%)
		Dry Weather, Days		AII	Count	Mean	Mini	Frequ	Dry	Count	Mean	Minimum	Maxi	red.	Dry	Count	Mean	Minimum	Maxi	No.	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	Negarit	Minimum	Maximum	Frequ	Wet	Count	Mean	Minimum	Maximum	riedin Mot	ร c	S :	Mean	Maximum	Frequ
		YEAR			S	T	∢ :	_	S		-	<u>ပ</u>	S										_													

Page 7

	Γ		- 6		T <u>-</u>		_	Т					0	٠			2			_	_		_		_	_	7					2	2	
	bn.	ļ	syab 4		0.0	0.07							0.20	0.05			0.07									Č	0.02		0.5	0.15			0.45	
	ampling		syab &	··········		0.30	0.12	1.12	0.11	0.05						0.07				99.0				0.03								1.93	0.69	0.23
	Rain before Sampling	(inches)	Z days			0.71			0.08	0.26	0.10				0.54		0.15	0.10					0.01		t c	0.0		0.25				0.13	0.51	
	Rain		l day		0.04	1.52	0.23					0.11		0.04	0.61		0.21				0.03		0.01	80.0	i	0.79	70.0	60 0				0.01	0.39	0.59
			Same day (up to sampling)		0.01									0.30	0.85						0.02					0	0.00			0.03				
		or Lead	Exceedence of Chronic Criteria	1")	-	-	-	-	1	1		_	_	-		-	-	_	-	1	_	_	-	-			Ţ.	. –	-	_	1	1	_	
		Norms for Lead	Txceedence of Acute Criteria	(Exceedance marked as"1")																									-				-	
			Exceedence of Chronic Criteria	edance n	-	1	-	 	-	1	1	_	-	1		-	ī	_	-	1	1		-	_	_ ,	٠.	-	. –	-	_	_	1		
	Norms for	Copper	Exceedence of Acute Criteria	(Exce	-	1	-	1	1	1	1		_			_	-	_	-	-	-	-	-						-	_	1	1		
			Vickel (total)	l/gn	6.1	6.2	3.4	3.4	3.7	4.9	4.2	3.5	3.4	3.7		3.3	2.7	5.2	4.6	4.0	2.0	5.3	9.9	4.7	6.7	/:	7.0	5.2	30.1	5.9	12.4	3.8	50.9	3.7
	ļ		Бвэ.Т ([fatot])	l/gn	2.7	12.4	5.5	3.5	4.1	3.2	11.2	2.1	2.8	5.2		1.9	3.2	4.2	7.1	5.1	5.9	5.0	3.2	5.1	1.4	0.0	7.3	4.5	32.4	4.5	11.3	5.7	20.5	6.8
	~***····		Copper (total)	l/gn	-	17.5	10.4	7.4	7.1	8.5		5.0					7.5											9.6				8.5		7.5
tucket	-	***************************************	(lstoi)	l/gn	ł			1.50					1.20																			3.50		1.80
eet, Paw			(lstot) muimordD	n l/gn				0.35 1				0.35 1		0.46 0					ļ	0.49 2					0.33			0.47						0.50
Blackstone River, Main Street, Pawtucket			Hardness Cadmium	mg/l u	l			18.9 0.				17.8 0.				26.8 0.			29.6 0.															
e River,	-	••••	([stot)	mg/l m	-	1.0										1.9 26			1.8 29				I 48.4					3 34.5					2 14.3	5 38.3
lackstor			(letot) muisəngaM	mg/l m		2.2					6.2 2.		6.0 1.								.8 2.4		14.3 3.		2.9								3 1.2	8 1.5
	********		Calcium	ng/l m		2.											4 9.2			7 8.4					10.1		2 11.4				6.6		3.8	12.8
		(1	(%Saturation in mater		l	~				- 1									l				-		2.8							5.6		
	 ,	•••••	(Saturation Level) Diss. Oxygen		l					_															4 5									4 24 5 44
		**********	(measured in water) Diss. Oxygen	/J mg/J				9 13.1		-																								7 12.4
	<u></u>		- Air Diss. Oxygen	/gm (8						13.2			13.3									l		7.6			8.2						11.7
	ļ		- Water Temperature	()			7.5																ı		24.0									12.0 2.0
			Temperature	(C)				4.0	7.5	5.0	4.0	0.5	4.0	3.0	7.5		0.9											20.0		9.5	11.0	7.0	4.0	0.0
			Hq														6.9	6.9	6.9	6.9	6.9	7.1	7.1	7.3	7.1	7.1						6.9	6.9	6.9
			Тіте	(b)	16:00	7:30	7:40	7:20	7:30	7:30	8:00	9:15	7:30	7:30	7:30	7:30	7:30	7:30	7:30	7:30	7:45	7:30	cI:/	7:30	7:30	7:30	7.30	7:30		7:30	7:30	7:30	7:15	7:20 13:00
			Date		1-Oct-90	15-Oct-90	29-Oct-90	3-Nov-90	26-Nov-90	10-Dec-90	7-Jan-91	22-Jan-91	4-Feb-91	19-Feb-91	4-Mar-91	18-Mar-91	1-Apr-91	15-Apr-91	29-Apr-91	3-May-91	28-May-91	10-Jun-91	24-Jun-91	8-Jul-91	5.4mg-01	19-Ang-91	3-Sep-91	16-Sep-91	30-Sep-91	15-Oct-91	28-Oct-91	14-Nov-91	25-Nov-91	9-Dec-91 30-Dec-91
			for statistics)							1				-	_				-				+				L				_	·····		
			Dry Weather, Days after Rainfall (used			l day	Dry	3-4 days	Dry	``]		Dry	Dry	Same	Same	3-4 da	P.	Dry	Dry	3-4 da	י ניט	<u>ب</u>	בב	בי בי	1 day		Dry	2 days	3-4 da	٠٠	Dry	3-4 day	l day	Dry 1 day
			XEAR		1990	_		_			1991				_																			
										L	_																			_				

Table A6-3: River Rescue Project - Water Quality in the Tributaries, 1990-1995 (Кеп and Lee, 1996)

Table A6-3: River Rescue Project - Water Quality in the Tributaries, 1990-1995 (Kerr and Lee, 1996)

		syab 4					T	2.04		0.10						0.29	0.18		0.01	•	0.87			0.70	0.01		0.44	0.13		0.22			
	pling	syab &	***************************************	0.17	0.09	0.95			0.17	9	60.03		0.05		ļ		0.01					0 60				0.38					04.0) :	
	Rain <i>before</i> Sampling (inches)	sysb S	*************			90.00							0.41		0.12	0.10		0.04	0.01		9	0.19	0.25			0.44					0.01		İ
	Rain bef	Yed I				100	0.08						0.01					60.0		0.13			0.63	0.03		0.61							
		Same day (up to sampling)				0.01		0.3?					0.24					0.12		0.61				00.00		0.02							
	Lead				-		1			- - -		-		_		_			-					_									
	Norms for Lead	Exceedence of Acute Criteria																															
		Chronic Criteria	edance m				1	-		_		- - -					- -		-	'											+		
	Norms for Copper	Exceedence of Acute Criteria	(Exce			_	1	1			-	, , ,				-	-	-	1	•													
		Nickel (total)	ng/l		2.9	7.5 8 4	3.9	2.6	3.9	4.0	0. 4	3.8		2.7	3.7	3.0	9.7	3.2	4.3													_	
		Dead (fstot)	l/gu		1.9	4.2 8.4 8.4	4.1	4.2	3.6	5.8	C. 4	2.1		3.8		2.4	2.7	7:0 8:0	3.4														
		Соррег (total)	l/gn		1.0	5.8	7.3	8.1	5.4	11.1	6.7	7.7		3.5	2.8	7.0	6.0	8.4	7.1														
wtucket		С ілготі рт (16161)	l/gn		0.90	06.0	0.50	1.00	0.90	1.40	0.90	05.0		1.51	1.28	1.12	1 03	0.33	0.54														
B1 Blackstone River, Main Street, Pawtucket	••••••	muimbe) (Istot)	l/gn		0.40	0.50	0.70	0.20	0.20	0.40	0.39	0.27		0.21	0.20	0.67	0.17	90.0															
B1 er, Main		Нагапеѕѕ	mg/l		22.0	23.5	24.6	28.0	32.8	35.t 25.8	30.8	29.4		8.6	28.3	10.4	16.0	28.0	28.5														
tone Riv		muiesngeM (fatot)	mg/l		2.0	2.0	2.1	2.8	2.5	1.7	1.2	1.0		0.3	1.4	0.7	4 0	E1	1.5														
Blacks		muioleO (laiot)	mg/l		5.5	5.3	6.4	9.9	9.0	9.0	10.3	10.2		3.0	9.0	3.0	5.0	9:0	9.0														
	•	SSJ	mg/l	1.5	2.2	2.5		0.4	;	9.4	2.3	0.5	4.4	1.6	6.0	9.0	2.5	5.1	1.6	16.2	6.4	r N											
		Diss. Oxygen (Saturation in water)	%	86	86	93	89	55	8 8	78 2	6 6	84				S ?	201	;	84	87	82	74	87	104	888	95	85	92	116	ò	8 8	88	
		Diss. Oxygen (Saturation Level)	mg/l	13.8	13.8	12.1	14.6	14.6	4.0	o, o 8 0	10.5	12.4				13.5	9.7	;	8.1	9.8	8.7	14.6	12.8	12.4	12.8	7.6	10.1	8.0	8.4	8.7	5.5 11.3	12.8	
		Diss. Oxygen (measured in water)	mg/l	13.5	13.6	11.3	6.6	8.1	7.1	0.7	10.4	10.5				12.0	8.9	}	6.9	7.5	7.5	10.8	11.2	13.0	11.3	9.2	8.6	7.4	9.8	-	10.5	11.3	
		Temperature - Air	()	-1.0	3.0	10.0			30.0	17.0	14.0	7.0				9.0	22.0		31.0	20.0	29.0	8.0	7.0	-10.0	8.0	26.0		26.6	32.0	25.0	10.0	5.0	
		Temperature - Water	()	2.0	7.0	7.0			24.0	21.0	13.0	6.0			·	3.0	17.0		26.0	23.0	22.0	0.0	5.0	6.0	5.0	17.0	15.0	26.6	24.0	22.0	10.0	5.0	
		Hq		6.8	0.7	7.0	6.9	6.9	7.1	7.1	7.1	6.9				6.9	7.0		7.2	7.1	7.1	6.8	6.9	6.9	6.8	7.1	6.9	7.5	7.4	7.5	7.3	8.9	
		əmiT	(h)	13:00	14:30	15:00	15:00	17:00	10:00	18:00	17:00	14:00				14:00	15:00		10:30	19:00	13:00	11:30	11:30	10:00	12:00	14:30	12:00	18:30	15:00	18:00	15:00	8:30	
		Date		12-Jan-92	/-reb-92	2-Apr-92	2-May-92	5-Jun-92	12-Jul-92 8 Ame 02	0-Aug-72 14-Sep-92	6-Oct-92	10-Nov-92	5-Dec-92	10-Jan-93	8-rep-93	8-Mar-93	4-Mav-93	6-Jun-93	Jul-93	18-Aug-93	14-Sep-93 5-Oct-93	8-Nov-93	12-Dec-93	12-Jan-94 2-Feb-94	15-Mar-94	Apr-94	12-May-94	12-Jul-94	11-Aug-94	13-Sep-94	20-Oct-94 13-Nov-94	4-Dec-94	
				12-	-/	2-₽	2-N	5-1	12-	14-5)-9 —	10-1	S-L	10-	1-0	%-V	4-M	f-9	12-,	18-4	14.	Z-8	12-1	12 2-F	15-N	30-⊁	12-N	12-	11-4	13-5	13-7	4-D	
		Dry Weather, Days after Rainfall (used for statistics)		Dry	, d	2 days	Dry	7	D C	Dry	Dry	Dry	Dry	Dry	Ç,	3-4 days	À	Dry	Dry	Same day	3-4 days	3-4 days	1 day	3-4 days Drv	Dry	1 day	3-4 days	Dry	Dry	D G	3-4 days	Dry	
		YEAR		1992			<u> </u>					<u> </u>		1993			<u>!</u>							1994				<u> </u>	!		1.		1995
																	_																

Table A6-3: River Rescue Project - Water Quality in the Tributaries, 1990-1995 (Kenr and Lee, 1996)

	B1 Blackstone River, Main Street, Pawtucket
Norms Same Criteria Norms Same day Caronic Criteria Norms Same day Caronic Criteria Caroni	Norms for Lead Copper Norms for Lead
Norms for Lead Norm	Morms for Norms for Norms for Norms for Norms for Copper Norms for Copper Norms for Copper Norms for Commin Hardness Magn ug/l
Hardness Hardness	Mormis for Cadmium Mormis for Chromium Mormis for Chromium Mormium
Morning Morn	Mormis for Chromium Mormium Mo
Mornistor Morn	Morms for Copper Norms for Lead Norms for Lead Copper Co
Main for Lead Norms for Lead Norms for Lead Cadmium	100% 100%
Morms for Lead Morm	Morms for Lead Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Norms for Lead Norms for Lead Copper Norms for Lead Norms for Lea
December Copper	Hardness Norms for Lead Capper Norms for Lead Capper Norms for Lead Capper Cadmium Hardness Hardness Cadmium Hardness Cadmium Hardness Cadmium Hardness Cadmium Hardness Cadmium Hardness Cadmium Lead Capper C
Marches Sampling Marches Sampling Marches Sampling Marches Sampling Marches Sampling Marches Sampling Marches Same day Marches Sam	Morms for Copper
Mornis for Lead Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Norms for Lead Copper Cadmium Hardness Cadmium Hardness Cadmium Mg/l U	Morms for Cadmium Hardness Morms for Cadmium Hardness Morms for Cadmium Hardness Morms for Cadmium Morms for C
Mardiness Mard	Morms for Cadmium Morms for Cadmium Morms for Cadmium Morms for Cadmium May Ug/1
Mormistor Morm	Hardness Norms for Cadmium
Mardness Norms for Lead Norms for Lead Copper Sampling Copper Norms for Lead Chronic Criteria Copper Chronic Criteria Chronic C	Hardness Norms for Cadmium
Mardness Copper Norms for Lead Copper Norms for Lead Copper C	Morms for Cadmium Morm
Morms for Lead Norms for Lead Norms for Lead Copper Copp	Morms for Cadmium Hardness Cadmium Hardness Cadmium Copper Copper Cadmium Cadmium Morms for Chronic Criteria Cadmium Morms for Chronic Criteria Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper Cadmium Capper
Mormis for Lead Norms for Lead Copper Norms for Lead Copper Cop	Morms for Copper Norms for Copper Norms for Copper Copper Copper Norms for Copper Copper
Morms for Lead Norms for Lead Copper Cop	Morms for Cadmium Copper Chromium Copper Chromium Copper Chromium Copper Chromic Criteria
Morms for Lead Norms for Lead Copper Norms for Lead Copper Cadmium Hardness Cadmium Hardness Cadmium Hardness Chromic Criteria Chromic Criteria Exceedence of Exceedence of Exceedence of Chromic Criteria Discondence of Chromic Criteria Chromic Criteria Chromic Criteria Chromic Criteria Discondence of Copper Copper Copper Chromic Criteria Chromic Criteria Chromic Criteria Chromic Criteria Chromic Criteria Chromic Criteria Discondence of Cadays Chromic Criteria Chromic Cr	Norms for Cadmium Mg/1 Lead Chromium Chromic Chronic Chicals Copper Copper Copper Copper Copper Copper Chronic Chicals Copper Chronic Chicals Ch
Morms for Lead Hardness Cadmium Hardness Cadmium Copper Cadmium Copper Copper Chromic Criteria Lead Chromic Criteria Exceedence of Exceedence of Exceedence of Exceedence of Exceedence of Exceedence of Exceedence of Exceedence of Exceedence of Exceedence of Same day Hardness List 47 45 47 46 47 41 43 47 46 47 41 43 48 47 41 43 48 48 48 48 48 48 48	Norms Hardness Cadmium Hardness Cadmium Hardness Copper Cop
Mardness Mardness	Hardness Cadmium (total) Ug/l (total) Lead Acute Criteria Chronic Criteria Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Chronic Criteria Same day (up to sampling)
Mardness Cadamium Cadamium Copper Chromic Criteria Lead Mickel Exceedence of Chronic Criteria Exceedence of Exceedence of Exceedence of Chronic Criteria Exceedence of Exceedence of Exceedence of Exceedence of Exceedence of Chronic Criteria Exceedence of Exceedence of Exceedence of A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Hardness Cadmium (total) Ug/l (total) Ug/l (total) Ug/l (total) Lead Acute Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Acute Criteria Acute Criteria Exceedence of Chronic Criteria Acute Criteria
Hardness Cadmium Chromium Chromium Chromic Chickil Lead Lead Lead Lead Chronic Criteria Chronic Criteria Chronic Criteria Chronic Criteria Chronic Criteria Chronic Criteria Chromic Criteria	Hardness Chromium (loial) Lead Lead (loial) Lead (loial) Lead (loial) Exceedence of Acute Criteria Exceedence of Acute Criteria Exceedence of Acute Criteria Exceedence of Acute Criteria Exceedence of Acute Criteria Fame day (mg/l Acute Criteria Acute Criteria Acute Criteria Exceedence of Acute Criteria
Hardness (total) ug/ (total) ug/ (total) ug/ (total) Exceedence of (total) Exceedence of Acute Criteria Exceedence of Acute Criteria Exceedence of Exceedence of Same day (mp to sampling) Same day (up to sampling)	Hardness Cadmium (total) Lead (total) Lead (total) Lead (total) Exceedence of Exceedence of Acute Criteria Chronic Criteria Chronic Criteria Chronic Criteria Chronic Criteria
Hardness Cadmium ((otal)) ((otal)	### Hardness Cadmium (1003) Ug/l (1003)
Chromium (total) (c	Chromium (1013) Chromium (1013) Chromium (1013) Chromic Christia Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Same day Cup to sampling)
Cadmium (total) Chromium Chromic Chiceria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria for total for	Chromium (total) Chromium (total) Chotal) Chotal) Exceedence of Exceedence of Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria Exceedence of Chronic Criteria
nium Criteria Coppas Criteria Coriteria	nium lence of Criteria c Criteria c Criteria c Criteria conce of
Norms for Lead	Norms for Lead

Data for

Nutrients

Tabbe A6-4
River Rescue Project - Water Quality in the Tributaries, 1990 - 1995 (Kerr and Lee, 1996)
Station B2: Blackstone River at Main St. in Blackstone, MA

DATE	Dissolved NO2+NO3	Dissolved NO2	Dissolved NO3	Dissolved NH4	Dissolved Inorg N	Total Diss. N	Dissolved Org. N	Dissolved Inorg P	Total Diss. P	Dissolved Org P	Particul. P	Total P
	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)
14-Oct-90	İ	0.004	0.406	0.007	0.417	1.721	1.304	0.050	0.113	0.063	0.203	0.316
12-Nov-90	0.647	0.013	0.634	0.684	1.331	2.460	1.128	0.046	0.101	0.055	0.116	0.217
24-Nov-90	ı	0.055	0.845	1.837	2.737	3.421	0.684	0.089	0.211	0.122	0.156	0.367
9-Dec-90	ı	0.001	0.708	0.367	1.077	2.039	0.963	0.031	0.084	0.053	0.200	0.284
5-Jan-91	0.750	0.003	0.747	1.013	1.763	3.095	1.332	0.082	0.124	0.042	0.143	0.267
19-Jan-91	0.690	0.005	0.684	0.536	1.225	2.202	0.977	0.039	0.097	0.058	0.140	0.237
3-Feb-91	2.206	0.002	2.204	0.007	2.213	2.810	0.597	0.043	0.099	0.056	0.203	0.302
16-Feb-91	0.634	0.005	0.629	0.713	1.347	1.970	0.623	0.043	0.065	0.022	0.092	0.157
3-Mar-91	0.538	0.002	0.536	0.158	969.0	2.146	1.449	0.007	0.083	0.076	0.147	0.230
16-Mar-91	Ì	0.022	0.685	0.377	1.084	2.365	1.281	0.024	0.059	0.034	0.068	0.126
31-Mar-91		0.004	0.717	0.360	1.081	1.924	0.844	0.031	0.129	0.098	0.089	0.218
28-Apr-91	Ì	0.005	1.004	0.171	1.180	1.428	0.248	0.050	690.0	0.020	0.105	0.174
11-May-91	Ì	0.004	0.910	0.327	1.240	2.493	1.253	0.034	0.087	0.053	0.106	0.193
8-Jun-91	-	0.001	1.531	0.016	1.548	3.028	1.481	0.086	0.239	0.152	0.077	0.315
21-Jun-91	ĺ	0.001	1.127	0.016	1.143	2.667	1.524	0.117	0.244	0.127	0.068	0.312
7-Jul-91	Ì	0.001	1.472	0.010	1.482	2.837	1.354	0.185	0.319	0.134	0.126	0.445
21-Jul-91	1.221	0.003	1.218	0.288	1.509	2.264	0.755	0.305	0.361	0.056	0.107	0.468
4-Aug-91	1.496	0.003	1.493	0.013	1.509	2.923	1.414	0.211	0.275	0.064	0.119	0.394
9-Nov-91	0.837	0.012	0.825	0.244	1.081	1.138	0.057	090.0	0.067	0.007	0.037	0.103
24-Nov-91	0.518	0.019	0.499	0.260	0.778	0.764	0.000	0.038	0.032	0.000	0.038	0.069
7-Dec-91	0.566	0.021	0.544	0.415	0.981	1.897	0.916	0.00	0.067	0.058	0.029	0.096
28-Dec-91	0.942	0.007	0.935	1.340	2.282	2.903	0.621	0.020	0.079	0.059	0.048	0.127
11-Jan-92	0.770	0.025	0.744	1.507	2.277	2.881	0.604	0.083	0.117	0.034	0.034	0.151
6-Feb-92	İ	0.020	0.823	1.036	1.879	3.351	1.472	0.075	0.170	0.095	0.054	0.224
7-Mar-92	1.244	0.006	1.237	1.196	2.440	2.790	0.350	0.122	0.172	0.049	0.063	0.234
6-Apr-92	į	0.003	0.861	0.380	1.244	1.855	0.611	0.00	0.075	990.0	0.073	0.148
2-May-92	-	0.008	1.118	0.191	1.318	1.103	0.000	0.020	0.088	0.068	0.054	0.142
6-Jun-92		0.045	0.614	0.053	0.712	1.529	0.817	0.035	0.104	0.069	090.0	0.164
11-Jul-92	-	0.033	1.034	0.076	1.142	1.689	0.547	0.131	0.150	0.020	0.257	0.408
11-Aug-92	1.483	0.054	1.429	0.001	1.484	2.361	0.877	0.133	0.239	0.107	0.180	0.419
0-Sep-92	0.364	0.007	0.357	0.333	0.698	1.964	1.266	0.033	0.033	0.160	0.075	0.107
7-Oct-92	1.018	0.021	1.597	0.166	1.784	2.553	0.769	0.168	0.168	0.163	0.090	0.259
8-N0V-92	0.801	0.072	0.729	0.613	1.414	1.683	0.268	0.092	0.092	0.074	0.091	0.183
2-Dec-92	0.639	0.023	0.616	0.650	1.289	1.653	0.363	0.049	0.049	0.051	0.036	0.085
9-Jan-93	0.715	0.015	0.700	0.159	0.874	1.678	0.804	0.027	0.027	0.010	0.111	0.138
6-Feb-93	0.834	0.035	0.799	1.468	2.302	3.053	0.751	0.014	0.014	0.038	0.165	0.179
6-Mar-93	0.774	0.031	0.743	1.300	2.073	2.756	0.682	0.037	0.078	0.041	0.174	0.252
3-Apr-93	0.441	0.006	0.434	0.152	0.593	1.155	0.562	0.004	0.028	0.024	0.088	0.116
9-May-93	2.332	0.003	2.329	0.001	2.333	2.327	0.000	900.0	0.067	0.061	0.121	0.188
6-Jun-93	1.242	0.037	1.206	0.254	1.497	3.406	1.909	0.076	0.116	0.041	0.220	0.337
10-Jul-93	1.170	0.053	1.117	0.073	1.244	2.726	1.483	0.133	0.217	0.084	900.0	0.223
17-Aug-93	2.411	0.007	2.405	0.082	2.493	3.244	0.751	0.125	0.291	0.166	0.157	0.448

Tabbe A6-4
River Rescue Project - Water Quality in the Tributaries, 1990 - 1995 (Kerr and Lee, 1996)
Station B2: Blackstone River at Main St. in Blackstone, MA

	Dissolved NO2+NO3	Dissolved NO2	Dissolved NO3	Dissolved NH4	Dissolved Inorg N	Total Diss. N	Dissolved Org. N	Dissolved Inorg P	Total Diss. P	Dissolved Org P	Particul. P	Total P
:	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)
Statistics 1000 Count												
Mean	0.667				1.390	2.410	1.020	0.054	0.127		0 169	
Maximum		0.055	0.845	1.837	2.737	3.421				0.122	0.203	0.367
Minimur					0.417	1.721					0.116	
1991 Count					18	18						
Mean		0.007		0.348	1.341	2.270		0.077	0.139	0.062		0.235
Maximu	m 2.206				2.282	3.095			0.361			
Minimum		ĺ			969.0	0.764			0.032			
1992 Count	12	12			12	12			12			
Mean					1.473	2.118			0.121	0.080	0.089	
Maximum	-				2.440	3.351			0.239	0.163	0.257	0.419
Minimum	n 0.364	0.003			0.698	1.103			0.033	0.020	0.034	
1993 Count	8	8			8	8			8	8	8	
Mean		0.023			1.676	2.543			0.105	0.058	0.130	
Maximu		0.053			2.493	3.406			0.291	0.166	0.220	
	n 0.441	0.003	0.434		0.593	1.155			0.014	0.010	9000	0.116
1990 to Count	42	42			42	42			42	42	42	
1993 Mean		0.016		0.420	1.453	2.279	0.832	0.072	0.126	0.067	0.101	0.2
Maximum	-	0.072			2.737	3.421		0.305	0.361	0.166	0.257	
Minimum	n 0.364	0.001	0.357		0.417	0.764		0.004	0.014	0.000	900.0	

Table A6-5 River Rescue Project - Water Quality in the Tributaries, 1990 - 1995 (Kerr and Lee, 1996)

Station Blons: Blackstone River at Route 122 in Lonsdale, RI

Dissolved Dissolved Dissolved NO2+NO3 NO2 NO3		Dissolved NO3		Dissolved NH4	Dissolved Inorg N	Total Diss. N	Dissolved Org. N	Dissolved Inorg P	Total Diss.	Dissolved Org P	Particul.	Total P
(mg/l as N)	(mg/l as N) (mg/l as N) (g/l as N) (mg/l as N) ((mg/l as N)	†	(mg/l as N)	(mg/l as N)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)
1.184 0.784	1.184 0.784	0.784	ļ	1.985	†	3.156	1.171	0.045	0.136	0.091	0.033	0.169
0.002 0.744 0.556	0.744 0.556	0.556		1.302		2.790	1.488	0.053	0.172	0.118	0.044	0.216
0.000 0.670 0.389	0.670 0.389	0.389		1.060		1.855	0.795	0.042	0.075	0.033	0.034	0.109
0.004 0.965 0.133	0.965 0.133	0.133		1.103		0.989	0.000	0.067	0.123	0.056	0.040	0.163
0.522 0.012	0.522 0.012	0.012		0.571		1.815	1.244	0.032	0.094	0.063	0.044	0.138
0.046 1.125 0.616	1.125 0.616	0.616		1.786		3.167	1.381	0.102	0.222	0.120	0.091	0.313
0.056 1.289 0.136	1.289 0.136	0.136		1.481		2.994	1.513	0.090	0.254	0.164	0.029	0.283
0.010 0.787 0.670	0.787 0.670	0.670		1.467		1.459	0.000	0.118	0.202	0.084	0.076	0.278
0.019 0.598 0.519	0.598 0.519	0.519		1.135		2.038	0.903	0.026	0.093	0.067	0.015	0.108
	0.615 0.411	0.411		1.034		4.211	3.177	900.0	990.0	090.0	060'0	0.156
0.800	0.603 0.800	0.800		1.407		2.940	1.533	0.002	890.0	0.065	090.0	0.128
0.020 0.715 1.457	0.715 1.457	1.457		2.192		3.955	1.763	0.051	0.078	0.028	0.124	0.203
0.006 2.089 0.285	2.089 0.285	0.285		2.380		2.898	0.518	0.074	0.117	0.044	0.106	0.223
0.004 3.338 0.001	3.338 0.001	0.001		3.342		5.526	2.184	0.055	0.509	0.454	0.032	0.541
0.027 1.677 0.020	1.677 0.020	0.020		1.723		5.427	3.704	0.088	0.319	0.231	0.033	0.352
2.752 0.044	2.752 0.044	0.044		2.840	 -	4.822	1.982	0.404	0.680	0.276	0.093	0.773

Table A6-5 River Rescue Project - Water Quality in the Tributaries, 1990 - 1995 (Kerr and Lee, 1996)

Station Blons: Blackstone River at Route 122 in Lonsdale, RI

	Dissolved	Dissolved	Dissolved	Dissolved	Dissolved	Total Disc.	Discolved	Dissolved	Total Diss	Dissolved	Portion	
	NO2+NO3	N02	NO3	NH4	InorgN	Z	Org. N	Inorg P	P P	Org P	r ar incur.	Total P
	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)
Statistics)	· ·
1990 Count	0	0	0	0	0	0	0	0	0	O	0	0
Mean												
Maximum												
Minimum												
1991 Count	0	0	0	0	0	0	0	Ö	ē	0	O	C
Mean												
Maximum												
Minimum												
1992 Count	6	6				İ	6	6	6	6	0	6
Mean	0.897		0.876	0.424	1.321	2.251	0.944		0.152	0.088	-	0.198
Maximum	1.345								0.254	0.164	0.091	0.313
Minimum	0.559					0.989		0.026	0.075	0.033		0.108
1993 Count	7	7	7	7	7	7			7	7		7
Mean	1.700	0.016	1.684	0.431		4.254	2.123			0.165	0.077	0.339
Maximum	3.342	0.045			3.342	5.526				0.454	0.124	0.773
	0.606	0.004				2.898		0.002	990:0	0.028	0.032	0.128
1990 to Count	16	16			16	16						16
1993 Mean	1.249	0.019	1.230	0.427	1.675	3.128	1.460	0.079	0.201	0.122	0.059	0.260
Maximum	3.342				3.342	5.526						0.773
Minimum	0.559	0.000			0.571	0.989						0.108

Table A6-6
River Rescue Project - Water Quality in the Tributaries, 1990 - 1995 (Kerr and Lee, 1996)
Station B1: Blackstone River at Main St. in Pawtucket, RI

DATE	Dissolved NO2+NO3	Dissolved NO2	Dissolved NO3	Dissolved NH4	Dissolved Inorg N	Total Diss. N	Dissolved Org. N	Dissolved Inorg P	Total Diss. P	Dissolved Org P	Particul. P	Total P
	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)
28 Oct 90	0.122	0.003	0.117	0.012	0.134	1.016	0.882	0.035	0.077	0.042	0.234	0.312
12-Nov-90	-	010	0.516	0.00	0.526	1 208	0.32/	0.023	0.034	0.011	0.104	0.138
25-Nov-90		0.053	0.789	0.648	1.490	1.806	0.316	0.033	0.000	0.030	0.009	0.17/
9-Dec-90	i	0.004	0.598	0.395	0.997	1.704	0.708	0.031	0.068	0.037	0.065	0.133
6-Jan-91	0.789	0.028	0.762	0.462	1.251	2.471	1.220	0.019	0.088	0.068	0.085	0.173
21-Jan-91		0.010	0.628	0.615	1.253	1.592	0.338	0.114	0.117	0.003	0.133	0.251
3-Feb-91		0.015	969.0	0.584	1.295	1.975	0.680	0.048	0.119	0.071	0.155	0.273
18-Feb-91		0.003	0.631	0.630	1.264	1.973	0.710	0.039	0.053	0.014	0.084	0.137
3-Mar-91	0.597	0.003	0.594	0.446	1.043	1.389	0.346	0.035	0.084	0.049	0.190	0.275
31-Mar-91	0.613	0.010	0.030	0.181	0.820	1.201	0.734	0.007	0.052	0.046	0.110	0.163
14-Apr-91	1.302	0.004	1.299	0.431	1.733	2.089	0.355	0.021	0.084	0.003	0.083	0.169
28-Apr-91	0.898	0.045	0.853	0.249	1.148	1.047	0.000	0.023	0.056	0.183	0.052	0.555
12-May-91	0.862	0.004	0.858	0.043	0.905	1.512	0.606	0.025	0.084	0.059	0.087	0.172
27-May-91	1.843	0.112	1.730	0.070	1.913	2.189	0.277	0.064	0.000	0.026	0.107	0.197
9-Jun-91	1.440	0.008	1.432	0.014	1.454	2.903	1.449	0.077	0.214	0.137	0.067	0.281
23-Jun-91		0.008	1.800	0.381	2.189	3.110	0.920	0.243	0.291	0.048	0.053	0.344
7-Jul-91	_	0.006	1.401	0.008	1.415	2.713	1.297	0.048	0.161	0.112	0.099	0.259
21-Jul-91		0.031	1.738	0.047	1.816	3.053	1.237	0.335	0.394	0.058	0.062	0.455
4-Aug-91	0.818	0.084	0.735	0.329	1.147	2.318	1.171	0.070	0.469	0.399	0.077	0.545
2-Sen-91	0.748	0.000	0.89/	0.182	1.094	2.027	0.933	0.177	0.274	0.097	0.126	0.400
15-Sep-91	1 080	0.000	1 066	0.000	1377	7 156	0.30/	0.080	0.188	0.102	0.050	0.238
29-Sep-91	0.366	0.006	0.359	0.005	0.371	1.487	1116	0.008	0.630	0.080	0.035	0.333
14-Oct-91	4.149	0.023	4.126	0.139	4.288	1.054	0.000	0.115	0.095	0.000	0.035	0.130
27-Oct-91	0.397	0.090	0.307	0.442	0.839	0.921	0.082	0.081	0.067	0.000	0.033	0.100
13-Nov-91	0.008	0.005	0.003	0.087	960.0	0.774	0.679	0.193	0.051	0.000	0.032	0.083
24-Nov-91	0.403	0.028	0.375	0.127	0.530	1.064	0.534	0.281	0.038	0.000	0.038	0.076
79-Dec-91	0.400	0.014	0.386	0.005	0.405	2.378	1.972	0.021	0.078	0.057	0.025	0.103
11-Jan-92	0.688	0.022	0.666	0.869	1.557	1.948	0.392	0.019	0.083	0.065	0.021	0.104
0-rep-92	0.784	0.023	0.761	0.277	1.061	2.775	1.714	0.021	0.111	0.090	0.036	0.147
1-Anr-92		0000	0.504	0.014	1.324	2.435	1.111	0.058	0.188	0.130	0.000	0.197
1-May-92	1.019	0.003	1.016	0.003	1.022	2.104	1.082	0.030	0.0/9	0.021	0.020	0.099
4-Jun-92		0.011	0.596	0.029	0.636	2.182	1.545	0.039	0.142	0.103	0.020	0.163
11-Jul-92	İ	0.014	0.831	0.359	1.205	2.287	1.082	0.052	0.127	0.075	0.043	0.170
7-Aug-92	Ì	0.043	1.756	0.249	2.048	4.203	2.155	0.029	0.297	0.268	0.144	0.441
13-Sep-92		0.071	1.511	0.239	1.821	3.368	1.547	960.0	0.241	0.144	0.006	0.246
5-Oct-92	1.501	0.058	1.443	0.382	1.883	2.963	1.080	0.100	0.233	0.133	0.063	0.296
7-NOV-92	0.783	0.010	0.773	0.627	1.410	2.325	0.915	0.081	0.150	0.069	0.059	0.208
0 Ion 02	0.00	0.019	0.040	0.473	1.142	2.190	1.048	0.031	0.101	0.070	0.041	0.142
7 Tob 02	0.072	0.004	0.000	0.513	1.185		0.593	0.042	0.070	0.028	0.019	0.089
7-Feb-93	0.710	0.024	0.08/	1.300	2.010	4.073	2.063	0.041	0.087	0.046	0.173	0.260
5-Anr-93	0.003	0.000	0.0/4	0.130	1.813	1.111	0.298	0.055	0.073	0.019	0.068	0.142
3-May-93	Ì	0.010	1.40/	0.282	1 847	2 240	0.7/0	0.007	0.054	0.047	0.024	0.077
5-Jun-93	1.252	0.000	1.243	0.371	1.624	4.075	2.452	0.070	0.002	0.012	0.031	0.113
11-Jul-93		0.021	1.347	0.065	1.434	2.801	1.367	0.140	0.169	0.028	0.074	0.203
17-Aug-93		0.048	3.251	0.260	3.560	5.243	1.684	0.534	0.568	0.034	0.078	0.647

Table A6-6
River Rescue Project - Water Quality in the Tributaries, 1990 - 1995 (Kerr and Lee, 1996)
Station B1: Blackstone River at Main St. in Pawtucket, RI
Nutrient Concentrations

		Dissolved NO2+NO3	Dissolved NO2	Dissolved NO3	Dissolved NH4	Dissolved Inorg N	Total Diss. N	Dissolved Org. N	Dissolved Inorg P	Total Diss. P	Dissolved Org P	Particul. P	Total P
Statistics		(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as N)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)	(mg/l as P)
	1990 Count	5	5	5	5	5	5	5	5	5	5	5	3.
	Mean	0.521	0.015	0.506	0.215	0.736	1.317	0.581	0.047	0.083	0.036		0.209
	Maximum	0.842	0.053	0.789	0.648	1.490	1.806	0.882	0.115	0.147	0.056		0.312
	Minimum	0.122	0.004	0.117	0.008	0.134	0.849	0.316	0.023	0.034	0.011	0.065	0.133
_	1991 Count	25	25	25	25	25	25		25	25	25		25
	Mean	1.010	0.023	0.987	0.243	1.252	1.878		0.097	0.151	0.071		0.230
	Maximum	4.149	0.112	4.126	0.630	4.288	3.110		0.335	0.469	0.399		0.545
	Minimum	0.008	0.003	0.003	0.005	0.096	0.774	0.000	0.007	0.038	0.000	0.025	0.076
	1992 Count	12	12	12	12	12	12		12	12	12		12
	Mean	0.971	0.024	0.947	0.392	1.362	2.525		0.051	0.159	0.108		0.199
	Maximum	1.799	0.071	1.756	0.869	2.048	4.203		0.100	0.297	0.268		0.441
	Minimum	0.510	0.005	0.504	0.003	0.636	1.520		0.019	0.079	0.021		0.099
_	1993 Count	8	8	8	8	8	8		8	8	<u>.</u>		8
	Mean	1.235	0.019	1.217	0.536	1.771	2.976		0.135	0.163	0.028		0.234
	Maximum	3.299	0.048	3.251	1.300	3.560	5.243		0.534	0.568	0.047		0.647
۱	Minimum	0.417	0.004	0.407	0.065	0.699	1.475		0.007	0.054	0.012		0.077
1990 to	Count	50	50	50	50	50	905		50	50	50		50
٠	1993 Mean	1.039	0.022	1.017	0.334	1.374	2.245		0.091	0.155	0.073	0.067	0.222
	Maximum	4.149	0.112	4.126	1.300	4.288	5.243		0.534	0.568	0.399	0.234	0.647
	Minimum	0.008	0.002	0.003	0.003	960.0	0.774		0.007	0.034	0.000	0.006	0.076

Appendix 7

URI Watershed Watch Lakes Monitoring Data 1993 to 2000

Pascoag Reservoir
Spring Lake
Keech Pond
Smith and Sayles Reservoir
Spring Grove Pond
Slatersville Reservoir
Valley Falls Pond

(URI, 1993 to 2000)

Table A7-1
URI Watershed Watch
Lake Monitoring Data
Sampling Locations
(URI, 1993 to 2000)

URIWW								
Watershed Depth	Depth	Max. Public	Public					
Code	Code	Depth	Access? Name	Name	Town	Lake Size	Lake Size	Lake Size Near-by Landmarks
		(m)				(sq. meters)	(acres)	
В	Q	5.8	Υ	Pascoag Reservoir	Burrillville - Glocester	1,369,233	342.3	342.3 State fishing access/parking off Jackson Schoolhouse Rd
В	Ω	7.0	Y	Spring Lake	Burrillville	383,808	0.96	96.0] Spring Lake Rd., adjacent to the Black Hut Mgmt Area
В	S	4.2	Y	Keech Pond	Glocester	199,372	49.8	49.8 Access from Chestnut Hill Rd. off Rte. 102
В		3.4	Ϋ́	Smith and Sayles Reservoir	Glocester			174.8 State ramp/parking area off Sand Dam Rd., 10 h.p. limit
В	S	4.1	z	Spring Grove Pond	Glocester	165'06		22.6 Access from Spring Grove Rd., off Rte 44
В	Ω	5.5	Y		North Smithfield	260,602	65.2	65.2 Access off of Rte 5
В	s	0.7	>		Central Falls	NA		East of Lonsdale Ave and north of Hunt Street

Depth Code
S = Shallow Reservoir
D = Deep Reservoir

Pascoag Reservoir **URI Watershed Watch** Table A7-2

Parameter May July Nove Alkalinity (mg/L) Chloride (mg/L) Chloride (mg/L) Eccel (court per 100ml) Eccel (vember Mean		July						
		13		November	Mean	May	July	November	Mean
	: : :	13	1.8	3.7	2.1	0.7	1.9	:	1.3
				16	14.5	14	16	16	15.3
		<4	\$	4	4>	4	\$	4	2.7
		15	6	14	12.4	0	13	9	4.3
		6	o	11	9.6	0	13	9	4.3
יייון מוס מס ואנו סחמון (מק/ב)		<40		<40	<40	70	<40	105	65
		5.8	6.2	6.1	6.0	6.0	6.0	1.0.7	6.2
		14	12	12	13.0	5	12	12	10.0
	:	6	11	8	9.3	7	10	6	8.7
Status					0	:	::		0
Total-Nitrogen		:	250	440	345	310	360		335

		15	1996			-	1997			 	866	
Parameter	May	July	November	Mean	May	July	November	Mean	May	Juk	November	Mean
Alkalinity (mg/L)	9.0	1.1	:	9.0	0.3	6.0	1.5	6.0	40	, ~	14	13
Calcium (mg/L)	÷				::							
Chloride (mg/L)	15	:	10	12.5	10		15	12.5	20	10	15	15.0
Dissolved Phosphorus (ug/L)	4	4 >	4	4	4	42	4	44	4	4	4>	< <u>4</u>
Fecal Coliform (Count per 100ml)	1	7	0	1.9	0	1	0	1.0	4	0	8	3.2
E.coli (Count per 100ml)	1	7	0	1.9	0	1	0	1.0	4	0	7	3.0
Nitrate- as Nitrogen (ug/L)	<40	<40	<40	<40	<40	<40	:	<40	<40	<40	09	33.0
Ha	5.5	6.3	5.8	5.8	5.5	7.1	6.1	6.2	5.7	62	5.7	65
Sodium (mg/L)	:	;	:		:							
Total Phosphorus (ug/L)	6	8	5	7.3	:	.:.	: :		80	4	8	5.0
Mean Trophic Status		:	;	0	:	::	:		::			0
Total-Nitrogen	285	435	:	360	190	260	220	223	150	280	370	267

			1999					2000		
Parameter	May	July	September	October	Mean	May	Juk	September	October	Mean
Alkalinity (mg/L)	1.1	2.4	:	3.2	2.2	1.4	1.3] 	2	1.6
Calcium (mg/L)	;	:	:	::						
Chloride (mg/L)	15	15		20	16.7	15	15	+	15	15.0
Dissolved Phosphorus (ug/L)	4>	^	:	4>	4	4>	42	+	42	4>
Fecal Coliform (Count per 100ml)	1	4		1	1.6	\ \ \	3	+	13	6.2
E.coli (Count per 100ml)	τ-	2	:	1	1.4	₹	3		13	6.2
Nitrate- as Nitrogen (ug/L)	<40	<40	:	:	<40	20	<40	 	<40	30.0
Hd	6.3	6.4	:	6.3	6.3	5.9	6.0		6.3	6.0
Sodium (mg/L)	;	:	:		:	-				
Total Phosphorus (ug/L)		7	::	9	6.7	11	5		9	7.3
Mean Trophic Status	:	:	:	:	0	::	:::::::::::::::::::::::::::::::::::::::			0
Total-Nitrogen	210	260		350	273	280		 		280

... Not Sampled or Not Available

... Below detection limit
TNTC: Too numerous to count
TDTC: Very High Levels of background bacteria,
unable to distinguish fecal coliform or E. coli

Detection Limits
Dissolved Phosphorus: MDL = 4 ug/L
Total Phosphorus: MDL = 3 ug/L
Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996

Trophic Level
O: Oligotrophic (Total Phosphorus <10 ug/L)
M: Mesotrophic (Total Phosphorus = 10-24 ug/L)
E: Eutrophic (Total Phosphorus >24 ug/L)

Page A7-3

Table A7-3
URI Watershed Watch
Spring Lake

		_	1993			15	1994			1	1995	
Parameter	May	July	November	Mean	May	July	November	Mean	Мау	i	November	Mean
Alkalinity (mg/L)	6.2	6.35	7.34	6.64		5.6		5.6	2.3	3.7	3	
Chloride (mg/L)	3	4	2	4	3	4	5	4	4	3	3	က
Dissolved Phosphorus (ug/L)	15	\$	\$	6.3	4	4	<4	4	4>	42	45	4
Fecal Coliform (Count per 100ml)	0	:	2	-	:	27		5.2	1	29		3.1
E.coli (Count per 100ml)	0	:	2	-	:	20		4.5	1	27		3.0
Nitrate- as Nitrogen (ug/L)	<40	<40	<40	<40	<40		<40	<40	<40	<40	<40	<40
Hd	6.2	7.1	6.8	6.7	:	6.9	::	6.9	7.0	7.0	7.0	7.0
Sodium (mg/L)	5	17	9	9.3	5	9	2	5.3	5	9	9	5.7
Total Phosphorus (ug/L)	14	48	2	22.3	9	10	8	8.0	6	8	5	7.3
Mean Trophic Status	:	::		Σ	:	:::	::	0				С
Total-Nitrogen		850	280	565	100	250		175		340		340

		۲	9661) 	1997			15	1998	
Parameter	May	July	November	Mean	May	July	November	Mean	Mav	γnς	November	Mean
Alkalinity (mg/L)	1.4	2.4	:	1.9	1.3	2.1	3.5	2.3	:	-	2	1.5
Calcium (mg/L)	:	:		::		:::	:					
Chloride (mg/L)	5	<5	5	3.5	5	<5	5	3.5	< <u>\$</u>	5	5	3.5
Dissolved Phosphorus (ug/L)	4	4 >	4	4	4	4	42	4>	4>	4>	42	4>
Fecal Coliform (Count per 100ml)	0	0	က	1.4	0	36	2	4.2	1	1	2	1.3
E.coli (Count per 100ml)	0	0	3	1.4	0	35	2	4.1	1	1	2	1.3
Nitrate- as Nitrogen (ug/L)	<40	<40	<40	<40	<40	<40	<40	<40	<40	<40	70	36.7
Hd	6.2	6.5	6.4	6.4	5.5	:	6.1	5.8		5.6	9.0	5.8
Sodium (mg/L)	:	:	:	:::								
Total Phosphorus (ug/L)	9	5	6	6.7						\$3	13	10.0
Mean Trophic Status	:	:	:	0	· · · · · · · · · · · · · · · · · · ·							0
Total-Nitrogen	:	255	360	308	210	360	260	277	130	170	430	243
												1

Parameter May July September Alkalinity (mg/L) 2.4 3.8 Calcium (mg/L) Chloride (mg/L) 5 Dissolved Phosphorus (ug/L) 6 5 Fecal Colifrom (court per 100ml) <1 5 E coli (Count per 100ml) <1 3 Nitrate- as Nitrogen (ug/L) <40 <40 ph Sodium (mg/L) Total Phosphorus (ug/L)	1999				2000		
2.4 3.8		October Mean	May	July	September	October	Mean
5 :: 6 6 6.5 7 6.5 7 6.5 7 6.5 7 1 9 :: 11 9 ::		3.5 3.2	3.4	3.2		4.1	3.6
5							
6 5 <1 5 <1 3 <40 <40 66 68 11 9:		5 3.5	5	5		5	5.0
<pre><1 5 </pre> <1 3 <40 < 40 6 6 6 8 11 9		<4 4.3	4	4		4>	2.7
<pre><1 3 <40 <40 66 68 iii ii ii 11 9</pre>		1.7	4	2		1	2.0
<40 <40 <40 6.6 6.8 7.1 7.1 9	6	1.4	4	2			1.4
6.6 11 9		30 23.3	<40	<40		<40	<40
11 9	<u> </u>	6.7 6.7	9.9	6.9		7.0	6.8
11 9							
T T T		5 8.3	11	6		4	8.0
Mean I ropnic Status			::	::			0
Total-Nitrogen 370 390		320 355	440	: : : : : : : : : : : : : : : : : : :		 -	440

... Not Sampled or Not Available

Selow detection limit
TNTC: Too numerous to count
TDTC: Very High Levels of background bacteria,
unable to distinguish fecal coliform or E. coli

Detection Limits
Dissolved Phosphorus: MDL = 4 ug/L
Total Phosphorus: MDL = 3 ug/L
Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L affer 1996

Trophic Level
O: Oligotrophic (Total Phosphorus <10 ug/L)
M: Mesotrophic (Total Phosphorus = 10-24 ug/L)
E: Eutrophic (Total Phosphorus >24 ug/L)

Table A7-4 URI Watershed Watch **Keech Pond**

		Ť	1993			¥	1994				1995	
Parameter	May	July	November	Mean	May	July	November	Mean	May	July	November	Mean
Alkalinity (mg/L)	1.0	2.61	2.63	2.07	-	 	3	2.1	1.7	3.2	:	2.4
Chloride (mg/L)	ნ	12	16	12	11		14	12.5	14		20	17
Dissolved Phosphorus (ug/L)	^	34	4>	12.7	4	44	4	45	4	4	4	4
Fecal Coliform (Count per 100ml)	4	5	64	10.9	2	52	18	12.3	2	15	1	3.1
E.coli (Count per 100ml)	4	5	63	10.8	2	15	13	7.3	2	15		3.1
Nitrate- as Nitrogen (ug/L)	<40	<40	210	83.3	<40	<40	<40	<40	<40	<40	110	20
Hd	5.9	6.3	5.8	6.0	6.0	4.2	5.3	5.2	6.0	7.0	6.0	6.3
Sodium (mg/L)	თ	10	10	10.0	6	11	12	11.0	11	13	12	12.0
Total Phosphorus (ug/L)	12	တ	15	12.0	12	12	20	14.7	11	21	10 10	14.0
Mean Trophic Status	:	:	:	Σ	:::::::::::::::::::::::::::::::::::::::	::	:	Σ				Σ
Total-Nitrogen	:	250	520	385	260	410	490	387	340		009	470

		_	1880			ť	1997			7	1998	
Parameter	May	July	November	Mean	May	Juk	November	Mean	Mav	Ant	November	Mean
Alkalinity (mg/L)	1.3	2.4	-	1.9	13	2.5	29	2.2	_	80	23	000
Calcium (mg/L)	::									0.5	5.7	2:0-7:
Chloride (mg/L)	15		10	13.0	10		20	15.0	25	10		18.0
Dissolved Phosphorus (ug/L)	4>	4	4	4	\$		42	44	4 4	44	<4	2.5
Fecal Coliform (Count per 100ml)	0	19	25	7.8	0	3	2	1.8	6	22	2	7.3
E.coli (Count per 100ml)	0	19	23	7.6	0	3	2	1.8	6	12	2	6.0
Nitrate- as Nitrogen (ug/L)	<40	<40	80	40.0	<40	<40	9	33.3	<40	<40	80	40.0
Hd	5.8	6.3	5.3	5.8	5.6	6.1	9	5.9	5.8	6.1	6.3	6.1
Sodium (mg/L)	÷		:	:								
Total Phosphorus (ug/L)	6	15	12	12.0		::	-		6		12	0.6
Mean Trophic Status	÷	:	:	Σ	::	:::::::::::::::::::::::::::::::::::::::						C
Total-Nitrogen	705		260	632.5	270	630	380	427	330	500	460	430
			1999					2000				
Parameter	May	July		October	Mean	May	√InC	September	October	Mean		
Alkalinity (mg/L)	6.0	3.7	 	1	1.9	_	2.1	2.8		19		
Calcium (mg/L)	;		:::::::::::::::::::::::::::::::::::::::	+								
Chloride (mg/L)	20	20	:	20	20.0	15	15		15	15.0		
Dissolved Phosphorus (ug/L)	4 >	5	:	4	\$	4>	9		4>	<4		
Fecal Coliform (Count per 100ml)	۲>	4	:	1	1.6	12	4		\$	4.6		
E.coli (Count per 100ml)	۷.	2	;	1	1.3	12	3		42	4.2		
Nitrate- as Nitrogen (ug/L)	55	<40	:	70	48.3	50	<40		80	50.0		
Hd	6.4	9.9	:	6.0	6.3	0.9	6.1	6.2	-	6.1		
Sodium (ma/L)				-								

	,	7		_	Ç.	7	n	:	
Nitrate- as Nitrogen (ug/L)	55	<40	:	70	48.3	20	<40	:	:
Hd	6.4	9.9	:	6.0	6.3	6.0	6.1	6.2	:
Sodium (mg/L)	:	:	:	::	:				•
Total Phosphorus (ug/L)	13	11		10	11.3	15	17		
Mean Trophic Status	:	:	:	:	Σ		:		
Total-Nitrogen	40	580		410	343	470	:		•
Not Sampled or Not Available <: Below detection limit TNTC: Too numerous to count TDTC: Very High Levels of background bacteria, unable to distinguish fecal coliform or E. coli	and bacteria, cal coliform or E	i coli	Detection Limits Dissolved Phosph Total Phosphorus Nitrate-Nitrogen:	Detection Limits Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L Vitrate-Nitrogen: MDL = 50 ug/L 1993 t	Detection Limits Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L Vitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996	40 ug/L after 19	96		~ 0 2 Ш

11.5 M 470

URI Watershed Watch Table A7-5

Smith and Sayles Reservoir

		-	1993			ا ا	1994	ĺ			1995	
Parameter	May	July	November	Mean	May	July	November	Mean	May	July	November	Mean
Alkalinity (mg/L)	:	:	:		_	-	3.3	1.7	:	3.3	:	3.3
Chloride (mg/L)	6	10	:	9.5	10		14	12		13		13
Dissolved Phosphorus (ug/L)	4>	۲ <u>۰</u>	: :	4	\$	4>	4	4		4>		4>
Fecal Coliform (Count per 100ml)	0	0	:	0	0	5	1	1.7	0	4	2	2.0
E.coli (Count per 100ml)	0	0	:	0	0	5	0	1.7		3	2	2.4
Nitrate- as Nitrogen (ug/L)	<40	<40		<40	<40	: ;	<40	<40		<40	+	<40
Hd	:		:	:	6.1	6.3	6.0	6.1		7.0		7.0
Sodium (mg/L)	7	ი	:	8.0	∞	12	6	10.0		10	0	5.0
Total Phosphorus (ug/L)	27	23	:	25.0	8	7	11	6.7		8	20	14.0
Mean Trophic Status	:	:	:	Ш		:		0				Σ
Total-Nitrogen	:	800		800		370		370		340		340
		٦	1996			 	1997				1998	
Parameter	May	July	November	Mean	May	July	November	Mean	May	July	November	Mean
Alkalinity (mg/L)	0.7	2.7	:	1.7	8.0	2.8	:	1.8	1.6	:		1.6
Calcium (mg/L)	:	:	:	:	:	:						
Chloride (mg/L)	10	:	15	12.5	10			10.0	10			10.0
Dissolved Phosphorus (ug/L)	4>	4 >	4	4	4>	4		4	\$			4
Fecal Coliform (Count per 100ml)	0	1	2	1.7	0	0	:	0.0	1	0		1.0
E.coli (Count per 100ml)	0	-	2	1.7	0	0	:	0.0	1	0		1.0
Nitrate- as Nitrogen (ug/L)	<40	<40	<40	<40	<40	<40	:	44.0	<40	::	:	<40
Hd	5.8	6.4	6.1	6.1	5.3	6.2		5.8	6.2	::		6.2
Sodium (mg/L)	;	:	:	:	:	:						1
Total Phosphorus (ug/L)	о	æ	9	7.7		::		:	10	5		7.5
Mean Trophic Status	:	:	:	0	:			::		:		0
Total-Nitrogen	315	:	285	300	190	260		225	200	330	:	265
			1999					2000			_	
Parameter	VeM	411	Contombor	1 194040	1		1				1	

			1999					2000		
Parameter	May	July	September	October	Mean	May	July	September	October	Mean
Alkalinity (mg/L)	1.9	3.6	:	:	2.8	1.6	2.8		3.4	26
Calcium (mg/L)	:									
Chloride (mg/L)	15	20	;		17.5	15	15		15	15.0
Dissolved Phosphorus (ug/L)	4	4	÷		4	4>	< <u>4</u>		4	44
Fecal Coliform (Count per 100ml)	-	8	:		2.8	17	5		V	4.4
E.coli (Count per 100ml)	1	8	:	 ::	8.0	14	3		\ \	1.7
Nitrate- as Nitrogen (ug/L)	<40	<40	:		<40	<40	<40		80	40.0
Ho	6.1	6.7	:	:	6.4	6.1	6.0		6.3	6.1
Sodium (mg/L)	:			::	::	:				
Total Phosphorus (ug/L)	12	11			11.5	15	8		8	10.3
Mean Trophic Status	:	:			Σ	:	••••••••	†		Σ
Total-Nitrogen	300	360	:	:	330	360	•			360

... Not Sampled or Not Available

... Below detection limit
TNTC: Too numerous to count
TDTC: Very High Levels of background bacteria,
unable to distinguish fecal coliform or E. coli

Detection Limits Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996

Trophic Level

O: Oligotrophic (Total Phosphorus <10 ug/L) M: Mesotrophic (Total Phosphorus = 10-24 ug/L) E: Eutrophic (Total Phosphorus >24 ug/L)

Table A7-6 URI Watershed Watch **Spring Grove Pond**

Parameter May July Alkalinity (mg/L) 4.7 Chloride (mg/L) 11				<u>-</u>	+00			-	CAA	
4.7	November	Mean	May	July	November	Mean	May	July	November	Mean
1.7	5.47	5.09	4	5.8	5.8	5.2	4.9	4.4	:	4.6
Discolved Dhombornic (112/1)	4	12.5	6		13	11.0	10	6	18	12
t> [Dissolved Filospilolus (ug/L)	^	4	4	4	4>	4>	4	4>	4>	4
Fecal Coliform (Count per 100ml) 0 14	2	3.0		6	4	4.8	3	4	4	3.6
E.coli (Count per 100ml) 0 13	2	3.0	3	2		1.8	က	4	4	3.6
Nitrate- as Nitrogen (ug/L) <40	<40	<40	140	:	<40	80	175	<40	09	85
6.5	6.3	6.4	9.9	6.5	6.2	6.5	7.0	7.0	7.0	7.0
Sodium (mg/L)	9	10.0	æ	10	10	9.0	6	10	13	10.7
Total Phosphorus (ug/L)	7	9.0	12	15	14	13.7	16	12	11	13.0
Mean Trophic Status	:	0	:			M			:	Σ
Total-Nitrogen	370	335		470	200	485		510		510
	1996				200			 -	1008	

			986			ĩ	1897			32	866	
Parameter	May	July	November	Mean	May	July	November	Mean	May	July	November	Mean
Alkalinity (mg/L)	3.3	3.9	:	3.6	3.1	5.1	7.9	5.4	3.3	3.6	3.4	3.4
Calcium (mg/L)	:		:			:::	::					
Chloride (mg/L)	15	:	5	10.0	10		45	28.0	10	15	25	17.0
Dissolved Phosphorus (ug/L)	10	4	4	4.7	42	4	4>	44	4>	4>		4>
Fecal Coliform (Count per 100ml)	0	0	0	0.0	0	5	0	1.7	17	14	0	6.2
E.coli (Count per 100ml)	0	0	0	0.0	0	5	0	1.7	17	6	0	5.3
Nitrate- as Nitrogen (ug/L)	<40	<40	<40	<40	<40	<40	<40	<40	<40		<40	<40
Hd	6.4	6.3	6.2	6.3	5.7	6.2	6.1	6.0	6.7	6.1	6.0	6.3
Sodium (mg/L)	6	10	13	11.0	:	:	:					
Total Phosphorus (ug/L)	:	12	17	14.5		:			16	24	7	15.7
Mean Trophic Status	:	÷	:	Σ	:	::			:			Σ
Total-Nitrogen	700		940	820	250	790	260	433	480	270	240	330
			1999					2000				
Parameter	May	July	September	October	Mean	May	VINC	September	October	Mean		
Alkalinih/ (mo/l.)		ç		c	, ,	۶	,		ļ	١		

			1999					2000		
Parameter	May	July	September	October	Mean	May	July	September	October	Mean
Alkalinity (mg/L)	:	4.2	:	3.9	4.1	3.8	4.6	:	6.1	4.8
Calcium (mg/L)		:	:	:		:		::	 	
Chloride (mg/L)	::	25	:	20	23.0	15	15	:	20	17.0
Dissolved Phosphorus (ug/L)	::	4>	:	4	4	4	44		14	6.0
Fecal Coliform (Count per 100ml)	:	2	4	:	2.8	:	7		\ \ \	2.6
coli (Count per 100ml)	::	2	က		2.4	;	9		₹	2.4
Nitrate- as Nitrogen (ug/L)	:	<40	:	<40	<40	<40	<40		440	<40
H	:	6.5	:	6.5	6.5	9.9	6.8	:	6.7	6.7
Sodium (mg/L)	:.	i	:	:	:		· · · · · · · · · · · · · · · · · · ·		 -	::
Total Phosphorus (ug/L)	:	10		5	7.5	10	<u></u>	:	10	9.0
Mean Trophic Status	:	:	:		0	:	::	:		0
Fotal-Nitrogen		420	:	320	370	280	:	:	::	280

... Not Sampled or Not Available
...: Below detection limit
TNTC: Too numerous to count
TDTC: Very High Levels of background bacteria,
unable to distinguish fecal coliform or E. coli

Detection Limits Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996

Trophic Level
O: Oligotrophic (Total Phosphorus <10 ug/L)
M: Mesotrophic (Total Phosphorus = 10-24 ug/L)
E: Eutrophic (Total Phosphorus >24 ug/L)

Table A7-7 URI Watershed Watch

Slatersville Reservoir

July November Mean May July November Mean 1997 1997 1997 2000	Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July November Mikey July July			-	1993			1	7001			-	195	
1	Nay July September Mean May May Mean	Parameter	May	1.	ovemi	Mean	May	1	November	Mean	May	i.	November	Mean
1	1	Alkalinity (mg/L)	:	:	:	:	:	:	:	:	4.5	9.2	:	6.8
1,	1	Chloride (mg/L)	:	:			:::	::-			16	22	17	18.0
1	May July September Mean May July September October Mean Mea	Dissolved Phosphorus (ug/L)	:	· · · · · · · · · · · · · · · · · · ·							\$	4	15	6.3
1996 1900	May July September Mean Misy July Misser Mean Misy July Misser Misser Mean Misy July Misser Misser Mean Misy Misser M	Fecal Coliform (Count per 100ml)						;	;		0	7	09	7.5
May July September Mean May July September Mean May July Movember Mean May July Movember Mean May July Movember Mean May July Movember Mean May July Movember Mean May July Movember Mean May July Movember Mean May July Movember Mean May July September Cicioer Mean May July September Cicioer Mean May July September Mean May July May July May July May July May July May July Ma	May July Soptiember Mean Mean Me	E coli (Count per 100ml)									0		40	6.2
May July September Mean May July Septembro Cotobor Mean May July Septembro Cotobor Cotob	May July September Mean Mean Mean	Nitrata, as Nitragan (1971)			+						400	460		122.2
May July September Mean Mea	May July September Mean Meay July September Mean Meay July Movember Mean M	יייי מיייי מיייי מייייי מייייייייייייי									36	201	0+1	133.3
1596 150	15 15 15 15 15 15 15 15	Hd								:::	0.9	7.0	7.0	9.9
1996 1997 1998 1998 1998 1998 1999	150 150	Sodium (mg/L)	:		:	:	:	:	:	:	92	Ŧ	14	14.0
May	May July November Mean May July 1997 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1998 1999 19	Total Phosphorus (ug/L)	:	:	:	:	:	:	:	:	15	18	22	18.3
May July November Mean May July November Mean May July November	May July November Mean May July November Mean May July November Mean May July November Mean May July November Mean May July November Mean May July November Mean May July September October Mean A7 82 2000 230	Mean Trophic Status							-					Δ
May July November May July November May July November May July November May July November May July November May July November May July November May July November May July November May July November May July November May July November May July November May July November May July November	Missy July November May July May July	Total-Nitrogen										530		530
May July November Mean May July November Mean May July November Mean May July November Mean May July November Mean May July November Mean May July November Mean May July September October Mean May July October	May July November Mean May July November Mean May July November Mean May July November Mean May July November Mean May July November Mean May July September October Mean A7 82 230 23						:	:	:		:	3	-	2
May July November Mas July November Mas July November Mas July November Mas July November Mas July November Mas July November Mas July November Mas July September October Mas Mas July September October Mas Mas July September October Mas Mas July September October Mas Mas July September October Mas Mas July September October Mas July Mas July September October October	May July November May July November May July November May July November May July November May July November May July November May July November May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan May July September October Maan													
May July November Mean May July November Mean May July November Mean May July November Mean May July November Mean May July September October Mean	May July November Mean May July November Mean May July November November Mean May July November Nove			1	966			ĵ,	260			16	968	
May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean	1900 1900	Parameter	May	July		Mean	May	July	November	Mean	May	į	November	Mean
190	1939 1939	Alkalinity (mg/L)		:										
1	1999 2000	Calcium (ma/L)												
1999 1999	1999 1999	Chloride (ma/l)			 									
1999 2000	1999 1999	Discolor Description												
1999 September October Mean May July Mean Mean May May Mean Me	1999 2000	Cool Coling of Mary 1997												
May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October	May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean Mean May Mean M	recal Collidini (Count per 100ml)	::								:::		::	
May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean Mean May July September October Mean Mean May July September October Mean	May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean A7 8.2 23.0 23.	E.coii (Count per 100mi)		::					:::		:		:	
May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May May July September October Mean May May July September October Mean May May July September October Mean May May July September Mean May May July September Mean May May July September Mean Mean May May May May May May May May May May	May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean	Nitrate- as Nitrogen (ug/L)	:		:	:	:	:		:	:		:	
May July September October Mean May July September October Mean A 7 8.2	May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean Mean May July September October Mean May July September October Mean May July September October Mean May July September Mean May July September May Mean May July September Mean May July September Mean May July September Mean May July May Mean Mean Mean Mean Mean Mean Mean Mean	Ho	;	:	:	:	:	:	:	:	:	;	:	:
May July September October Mean May July September October Mean A 7 8 2 6 4 7 8 2 6 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September Mean	Sodium (mg/L)	:	:	:	:	:		: : : : : : : : : :	:		::		:
May	May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean 6.4	Total Phosphorus (ug/L)	:		:::::::::::::::::::::::::::::::::::::::			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;						
May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July Mean May Mean Mean Mean Mean Mean Mean Mean Mean	May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean May July September October Mean A.7 8.2 6.4 6.5 2.3 2.3 2.5 2.6 2.6 2.6 2.0	Mean Trophic Status	:	:										
May July September October Mean May July September	May July September October Mean May July September	Total-Nitrogen	:	:										
May July September October Mean May July September	May July September October Mean May July September))												
May July September October Mean May July September	May July September October Mean May July September				1000		Ī			0000				
May	Miles July September October Mean May July September				0001					2000				
A	A	Parameter	May	July	September	October	Mean	May	July	September	October	Mean		
1	1	Alkalinity (mg/L)		:		:	:	4.7	8.2		:	6.4		
1	20	Calcium (mg/L)	:	:	:	:	:	:	:	÷	:	;		
1	1	Chloride (mg/L)	:	:	:	:	:	20	25	:	:	23.0		
1	1	Dissolved Phosphorus (ug/L)	:		:			4		::		4.5		
150 210 150 210 150 210 150 210 150 210 150 210 150 25 190 25	150 210	Fecal Coliform (Count per 100ml)			ŀ	,		4	2			2.8		
150 210 6.4 6.6	150 210	E.coli (Count per 100ml)						4	2			2.0		
19	Iable	Nitrate- as Nitrogen (ug/L)			•			150	210		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	180.0		
19 25	19 25	Ho						6.4	99		6.4	6.5		
19 25	19 25	Sodium (mg/l)			-	 								
Hable	able	Total Phosphorus (ug/L)						10	25	 -	7	22.0		
	1990	Mean Trophic Status										M		
llable Detection Limits Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L Skground bacteria, Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996	lable Detection Limits Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L Kground bacteria, Nitrate-Nitrogen: MDL = 50 ug/L 1996; 40 ug/L after 1996 ish fecal coliform or E. coli	Total-Nitrogen				1		490		1		490		
llable Defection Limits Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L Skground bacteria, Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996	lable Defection Limits Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L Kground bacteria, Nitrate-Nitrogen: MDL = 50 ug/L 1996; 40 ug/L after 1996 ish fecal coliform or E. coli												_	
Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L kground bacteria, Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996	Dissolved Phosphorus: MDL = 4 ug/L Total Phosphorus: MDL = 3 ug/L kground bacteria, Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996	:	_		Detection Limits						Trophic Level			
Total Phosphorus: MDL = 3 ug/L kground bacteria, Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996	Total Phosphorus: MDL = 3 ug/L kground bacteria, Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996 ish fecal coliform or E. coli	Selow detection limit			Dissolved Phosp	horus: MDL = 1	t ug/L				O: Oligotrophic	(Total Phospho	rus <10 ug/L)	
Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996	Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996 or E. coli	TNTC: Too numerous to count			Total Phosphoru	s: MDL = 3 ug/L				_	M: Mesotrophic	(Total Phospho	orus = 10-24 ug/L	_
		TDTC: Very High Levels of backgrou	und bacteria,		Nitrate-Nitrogen:	MDL = 50 ng/L	1993 to 1996;	40 ug/L after 19	96	•	E: Eutrophic (T	otal Phosphorus	s >24 ug/L)	

URI Watershed Watch Valley Falls Pond Table A7-8

		Ť	1993			1,	1994			<u>۳</u>	1995	
arameter	May	July	November	Mean	May	July	November	Mean	Мау	July	November	Mean
	:											
Chloride (mg/L)										· · · · · · · · · · · · · · · · · · ·		
			į		}			; ; ; ; ; ;				
Fecal Coliform (Count per 100ml)		i 					1					
				1		7 7 7 7 7 7 7 7 7 7 7 7						
$\overline{}$						***************************************						
Ţ						; ; ; ; ; ; ; ; ;						; ; ; ; ; ;
				 						,		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Total Phosphorus (ug/L)								1				
				1		 			711111111111111111111111111111111111111			
			4006			ľ	7007				330,	

			1996			<u> </u>	1997			19	1998	
Parameter	May	July	November	Mean	May	July	November	Mean	May	July	November	Mean
Alkalinity (mg/L)		:	:	:	:	:	:	:	:	:	:	:
	:	:	:	:					:	:		
Chloride (mg/L)	÷	:	:					:				:::::::::::::::::::::::::::::::::::::::
Dissolved Phosphorus (ug/L)	:	;	:	÷	:				:	:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Fecal Coliform (Count per 100ml)	:	:	:		:	:	:	;	;	:		:
E.coli (Count per 100ml)	:	:		:	:						::	::
Nitrate- as Nitrogen (ug/L)		:		÷	:	:	:	÷		:		:
Hd				:	:	:	:	;	:	:		:
Sodium (mg/L)	_		:	:	÷	-	:	:	:	:	:	
Total Phosphorus (ug/L)	:	:	:		:	:	***	:	:			:
Mean Trophic Status	;			:	:	;		į	:	:	:	:
Total-Nitrogen					:	:	::	:	:	:	:	:

			1999					2000		
Parameter	May	July	September	October	Mean	May	July	September	October	Mean
Alkalinity (mg/L)	:	:	:	:	:	:	:	:	:	:
		;				:	· · · · · · · · · · · · · · · · · · ·			
Chloride (mg/L)	:	:	:	:	:	09	80	:	90	67.0
Dissolved Phosphorus (ug/L)	:	:		:		93	121		175	129.7
Fecal Coliform (Count per 100ml)	:	:	:	:	:	200	37	:	25	57.0
E.coli (Count per 100ml)	:	:	:		:	200	23		25	24.0
Vitrate- as Nitrogen (ug/L)	:	:	:	:	;	830	240	;	1230	767.0
I	:	:	:	:	:	7.1	7.7	:	7.1	7.3
Sodium (mg/L)	:	:	:	· · · · · · · · · · · · · · · · · · ·	:	; ; ;	:	:		: :: :: ::
Total Phosphorus (ug/L)	:	÷	:	:	:	367	390		218	325.0
Mean Trophic Status	:			:					;	Ш
Total-Nitrogen	:	:	:	:	:	1990	;	:	:	1990

... Not Sampled or Not Available

... Below detection limit
TNTC: Too numerous to count
TDTC: Very High Levels of background bacteria,
unable to distinguish fecal coliform or E. coli

Detection Limits
Dissolved Phosphorus: MDL = 4 ug/L
Total Phosphorus: MDL = 3 ug/L
Nitrate-Nitrogen: MDL = 50 ug/L 1993 to 1996; 40 ug/L after 1996

Trophic Level
O: Oligotrophic (Total Phosphorus <10 ug/L)
M: Mesotrophic (Total Phosphorus = 10-24 ug/L)
E: Eutrophic (Total Phosphorus >24 ug/L)

Appendix 8

State of the State's Waters- Rhode Island, 2000 Section 305(b) Report (Section III):

Stream Sampling Sites for 1991-2000, Chemical Monitoring

(RIDEM, 2000)

Table A8-1a

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by RIDEM are marked

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1991	1				Tr		Tr		0.00	0.00	0.00	0.31	0.08
1991	2			0.54	0.01	0.02						Tr	0.07
1991				0.61			Tr	0.20	0.07		Tr	Tr	0.98
1991	4	1		0.85			0.25		0.79			Tr	0.15
1991	5	0.10	Tr	Tr	Tr		0.03	0.03		1.10			- 1
1991	6 7	Tr	0.02	0.10		0.98					0.53		0.23
1991	7		0.53	0.50	Tr			0.08			1		Tr
1991	8	Tr				Į.	Tr					Tr	ŀ
1991	9	0.55				l			0.33				0.10
1991	10	1		Tr Tr		0.66		Tr	1.67		Tr	0.22	0.25
1991	11	0.20	Tr	Τr		ŀ		0.10		Τr	0.15	1.93	
1991	12	0.74				f	0.11				Tr	0.13	
1991	13		0.10		0.10			0.36				0.01	0.27
1991	14	1 1	0.92	0.51		0.05		0.03		0.25			0.12
1991	15	1	0.05	0.07	0.26	l	0.02		0.02	0.09		0.01	Tr
1991	16	1.33	Tr		Tr	I	0.01		- 1		0.15	- 1	
1991	17	0.04	Tr		0.08	0.57				Tr	0.20		0.21
1991	18	Tr	0.04	1.26	0.08	0.01	Tr		0.02	0.07	0.40		Tr
1991	19		0.42	0.08		ĺ	0.47		2.51	0.46			- 1
1991	20		0.10		Tr				0.14	0.62	·		il i
1991	21	0.11		Tr	3.06			Tr	0.43			0.45	0.12
1991	22 23			0.39	0.08		0.01	ì		1	ŀ	0.69	
1991	23	i I		0.90			0.01	0.36		0.07	-	0.51	Tr
1991	24	i i		0.35		Tr			Tr	0.15		0.39	ij
1991	25	1 [Tr	0.02	į	Tr		Tr	1	1.75	Tr		I
1991	26	Tr	0.05			ŀ		1.55		0.53	1	i	
1991	27	 Tr	0.08	0.07	Tr	0.03		0.05			Tr		i
1991	28	0.07	Tr	Tr		0.02					Tr	1	
1991	29			0.15				Tr			l	Tr	0.59
1991	30	0.10		0.21	1.13	0.77	0.02		1		0.25	Tr	Trll
1991	31	0.20				0.19			Tr		0.49		

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1993	1		0.04		1.44		0.58					0.05	
1993	2 3	1	Tr		0.18			Tr					
1993	3	0.02			0.01			0.38		0.04	0.19		Tr
1993	4	0.01	Tr	0.29	Tr	Tr	0.04			0.03			0.19
1993	5	0.73	-	0.65		Tr	0.09					0.60	
1993	4 5 6 7	1 1	0.12	0.01		Tr	0.12		Tr		j	Tr	0.01
1993	7		Tr Tr					0.10	Tr	0.02			Tr Tr
1993	8 9	Tr	Tr	Tr			0.01	0.01	Tr	0.09			Tr
1993		Tr		0.01			0.30			Tr			
1993	10	Tr		0.21	0.45	j		0.01		0.87	Tr		0.25
1993	11	0.04		0.11	0.03	0.05		ľ					0.63
1993	12	0.05	1.43		0.76			0.15			0.27	Tr	
1993	13	0.57	0.58	2.44	0.02	0.02			0.23		i		Tr
1993	14	0.01		0.14				Tr				Tr	Tr
1993	15	0.06			Tr				Tr	Tr	0.06	Tr Tr	Tr Tr Tr
1993	16		2.32		Tr	0.06	1	İ	Tr	0.32			0.01
1993	17	Tr	0.03	0.72	0.90	0.12	- 1		0.13		0.02	0.35	
1993	18	Tr	0.07	0.08	Tr	0.14	1		0.61	0.47	0.02	0.23	Tr
1993	19		0.02			0.16	Tr	0.23			0.03	0.57	0.33
1993	20					0.17	Tr	0.22	Tr		0.30	Tr	
1993	21		0.19	0.01	1		0.10			0.07	0.88		1.10
1993	22 23	0.56	0.26		0.14	0.04	Tr			0.10			
1993	23	0.02	Tr	0.01	Tr					0.02			
1993	24	0.22 Tr	Tr	1.44	I							0.05	Tr
1993	25	Tr		0.08	0.02	Tr			0.15		•	Tr	0.05
1993	26		i		0,85					1.28			Τr
1993	27	Tr	Tr		0.22	Tr	0.16	0.73		0.75	0.53	Ì	
1993	28	Tr	Tr	0.29	ŀ	Tr			0.11		0.01	1.50	,
1993	29	0.01		0.50		0.05		0.35			""	1.00	0.15
1993	30			Tr		****	Tr	5.55			0.82		0.18
1993	31	0.12				0.31							3.,0

Table A8-1b

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by RIDEM are marked

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1996	1				0.07	0.02		Tr	0.28	0.14			0.20
1996	2	0.07	0.03	0.30	0.52	0.02			!	0.13	0.02		1.16
1996	3	0.22	0.09	0.02		0.25	0.45	0.52			Τr	i 1	
1996	4	Tr	l			Tr	0.18	0.35		0.01			
1996	5	Tr		0.19	Tr	0.03	0.07					0.01	
1996	6			0.83	Tr	0.26			Tr	i			0.87
1996	7	0.06		0.48	0.42	!				1.21		0.16	1.15
1996	8	0.12	Tr	0.03	0.03	0.18				0.02	2.06	0.08	0.36
1996	9	Tr	0.12	.	0.32		Tr	0.04	Tr		0.30	0.53	
1996	10	0.05	Į		0.13	0.27	0.05	0.01	0.07	0.01	0.01		
1996	11	1	0.27	7.2.2.2.2	Tr	0.15	Tr						0.08
1996	12	1.08	Γ		0.04	0.10	Tr		1	0.04			0.04
1996	13	1 1	F	i	0.04			3.57	0.93	0.13	Tr		0.03
1996	14	1 1	0.16		0.01					0.03	Tr	i	0.16
1996	15	í l		0.17				Τr				i	Tr
1996	16	Tr	0.05		2.00	0.47							Tr. Tr
1996	17	0.03	Tr		Tr	0.14	0.03	i		0.93			0.68
1996	18	1					0.06			1.91			
1996	19	0.98		0.04		ŀ	0.10	0.11			0.25	0.16	1.17
1996	20	i I	ļ	0.64			0.46		40		2.81		0.01
1996	21	Tr	0.73	j	Tr	0.19	0.14		Tr	'		1	-1.5.1
1996	22	i l	Tr		Tr Tr	i	0.02			0.41	0.10		
1996	23	i I	0.02	Tr	0.04	i	Tr	0.45	0.05	0.26	0.34		
1996	24	0.85	0.57		0.04	Tr	0.35		0.39	0.05	0.01		0.46
1996	25	Tr	-	Tr	Tr		0.04	j	0.01	0.17		0.02	0.10
1996	26	i l	i	0.01	0.03			0.07	0.01			1.42	5.10
1996	27	1.42	0.02			l	Tr					Tr	0.03
1996	28	Tr	0.13		-	ĺ	Tr		0.45	0.03	0.21	``	Tr
1996	29	0.11			0.69	Tr	Tr		, •	0.24		1	0.07
1996	30	0.02			0.50	0.36	0.22	}			0.09	Tr	5.07
1996	31	0.01						0.45			Tr		0.02

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1998	1			0.15		0.31	0.27				0.12		0.02
1998	2				0.27	0.49	Tr				l	}	
1998	3		ŀ	0.01		Tr	0.36		1				
1998	4	Tr	0.17	Tr		0.19							, j
1998	5		0.40	0.03	Tr	0.25		0.51					
1998	6 7	0.07	Tr			0.62						ļ	
1998	7	0.73		Tr	!	0.42	0.29	Tr	ŀ	0.54		- 1	1
1998	8	0.79		0.39	0.02	0.02	0.06	Tr		0.47	0.46		0.20
1998	9	0.36		3.02	0.63	0.83				0.05	0.65		
1998	10		l	Tr	0.29	1.64					0.88	Tr	
1998	11		0.22			0.31			0.15		0.08	1.38	Į.
1998	12	i i	1.08	Tr	i		0.13				Tr		ľ
1998	13	0.23					3.29						
1998	14	1 1	-	0.11			1.37				1.23E		Į.
1998	15	0.26	i	Tr	Tr		0.88			Tr		Tr	1
1998	16	0.63	I	Tr	0.01		0.14	Tr		0.13		0.00	ľ
1998	17	l Tr	0.29		1.53	0.08	Tr	Tr Tr	0.71			0.49	0.07
1998	18	0.10	1.87	0.13			0.46		0.45				3.37
1998	19	ļ į	Tr	1.68	0.06		0.50		0.20		Tr		ļ
1998	20	Tr	Tr	Tr	0.35		0.04	Tr	I			0.23	Tr
1998	21			0.19					I			0.03	1
1998	22		1	0.15			Tr	-	I	0.99		ŀ	0.06
1998	23	1.68	0.05		0.55	i	0.01 Tr	0.37	Tr				Tr
1998	24	1.63	1.22		0.01		Tr				i	ľ	Tr 0.18
1998	25	0.05	0.06			0.09			Tr			ł	l l
1998	26		ļ		0.34		-	Tr	0.62			0.63	
1998	27		ľ		0.01		0.16		Tr	0.10			ļ
1998	28	Tr	0.49		1				0.06		0.34		0.10
1998	29	Tr		i		0.14	0.18	0.09	0.16		0.02		0.45
1998	30	0.01			Tr		1.47		0.04	0.02E			0.19
1998	31	0.01			785 T.	0.66	1.47	0.40	Tr				

Table A8-1c

Rainfall at T.F. Green Airport (*)

Sampling Periods of Monitoring by RIDEM are marked

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1999	1			0.20	Tr			0.06					
1999	2		2.12				0.02	0.02				0.39	
1999	3	1.70	0.51	0.12		0.19	0.02	Tr				1.78	
1999	4		0.14	0.44	0.04	0.28		0.03			0.90		Tr
1999	5	1	Tr			0.14			Tr		0.12		
1999	6	Tr	0.02	0.69	Tr			Tr		0.14			0.48
1999	7	0.03	0.04	0.02	Tr					0.01			1.02
1999	8	0.36	Tr			0.20			0.72				
1999	9	0.45		i	0.13			Tr)		0.01	0.01		
1999	10	1			Tr			Tr	Tr	2.27	0.39	0.02	0.03
1999	11	Tr		Tr	0.29				Tr			0.01	
1999	12	0.05	0.22	Tr	0.04			Tr	Tr			0.07	
1999	13	0.01	0.02	Tr	I			0.13			0.54	Tr	0.04
1999	14	0.26	Tr	0.12	l l		0.08		0.07	0.01	0.28	0.05	0.27
1999	15	1.43		0.45		Tr	Tr		0.41	1.12			0.28
1999	16	1 1			0.55		- 1			1.98		· [0.01
1999	17		Tr		0.02		0.03			Tr	0.37	·	
1999	18	0.93	0.83		i	0.01	Tr		Tr		0.83		
1999	19				i	0.63		0.24					
1999	20	27.4.000			Tr	0.45			0.04		0.96	0.05	0.14
1999	21	0.04	Tr	0.08	I		Τr		0.12				0.12
1999	22	0.03	i	0.47	0.19				0.01	0.01			Tr
1999	23	0.04			0.28	1.85		0.33			0.11		
1999	24	1.29	Tr	0.34		0.50		0.01				0.02	•
1999	25	Tr	0.06	Tr	- 1	Tr	Tr	Tr		0.09		0.20	
1999	26		0.01		Tr Tr				1.67			0.03	
1999	27	Tr		0.02	Tr				0.21			0.23	
1999	28	0.07	1.48	0.37		Tr		ļ					
1999	29	0.01		0.01	ŀ		Tr			0.01		Tr	ļ
1999	30						0.02			0.79			
1999	31		1.00										

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2000	1	Tr		Tr		Tr		Î	0.03		Tr		
2000	2	Tr		Tr		0.08	0.42		0.04	0.62			
2000	3	Tr	0.03		0.03			Tr	0.23	Tr			
2000	4	1.25	0.03		0.32			0.09	0.01	0.15	0.03	Tr	
2000	5	0.21	0.01	Tr			Tr	i			0.22	0.03	1
2000	6		Tr				2.57		Tr		0.08		
2000	7					Tr	0.08		0.18				
2000	8	1			0.04	Tr		Ì			l		0.11
2000	9	0.02		0.03	0.47	0.03		Tr	Tr	0.08	Tr	Tr	
2000	10	1.33		Tr		0.87		Tr	0.42	0.01		1.83	0.03
2000	11	Tr	Tr-	1.96	0.03	0.03	0.90		0.03			0.04	0.03
2000	12	ŀ		0.56			0.08						0.01
2000	13	0.12	Tr			0.64	Tr		0.46	0.17	İ	0.03	
2000	14	1	1.47			0.01	0.07	Tr	0.45			0.75	0.64
2000	15		Tr		0.04		0.04	Tr	0.04	0.96			
2000	16	Tr	Tr	0.25	0.06		l	0.13	0.22		0.09		0.49
2000	17			0.87	0.09		0.26			Tr.	Tr	Tr	2.23
2000	18		0.35		0.38	0.24	0.01	0.41	0.11		0.69		
2000	19	1	0.05		0.17	0.50	0.09	0.02	0.01	1.11	Tr		0.27
2000	20	Tr	Tr	Tr	0.01	0.07				0.18			0.15
2000	21	Tr		Tr	1.61	Tr		Trl		Tr	!		0.10
2000	22			Tr	1.14	0.34		0.02			ľ		0.05
2000	23	Tr			0.05	0.08		- 1	0.17	0.21			
2000	24		Tr	1		0.87		Tr	Tr	0.02			
2000	25	0.61	0.35	0.01				0.01					. I
2000	26	0.01	0.11	0.04	0.09		Tr	0.45		0.28		1.91	
2000	27	1 1					0.20	0.81					
2000	28	1 [0.20	1.53	-	Tr	Tr		i	0.01		Tr	t
2000	29			0.12	1		0.07	Tr			Tr		t
2000	30	Tr		Tr		Mark to the same	Tr	0.32	Tr	Ì	0.10	0.14	0.34
2000	31	0.64	25.5					0.59			0.12		t

(*) Data from April to December 2000 are from the National Weather Service from their Providence Station.

Table A8-2: RIDEM Chemical Monitoring, Section 305b

Round Top Brook Burrillville (Brook Road)

Mixed Weather (3)		•	•	•				•	•		•				•				•	•		•	•	ΙГ	1•	•	•	•
Wet Weather (2)	r	T			•	T						T	l								_		_	ļ	•	•	•	•
Ory Weather (1)	•	Ī	İ		İ	•	•			•		•	•	•		•	•	•			•				•	•	•	•
tibidity (UTN)	0.50	0.80	0.90	0.70	2.10	1.00	1.30	2.30		5.20	1.20				1.23	8.42	2.22	2.34	1.75	0.75	1.67	2.18	2.86		19	2.07	0.50	8.42
(mg/l)	1.20	0.40	1.00	1.60	1.80	ļ	ļ	1.50	1.80	10.80	1.20	0.86	1.43	2.77	1.20	1.90	2.18	2.83	1.67	99.0	1.70	2.83	0.80		21	2.01	0.40	10.80
Temperature (deg C)	5.0	23.0	18.1	24.0	9.0	23.0	1.0	1.1	9.0	20.5	14.0	16.3	23.0	9.5	1.8	5.0	19.5	19.5	12.5	5.0	15.0	18.5	3.5		23	12.9	1.0	24.0
lstoT ,muibos (l\gm)		4.0	3.7	4.0	3.8	5.4	0.9	6.3	5.4	9.9	5.7	4.4	6.1	4.7	3.7	4.3	6.5	7.9	5.6	5.4	6.2	5.9	4.2		23	5.1	0.9	7.9
(ı/ɓw)	ļ	60.0		ļ			0.15	0.07	90.0	0.10	9	0.00	0.02	0.01	0.00	0.01	0.02	0.00	0.01	0.04	0.02	0.03	0.02		18	0.04	0.00	0.15
Phosphorus, Total	6.3	6.3	6.8	7.0	4.8	6.7	3.9	5.5	5.8	6.6	6.3	0.0	6.5	6.1	6.0	5.8	6.4	6.6			5.7				23	***************************************	3.9	
Dissolved (mg/l)		0.02			-			0.02	S	2	2	ļ			.01	0.00	0.01	ND	0.00	0.00	0.02	7	0.00		14	0.01	0.00	02
Orthophosphate,			7	4	9	80	2								0	o	Ö	_	Ö	Ö	o.	0	0.			0		
Nitrate (mg/l N)		0.14	0.07		0.0	90.08		0.19	1.47	0.17															11		0.06	
sinommA (Vi Ngm)				0.03	-	0.02		2			S	0	0.15	0.11	0.04	0.21	0.08	0.05	0.06	0.10	0.11	0.08	0.08		18	0	0.00	0.21
Lead, Total (lgul)	0.50	0.90	1.30	0.90	2.10	0.30	1.60	0.20	0.90	5.60	1.00	0.80	08.0	1.70	0.80	0.85	2.43	2		1.64				selc	19	1.35	0.20	5.60
iron (ug/l)	62	225	217	193	215	966	223	*****	••••		la	123	1,019	550	118	109	1,017	890	556	523	346	1,120	103	II Samples		453	62	1,120
(убш)	4.4	2.3	5.8	4.0	8.9	3.6	8.9	1.7	3.6	6.1	4.0	8.0	10.4	8.5	6.7	7.3	10.2	11.7	10.4	7.3	5.3	6.6	7.5	Statistical Summary - All	23	8.9	1.7	11.7
(col\100ml) Hardness		ဖ	80	10	49	4	4		7	006	8		30	13	7	-	19	150	=	ĸ	2	7		af Sum	20	12	-	006
Fecal Coliform					m	-				က်				-uuu,,,										atistic				က်
Enterococi (col/100ml)			ŏ	Ø	2	14	,											***************************************	-	***************************************] to	9	20	1	9
Dissolved Oxygen (hg/l)	12.6	8.9	8.1	7.8	11.9	7.5	12.0	13.2	11.5	8.4	9.4	7.5	7.6	10.5	12.6	9.0	8.4	7.7	10.1	12.7	9.5	8.6			22	9.6	7.5	13.2
Copper, Total (ug/i)	0:30	1.10	1.70	2.70	0.80	0.20	1.40	1.60	1.50	3.70	1.40	06.0	2.10	1.00	06.0	Q	1.15	9	9						19	1.40	0.20	3.70
Conductivity (umhos/cm)	25	40	53	49	25	70	30					4	65	40	23										=	42	23	70
Chloride (mg/l)	5.6	5.5	8.2	8.0	7.8	11.1	11.3	13.3	8.1	6.6	13.2	0.0	6.6	5.6	6.5	62.6	10.1	15.5	1.3	10.3	9.8	12.8	12.8		23	11.7	0.0	62.6
(ı/ßn)				0.12		-		90.0	0.17	0.25	0.10	0.20	0.20	0.20	0.50	0.33	Q	2		-					12	0.22	0.08	0.50
Dissolved (ug/l) Cadmium, Total					•			***************************************		_				_					0.28	0.46	0.50	0.43	3.55		2	2.04		
(mg/l) Cadmium,	2.70	0.50	1.33	0.55		0.80	0.80	1.90	0.20	0.90	0.40	0.81	0.77	1.00	1.16	1.83	0.95		0.20	_	-		0.44		19	0.94 2	-	- 1
BOD	7	0	_	0		0	0	-	_	0	0	0	0		-	-	0	0	0				oi 			o.	0	-i
e}eq	12-Mar-91	13-May-91	29-Jul-91	18-Sep-91	26-Apr-93	10-Aug-93	27-Dec-93	11-Mar-96	14-May-96	20-Aug-96	02-Oct-96	14-Apr-98	05-Aug-98	26-Oct-98	20-Jan-99	19-Mar-99	10-Jun-99	19-Aug-99	12-Oct-99	15-Mar-00	30-May-00	18-Sep-00	11-Dec-00		Count	MEAN (*)	Minimum	Maximum

							•	•	•	•
	L						•	•	•	•
1	8	•	•	•	l		L			
	ľ	2.83	0.50	8.42	l		1	1.52	0.70	2.86
	6	2.85	0.86	10.80			12	1.37	0.40	2.83
	11	14.3	1.0	23.0			12	11.6	1.1	24.0
	11	5.4	6.0	7.9	1		12	4.8	3.7	6.3
	6	0.04	0.00	0.15			8	0.04	0.00	0.09
	1	6.0	3.9	6.7			12	6.1	4.8	7.0
	က	0.01	0.00	0.02			7	0.01	00.0	0.02
	4	1.07	90.0	3.85			7	0.31	90.0	1.47
	6	0.09	0.00	0.21			9	0.07	0.03	0.10
her	6	1.62	0:30	5.60		Weather	6	1.08	0.20	2.10
Jry Weat	10	534	62	1,019		and Wet	6	363	103	1,120
Statistical Summary - Dry Weather	7	7.7	3.6	11.7		Statistical Summary - Mixed and Wet Weather	12	6.0	1.7	10.4
stical Sur	6	22	-	3900		Summan	11	_	-	80
Stati	2	4	-	14		atistical	4	13	-	90
	11	9.1	7.5	12.6		St	11	10.4	7.8	13.2
	8	1.34	0.20	3.70			8	1.46	08'0	2.70
	9	45	25	70			r.	38	23	53
	11	13.8	0.0	62.6			12	9.8	5.5	13.3
	5	0.24	0.20	0.33			သ	0.19	0.08	0.50
	٦	0.50	0.50	0.50			4	2.43	0.28	8.55
	10	1.13	0.70	2.70			6	0.74	0.20	1.90
	Count	MEAN (*)	Minimum	Maximum			Count	MEAN (*)	Minimum	Maximum

ND = Not detected

* Mean is geometric for Fecal Coliform and Enterococci

(1) Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day. (2) Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or

rainfall of more than 1.0" on days 2 and 3 prior to sampling.

(3) Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Table A8-3: RIDEM Chemical Monitoring, Section 305b

Pascoag River

Burrillville (Grove Street Bridge)

(a) lounness nevuu	1		_														_			_	i	_	
Wixed Weather (3)	⊩	_	•	_		_	<u> </u>	•	•		•	<u> </u>	_	<u> </u>	•	<u> </u>			•	•	<u> </u>	•	•
Wet Weather (2)	⊩	L	_	_	•	_	_	<u> </u>	L	_	_	_				_			_		_	<u> </u>	\vdash
Dry Weather (1)	_		75	0	9	•	50	00	8	00	е, Э	_	•	•	2	•	• 4	•	<u>စ</u> ္တ	00	· Ω	ಣ	O O
Turbidity (UTU)		1.05		1.10			_	06.0		-	_		<u></u>		2.22	6.45	0.84	1.47	1.60	06.0	1.65	-	
SS1 (I\gm)	_	4.00	1.50	2.60	1.80		3.60	2.80	1.80	4.30	1.00	4.14	1.57	2.33	2.33	2.13	3.13	1.49	2.72	1.16	1.80	1.57	7.23
Гетрегаtите (О gəb)		23.0	19.9	26.0	10.5		1.0	0.4	13.5	18.0	17.5	15.8	24.0	10.0	3.8	6.2	20.8	22.5	14.0	6.5	17.1	18.5	3.0
l stoT, muibos (l\gm)		6.0	6.0	6.0	7.0		3.5	14.5	9.8	22.4	12.1	0.0	7.0	9.7	9.0	25.2	9.1	9.5	8.2	11.2	9.0	6.6	14.9
(y/6w)		0.11		-			0.15	0.07	0.05	0.10	Ş	0.02	0.02	0.01	0.00	0.00	0.01	90.	10.0	0.04	0.02	0.03	0.02
Phosphorus, Total	L	al las pages		6	6		7	6			·										0		
Hq	ė.		6.1	6.9	5.3		Ö.	5.	5.9	7.0	9.9	6.7	6.6	9.9	6.4	6.7	6.5	9.9	9	6.4	9.0	6.2	
Orthophosphate, Dissolved (mg/l)		0.02		***************************************				0.02	Q	9	2				0.01	QN	0.01	9	0.00	0.00	0.01	0.01	0.00
Nitrate (M I\gm)		90.0	0.08	0.11	0.04		1.13	0.20	0.10	0.25	0.05	0.08	0.08	0.28	0.18	0.08	0.09	90.0	0.09	0.18	0.13	0.15	0.12
sinommA (V Ngm)		0.02	0.02	0.02	******		0.05	Q	N	0.03	2	0.08	0.08	70.0	60.0	60.0	90.0	0.01	0.07	0.07	0.07	0.05	0.05
Lead, Total (lgul)	1.70	4.30	3.30	2.40	1.30		2.90	, 3.60	1.80	3.40	1.50	1.70	1.70	1.80	0.80	1.60	1.90	ON ON					
(y6n)	149	249	216	154	164		298			-	·*····	727	495	216	179	465	250	203	111	218	263	185	205
(hgm) Iron	9.9	4.1	7.4	6.1	3.4		10.4	5.9	4.6	19.9	9.5	33.3	9.6	11.6	9.2	23.7	10.4	9.2	7.7	23.7	16.0	11.6	17.2
Hardness	_	4	70	0	_		7	2	5	0	ດ				707							73	
Fecal Coliform (col/100ml)		2	7	100	21			_	-	840	-	12	80	9			51	51	64		က	7	
Enterococi (col/100ml)	_	4	330	520	21		14																********
(J/6w)	12.4	8.7	7.8	7.3	10.9		13.0	12.4	11.0	7.8	8.8	10.4	7.2	0.2	2.4	0.0	9.8	8.2	0.2	12.4	6.8	8.7	2.9
Dissolved Oxygen	2.80	3.10	4.60	1.90	1.10		5.70	2.10	3.10	4.20	2.50	3.30	2.90	1.80	0.90	1.17	2.09	1.64	1.49	1.25	1.20		1.55
Copper, Total (ug/l)							ļ	2	က	4	7	က်			***************************************	-	2	÷	÷	-	1.	-	-
Conductivity (umhos/cm)	38	50	55	58	32		35					100	68	20	49				_		,		
Chloride (mg/l)	9.6	9.0	10.6	12.0	12.8		17.3	31.3	16.8	43.0	25.7	22.6	11.1	12.4	15.7	10.3	16.0	17.0	15.9	33.9	13.6	21.3	17.7
Gadmium, Total (ug/l)	0.12	0.10	0.16	0.10	***************************************		0.23	0.08	0.26	0.28	0.07	0.20	0.20	0.20	0.40	0.76	2	2					
Dissolved (ug/l)					Canada de Canada						•				-				0.21	0.52	09.0		0.65
(mg/l) Cadmium,	2.43	0.80	1.07	0.40			06.0	2.10	0.40	0.30	0.40	0.83	0.52	2.40	0.70	2.57	Q	0.53	0.55				
BOD	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				A PROPERTY OF THE PARTY OF THE				40.00			-	-		-	-	de Wand de micriffique.	_	_		***************************************		
ətsO	12-Mar-91	13-May-91	29-Jul-91	18-Sep-91	26-Apr-93	10-Aug-93	27-Dec-93	11-Mar-96	14-May-96	-20-Aug-96	02-Oct-96	14-Apr-98	05-Aug-98	26-Oct-98	20-Jan-99	19-Mar-99	10-Jun-99	19-Aug-99	12-Oct-99	15-Mar-00	30-May-00	18-Sep-00	11-Dec-00

	Ι.		i .	_	1	Г	T	:	1	1	1	Г	Т	1 .	:	i
	Ŀ	•	•	•	l		L				ł		ŀ	•	•	•
	Ŀ	•	•	•	ł		Ŀ	_		_	l		ŀ	•	•	•
	19	2.70	0.64	20	ł		Ŀ	2.06	0.84	£5	ł		12	3.08	4	တ္ထ
	2		***************************************	2			10	<u></u>							0 0.64	3 22.50
	22	2.55			l			2.57	1.20	4.30			12	2.54	1.00	7.23
	22	13.7	1.0	26.0			10	14.0	1.0	24.0		İ	12	13.4	3.0	26.0
	22	6.6	0.0	25.2			10	10.4	0.0	25.2			12	9.4	6.0	14.9
	17	0.04	0.00	0.15			6	0.04	0.00	0.15			8	0.04	0.00	0.11
	22	6.3	5.3	7.0			10	6.5	0.9	7.0			12	6.2	5.3	6.9
	ō	0.01	00.0	0.02			7	0.01	0.01	0.01				0.01	00.0	0.02
	22	0.17	0.04	1.13			10	0.23	90.0	1.13			12	0.11	0.04	0.20
	17	0.05	0.01	60.0			6	90.0	0.01	60.0			æ	0.05	0.02	0.09
les	16	2.23	0.80	4.30		her	8	2.09	1.60	3.40		Weather	8	2.38	08'0	4.30
VII Samp	18	264	111	727		ry Weath	6	341	149	727		and Wet	6	187	111	249
mary - A	22	11.8	3.4	33.3		ımary - 🛘	10	15.0	9.9	33.3		- Mixed	12	9.2	3.4	23.7
Statistical Summary - All Samples	21	26	-	840		Statistical Summary - Dry Weather	10	36	1	840		Summary	7	19	2	100
Statis	9	36	1	520		Statis	2	4	-	41		Statistical Summary - Mixed and Wet Weather	4	112	21	520
	22	10.0	7.2	13.0			10	9.7	7.2	13.0		St	12	10.3	7.3	12.9
	22	2.34	0.90	5.70			10	2.68	1.17	5.70			12	2.05	06.0	4.60
	10	56	32	100			2	62	35	100			2	49	32	58
	22	18.0	9.0	43.0			10	17.3	9.6	43.0			12	18.6	9.0	33.9
	14	0.23	0.07	0.76			7	0.28	0.12	0.76			7	0.17	0.07	0.40
	4	0.50	0.21	0.65			-	09.0	09:0	0.60			3	0.46	0.21	0.65
	16	1.06	0:30	2.57			8	1.31	0.30	2.57			8	0.80	0.40	2.10
	Count	MEAN (*)	Minimum	Maximum			Count	MEAN (*)	Minimum	Maximum			Count	MEAN (*)	Minimum	Maximum

ND = Not detected * Mean is geometric for Fecal Coliform and Enterococci

(1) Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day. (2) Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or

rainfall of more than 1.0" on days 2 and 3 prior to sampling.

(3) Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Table A8-4: RIDEM Chemical Monitoring, Section 305b

Clear River

Burrillville (Victory Highway)

2.4 General Conductivity (2.5) (1.6)	(0)	JI	: .	Τ.	1 .	1	1	_	1	1	1	:	1		i	:		Ţ	;		:	•	-	:
24 Conditional Total 25 Conditional Chicago 26 Conditional Chicago 27 Conditional Chicago 28 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 29 Conditional Chicago 20 Condi	lixed Weather (3)	╬	•	•	•		L	<u> </u>	•	•		•	<u> </u>	<u> </u>	<u> </u>	•	_	<u>L</u>	<u> </u>	•	•		•	•
(Chindinal min, Total Cadmium, Total		⊩	-	1	L	•	_	L			L	<u> </u>				<u> </u>	<u> </u>			_	L	_		<u> </u>
2.43 Conductivity	 	+				<u> </u>	•	•			•		•	•	•		•	•	•			•		
Cadmium, Total Cadmium, Total Cadmium, Total Conductivity			1.20	0.97	1.20	4.40	1.60	0.80	0.50	1.60	1.80	1.30				1.74	2.08	2.82	2.86	1.95	1	2.10	2.85	3.00
Cadmium, Total Chloride (ug/l) Cadmium, Total Chloride (ug/l)		2.60	2.00	2.50	2.40	3.40	2.40	0.80	1.10	3.20	2.20	1.40	1.44	3.87	4.13	2.00	3.80	3.08	2.17	1.94	1.33	2.60	2.47	0.53
Conductivity 2.43 Cadmium, Total 2.44 Cadmium, Total 2.45 Cadmium, Total 2.45 Cadmium, Total Cadmium, Total 2.45 Cadmium, Total 2.46 Cadmium, Total Cadmium, Tot		5.0	20.0	19.1	24.5	11.5	23.0	1.0	3.0	12.0	20.0	16.5	16.5	22.8	9.5	2.5	0.9	20.8	20.0	13.2	5.5	16.2	17.5	3.0
(mg/l) Dissolved (ug/l)			8.0	8.5	14.0	9.9	38.0	4.1	13.1	10.0	21.9	15.6	9.1	17.3	15.3	8.0	10.1	28.3	42.0	10.0	13.4	10.7	20.2	9.5
(mg/l) 1.10	•••		0.15	-				0.15	0.08	90.0	0.13	2	0.02	0.04	0.01	0.01	0.01	0.03	0.14	0.01	0.05	0.03	0.08	0.03
2.43 (mg/l) 2.44 (mg/l) 2.45 (mg/l) 2.		9.9	6.1	6.7	7.1	5.4	9.9	6.0	5.9	6.2	6.7	9.9	6.5	9.9	6.5	6.2	6.4	6.7	6.7	9.9	6.1	6.2	9.9	6.7
2.43 (mg/l) 2.44 (mg/l) 2.45 (mg/l) 2.			0.02				0.02		0.02	2	QN	9	-			0.01	0.01	0.02	0.13	0.00	0.01	0.03	0.07	0.01
(mgyl) (m	(N l/gm	0.26	0.42	1.18	0.57	0.08	3.12	3.85	0.20	0.08	0.95	0.16	0.07	0.36	0.36	0.11	0.12	1.15	1.06	0.10	0.29	0.56	0.66	0.18
Cadmium, Total Cadmiu	(V l\gm		0.07	0.16	0.20	0.10	0.92	0.33	0.11	0.12	0.68	0.57	0.26	0.37	0.34	0.10	0.35	0.53	4.77	0:30	0.38	0.32	1.59	0.33
Cadmium, Total Cadmiu	(j/6n	1.00	6.30	2.10	1.40	8.30	3.60	10.20	1.80	1.50	5.90	0.90	13.00	4.20	2.10	1.80	2.94	2.13	ND					
(col/100ml), Dissolved (ug/l)	(J/Bn	186	416	418	256	447	1,102	314					Ì					,055	728	211	565	612	872	211
(col/100ml) 2.43 0.05 0.05 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.09		5.8	5.0	16.3	14.4	5.5	17.6	7.9	4.6	5.2	14.7	9.6	10.3	16.0	15.3	0.6	10.3	21.7	24.7	9.8	0.3	11.1	17.5	0.7
2.43 (col/100ml) 2.44 (col/100ml) 2.45 (col/100ml) 2.45 (col/100ml) 2.46 (col/100ml) 2.47 (col/100ml) 2.48 (col/100ml) 2.49 (col/100ml) 2.40 (7	120	200	570	260	170	4	1	16	81	32			·									9
Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Conductivity Conduct				1			4	5																
Cadmium, Total Cadmium, Total Cadmium, Total Dissolved (ug/l) Dissolved (u					Ì																			
Codemium, Total Cadmium, Total Cadmium, Total Dissolved (ug/l) Dissolved (300						12.5	11.0	8.3	3.7	10.2	12.5	9.3	7.9	Ì
Codemium, Total 1.42 Cadmium, Total 1.42 Cadmium, Total 1.44 Cadmium, Total 1.45 Cadmium, Total 1.46 Cadmium, Total 1.47 Cadmium, Total 1.48 Cadmium, Total 1.48 Cadmium, Total 1.49 Cadmium, Total 1.40 Cadmium, Total 1.41 Cadmium, Total 1.42 Cadmium, Total 1.43 Cadmium, Total 1.44 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.45 Cadmium, Total 1.46 Cadmium, Total 1.47 Cadmium, Total 1.48 Cadmi	Copper, Total (ug/l)		(,,					***************************************	1.10	1.80	4.00	0.50	0.90	3.00	2.10	1.90	2	2.93	2.10	1.35	3.88		3.21	1.85
Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total Cadmium, Total		45	09	111	125	40	275	20					78	150	115	40								
Cadmium, Total Cadmium, Total Cadmium, Total		11.0	14.0	17.7	33.0	14.6	59.9	19.8	28.7	17.8	38.6	35.6	6.7	24.0	18.4	14.1	24.7	47.1	63.3	18.7	20.5	20.4	38.2	21.4
Cadmium.		0.05	0.09	0.07				0.14	Q	0.18	0.22	2	0.20	0.20	0.20	09.0	0.46	9	9			***************************************		
BDD 2.43 (mg/l) 1.1.1 (mg/l) 1.1.2 (mg/l) 1.1.2 (mg/l) 2.50 (mg/l)					***			1		-	1					***************************************	-			0.26	0.50	-	0.54	0.71
	(wâ\l)	2.43	0.80	1.42	0.07	***************************************	2.40	1.70	2.50	0.30	4.30	1.10	1.35	1.07	1.03	0.70	2.19	1.23	5.90	0.20		daldado monte opposito parecessos.		
28-Jul.91 28-Jul.91 28-Jul.91 28-Jul.91 26-Apr.93 10-Aug.98 27-Dec.93 11-Mar.96 12-Aug.98 26-Oct.98 26-Oct.98 26-Oct.98 19-Aug.99 19-Aug.99 112-Oct.99 19-Aug.99		lar-91	ay-91	ul-91	ep-91	pr-93	-6-6n	ec-93	ar-96	ay-96	96-br	ct-96	or-98	86-Br	ct-98	10-99	ar-99	-06-ur	66-br	ct-99	ar-00	ay-00	18-Sep-00	11-Dec-00

Г	ŀ	•	•	•]		I						•	•	•	•
	ŀ	•	•	•			L						Ŀ	•	•	•
	•	•	•	•		Ì	•	•	•	•	IJ		Ĺ			
	20	1.85	0.50	4.40	l	ľ	ľ	1.86	0.80	2.86	H		12	1.84	0.50	4 40
ŀ	23	2.32	0.53	4.13			1	2.64	0.80	4.13			12	2.02	0.53	3.40
	23	13.4	10	24.5			Ξ	14.6	1.0	23.0			12	12.4	2.5	24.5
	23	14.7	4.1	42.0			1	18.4	4.1	42.0			12	11.4	9.9	20.2
	17	90.0	0.01	0.15			6	90.0	0.01	0.15			8	90.0	0.01	0.15
ļ	23	6.4	5.4	7.1			11	6.5	6.0	6.7			12	6.3	5.4	7.1
	12	0.03	0.00	0.13			2	0.04	0.01	0.13			7	0.02	0.00	0.07
l	23	0.69	0.07	3.85			11	1.08	0.07	3.85			12	0.34	90.0	1.18
	23	0.56	90.0	4.77			11	0.81	90'0	4.77			12	0.34	0.07	1.59
sə	17	4.66	0.90	13.00	ĺ	ē	6	6.12	1.00	13.00		Neather	8	3.01	06.0	8.30
Samp	19	202	186	1,102		ry Weath	10	604	186	1,102		ind Wet	6	398	189	872
Statistical Summary - All Samples	23	11.9	4.6	24.7		Statistical Summary - Dry Weather	7	14.1	5.8	24.7		Statistical Summary - Mixed and Wet Weather	12	9.6	4.6	17.5
ical Sum	23	30	-	1700		ical Sum	Ξ	22	2	170		ummary	12	64	1	1700
Statist	9	99	17	180		Statist	2	33	25	44		tistical S	4	82	17	180
	23	9.7	3.7	13.6			11	9.0	3.7	13.2		Sta	12	10.3	7.5	13.6
	21	2.53	0.50	5.50			6	2.43	0.50	4.50			12	2.61	0.50	5.50
	11	66	40	275			9	119	45	275			S	7.5	4	125
	23	26.4	6.7	63.3			11	30.4	6.7	63.3			12	22.9	14.0	38.2
	11	0.22	0.05	09.0			7	0.21	0.05	0.46			4	0.24	0.07	0.60
	4	0.50	0.26	0.71			0						4	0.50	0.26	0.71
	18	1.71	0.07	5.90			10	2.36	1.03	5.90			æ	0.89	0.07	2.50
	Count	MEAN (*)	Minimum	Maximum			Count	MEAN (*)	Minimum	Maximum			Count	MEAN (*)	Minimum	Maximum

ND = Not detected * Mean is geometric for Fecal Coliform and Enterococci

(1) Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day.
 (2) Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or rainfall of more than 1.0" on days 2 and 3 prior to sampling.
 (3) Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Table A8-5: RIDEM Chemical Monitoring, Section 305b Abbott Run Brook (Cumberland)

(Cumberland, Route 120)

(c) IOUNDAL DOVIN	!			_	_	_	_			-		_			_		_			T_		_	_
Wet Weather (2) Mixed Weather (3)	⊩	_	_	_		_	_	•	•	_	_	_	_	_	_	L	_	_	_	_	L	•	•
Ory Weather (1)	⊩	<u> </u>	L	-	_	•	•		_					_	_			_	_	_	_	L	_
(UTN)	0	0.7	4.67	5.00	2.70	6.20	2.10	0.90	1.80	.40	06:		Ľ	L	42	2.74	20	9.93	6.30	.76	2.30	14.41	4.58
Turbidity	l	0		•								8		0									
253 (mg/l)	3.4	1.00	2.20	3.00	1.20	3.40	2.20	1.10	3.00	2.50	2.00	1.98	1.47	2.2	2.97	1.97	3.43	3.30	2.97	2.00	3.93	2.07	3.2
Temperature (deg C)	0.9	17.0	19.0	23.0	12.5	21.0	2.0	3.0	15.0	23.5	17.0	14.0	19.0	20.0	4.8	6.0	17.8	18.0	14.0	5.0	15.6	18.0	3.5
Sodium, Total (mg/l)		10.0	9.7	11.0	9.9	11.7	8.9 6.9	12.1	12.8	13.5	12.4	10.6	10.2	11.3	10.4	10.7	11.8	11.1	11.0	10.3	10.4	9.6	10.6
Phosphorus, Total (mg/l)	0.07	0.20				-	0.20	0.09	0.07	0.10	Q	0.02	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.04	0.03	0.11	0.03
Hq	6.5	6.5	7.0	7.1	0.9	9.9	6.0	6.7	6.9	7.4	7.0	7.0	6.7	7.1	7.1	6.9	6.7	9.9	7.1	6.8	6.1	6.9	7.0
Orthophosphate, Dissolved (mg/l)		0.03				0.01		0.03	2	Q	Q				00.0	00.0	0.00	QV	0.00	0.00	0.00	0.10	0.00
Vitrate (W Ngm)	7	0.30	0.32	60.0	0.18	0.53	2.90	0.31	0.25	0.04	60.0	0.21	0.20	0.12	0.20	0.23	0.00	90.0	60.0	0.17	0.13	0.11	0.15
sinommA (VI Ngm)		0.06	90.0	0.15		90.0	0.26	ND	60.0	0.03	0.08	0.08	0.14	0.20	90.0	0.06	0.19	0.07	0.05	0.05	0.11	0.11	0.11
Lead, Total (ug/l)	0	17.20	4.60	1.30	4.90	2.70	1.80	4.30	1.00	0.70	0:30	7.20	2.40	4.80	0.80	10.91	1.68	QN	1.18	1.89	2.36	1.90	1.42
iron (ug/l)	156	267	099	565	743	964	211				Ann 6 man (m.	151	1,111	624	328	163	935	786	470	425	230	865	179
(убш)	18.2	19.1	20.4	13.6	10.8	12.9	21.1	12.2	17.5	21.8	20.9	22.9	22.6	23.0	22.1	20.0	26.2	19.8	24.0	20.0	21.9	20.2	24.3
(col/100ml)	1	-	10	_	20	32	65	က	7	4	က	~	10	9	7	-	27	4	130	က	10	09	7
(col/100ml) Fecal Coliform	1	-			2	16	62																
Enterococci	12.3	9.6	7.7	7.4	11.0	7.9	13.0	4	ю. -	ю.	9.0	10.0	9.6	ō,	7	4	8.5	8.3	က	æ	-	က	O.
Dissolved Oxygen (Ngm)	12	6	7	7	1	7	13	10.4	11	6	6	10	0	7.9	11	12.4	ω	œ	10.3	12.8	o.	8.3	12
Copper, Total (ug/l)	1.00	3.50	2.20	0.70	1.80	1.10	2.80	4.00	1.30	1.30	1.30	1.30	1.60	1.30	0.90	0.95	2.05	0.91	Q	3.44	8.36	1.16	0.82
Conductivity (umhos/cm)	89	06	66	88	65	100	75	,,,,,				82	108	105	72								
Chloride (mg/l)	14.5	17.9	17.3	20.5	22.4	19.8	25.4	28.0	26.1	26.8	35.3	8.0	14.0	15.8	19.5	28.3	19.3	20.3	23.8	23.4	25.3	24.2	20.5
Gadmium, Total (ug/l)		0.15	0.14	0.05	0.07		0.20	0.37	0.19	0.14	2	0.00	0.20	0.20	0.24	0.35	2	2					*****
Cadmium, Dissolved (ug/l)						*****						******							0.23	0.38	•	0.54	0.37
(wâ\;) BOD	0.35	06:0	1.43	0.95	1.20	0.00	0.90	1.80	0.30	1.00	0.60	1.07	1.13	0.73	1.25	2.50	0.53	1.13	0.35				
θžβΩ	12-Mar-91	13-May-91	29-Jul-91	06-Sep-91	26-Apr-93	10-Aug-93	27-Dec-93	11-Mar-96	14-May-96	20-Aug-96	02-Oct-96	14-Apr-98	05-Aug-98	26-Oct-98	20-Jan-99	19-Mar-99	10-Jun-99	19-Aug-99	12-Oct-99	15-Mar-00	30-May-00	18-Sep-00	11-Dec-00

	•	•	•	•		Γ					
	Ŀ	•	•	•	l		L	_	_	-	l
	Ŀ	•	•	•	l		Ŀ	•	•	•	l
	20	3.88	0.90	14.41			8	3.55	1.40	9.93	l
	23	2.46	1.00	3.93			7	2.71	1.47	3.93	l
	23	13.7	2.0	23.5			1	14.8	2.0	23.5	
	23	10.8	8.9	13.5			7	10.8	8.9	13.5	
	18	90.0	0.00	0.20			10	0.05	00.0	0.20	
	23	8.9	0.9	7.4			1-	6.7	9.0	7.4	
	11	0.02	0.00	0.10			4	0.00	0.00	0.01	
	23	0.30	0.00	2.90			11	0.42	0.00	2.90	
	20	0.10	0.03	0.26			10	0.12	0.03	0.26	
les	22	3.48	0.30	17.20		ner	10	3.59	0.70	10.91	
VII Samp	19	518	151	1,111		ry Weat	10	533	151	1,111	
Statistical Summary - All Samples	23	19.8	10.8	26.2		Statistical Summary - Dry Weather	11	20.9	12.9	26.2	
tical Sun	23	7	-	130		tical Sun	11	7	-	65	
Statis	5	S	-	62		Statis	က	10	-	62	
	23	10.0	7.4	13.0			11	9.8	6.7	13.0	
	22	1.99	0.70	8.36			11	2.06	0.91	8.36	
	11	87	65	108			9	90	89	108	
	23	21.6	8.0	35.3			11	19.8	8.0	28.3	
	13	0.18	0.00	0.37			9	0.18	0.00	0.35	
	4	0.38	0.23	0.54			0				
	19	1.00	0:30	2.50			10	1.02	0.35	2.50	
	Count	MEAN (*)	Minimum	Maximum			Count	MEAN (*)	Minimum	Maximum	

							St	atistical	Summar	Statistical Summary - Mixed and Wet Weather	and Wet	Weather											
Count	6	4	7	12	5	11	12	2	12	12	6	12	10	12	~	12	8	12	12	12	12	┢	•
MEAN (*)	0.98	0.38	0.17	23.2	83	1.92		-	9	18.8	500	3.40	90.0	0.19	0.02	8.9	0.07	10.8	12.7	2.23	-	•	•
Minimum	0.30	0.23	0.05	17.3	65	0.70		-		10.8	179	0:30	0.05	60.0	0.00	0.9	0.00	9.7	3.0	1.00		H	•
Maximum	1.80	0.54	0.37	35.3	66	4.00	12.9	7	130	24.3	865	17.20	0.15	0.32	0.10	7.1	0.20	12.8	23.0	3.20	14.41	-	•
									İ												1	l	l

ND = Not detected * Mean is geometric for Fecal Coliform and Enterococci

(1) Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day. (2) Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or

rainfall of more than 1.0" on days 2 and 3 prior to sampling.

(3) Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Table A8-6: RIDEM Chemical Monitoring, Section 305b Abbot Run Brook (North Attleboro)

North Attleboro (Valley Road)

	п	;	;	;		;	7	1	;	:		;					,				:		:
Mixed Weather (3)		•	•	•			L	•	•	<u> </u>	•	_			•				•	•		•	•
Wet Weather (2)	╙		L		•																		
Ory Weather (1)	•					•	•			•		•	•	•		•	•	•			•		
tybidity (UTN)		1.40	1.29	1.50	3.10	2.60	1.30	0.90	2.80	2.40	2.50				3.03	2.79	6.23	7.32	4.85	2.03	3.10	7.45	4.27
ՐՏՏ (ՠց/۱)	2.60	3.40	09:0	1.40	3.20	08.0	1.00	1.50	6.20	4.60	1.00	4.54	0.80	1.97	2.50	0.53	3.60	3.73	1.62	2.25	4.73	1.50	1.77
Гетрегаture (deg C)		21.0	19.2	23.0	10.0	23.0	2.0	3.0	14.0	21.0	16.3	17.3	22.6	11.0	3.8	7.0	20.2	18.8	12.0	0.9	15.2	18.0	3.0
JatoT ,muiboč (I\gm)		13.0	10.0	12.0	10.9	10.7	10.2	14.6	13.2	13.7	14.0	12.1	11.2	12.1	13.6	13.1	12.3	11.6	12.0	11.8	12.5	11.1	11.6
Phosphorus, Total (I\gm)		0.16				-	0.29	0.07	0.05	0.09	9	0.02	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.04	0.02	0.03	0.02
На	6.4	6.5	6.7	7.1	6.0	6.8	6.2	9.9	6.8	7.2	7.0	6.9	7.0	6.9	7.1	6.8	7.0	6.8	6.8	6.7	6.7	7.1	6.8
Orthophosphate, Dissolved (mg/l)		0.02			90.0	0.01		0.03	9	2	2	***************************************			0.01	0.01	0.00	Q.	0.00	0.01	0.02	0.01	0.00
(M J/Bm)	0.30	0.49	0.26	0.17	0.40	0.23	3.24	0.56	0.44	0.23	0.34	0.46	0.54	0.36	0.71	60.0	0.42	0.16	0.41	0.42	0.46	0.32	0.51
(M l\gm) Witrate	0.02	0.02		and the second	0.02		0.13	9	0.02	0.03	2	0.11	0.08	90.0	0.03		0.09	90.0	0.03	0.05	0.07	0.07	40.0
(Ngu) sinommA	-	11.80	1.30	0.70	2.80	1.30	3.00	09.0	24.10	1.20	0.30	06.0	4.10	13.80	0.80	5.44	Q	9	0.83		1.09		
Lead, Total	က္			-					2	-							2	4		_		-	_
lron (ug/l)		9 288	5 245) 850	7 521			~~	7	_	300		412		165	_			361	402	ľ	201
Hardness (mg/l)		21.9	22.5		15.0	16.7	23.6	14.5		22.7		27.2		26.4			28.0		27.1			24.4	
Fecal Coliform (col/100ml)	4		80		390			1	20	8	48	1	100	19	88	27	110	140	200	20	56	110	4
Enterococci (col/100ml)		17	120	1,100	65	140	12									*********			******	\			
Dissolved Oxygen (Ngm)	12.5	8.7	8.1	8.0	11.0	7.8	13.0	10.0	11.0	8.4	9.3	9.1	8.4	10.5	11.7	10.8	9.0	8.8	10.2	12.3	10.0	9.6	13.1
Copper, Total (ug/l)	0.70	5.30	0.60	0.40	1.10	1.40	2.00	1.10	1.40	3.30	0.50	1.20	2.80	1.30	1.00	2	1.24	1.17	QN	2.80	6.73		0.87
Conductivity (umhos/cm)		100	103	86	70	100	06					120	123	110	88								
Chloride (mg/l)	16.0	27.9	17.4	21.0	26.2	21.3	31.2	32.3	28.8	30.0	35.2	8.2	16.4	16.6	25.7	34.6	20.9	20.7	12.4	26.9	26.3	25.2	18.5
(₁ /6n)			0.03		0.05	0.10	0.09	2	0.27	0.13	S	0.40	0.20	0.20	0.27	0.39	Q	2					
Cadmium, Total		50																_		က္က	•••••	တ	
Cadmium, Dissolved (ug/ł)	4	0.20	8	IC.				_			_	~							2	0.33		0.39	
(wâ\) BOD	1.64	0.70	0.98	0.45			2.00	1.60	0.20	0.50	09:0	0.86	0.53	1.15	0.85	2.34	0.45	06'0	0.40				
Date	12-Mar-91	13-May-91	29-Jul-91	18-Sep-91	26-Apr-93	10-Aug-93	27-Dec-93	11-Mar-96	14-May-96	20-Aug-96	02-Oct-96	14-Apr-98	05-Aug-98	26-Oct-98	20-Jan-99	19-Mar-99	10-Jun-99	19-Aug-99	12-Oct-99	15-Mar-00	30-May-00	18-Sep-00	11-Dec-00

	•	•	•	•									•	•	•	•
	•	•	•	•	١		•	•	•	•	1		-	\vdash	H	
	20	3.09	06.0	7.45	1		8	3.33	0.93	7.32	1		12	2.93	0.90	7.45
	23	2.43	0.53	6.20			11	2.63	0.53	4.73			12	2.25	09.0	6.20
	23	13.6	2.0	23.0			11	15.0	2.0	23.0			12	12.4	3.0	23.0
	23	12.0	8.0	14.6			11	11.6	8.0	13.7			12	12.3	10.0	14.6
	17	0.05	0.01	0.29			6	0.05	0.01	0.29			8	0.05	0.01	0.16
	23	6.8	6.0	7.2			1	8.9	6.2	7.2			12	6.8	6.0	7.1
	12	0.02	00.00	90.0			4	0.01	0.00	0.02			8	0.02	0.00	90.0
	23	0.50	0.09	3.24			1	0.59	60.0	3.24			12	0.42	0.17	0.71
	17	90.0	0.02	0.13			6	0.08	0.02	0.13			œ	0.04	0.02	0.07
səlc	18	4.18	0:30	24.10		her	6	3.56	06.0	13.80		Weather	6	4.80	0:30	24.10
Statistical Summary - All Samples	19	377	143	850		Statistical Summary - Dry Weather	10	398	143	625		and Wet	တ	355	201	850
nmary - ,	23	22.6	14.5	28.0		nmary - I	11	23.9	16.7	28.0		- Mixed	12	21.5	14.5	27.1
tical Sur	23	4	-	390		tical Sun	11	4	4	140		Summary	12	40	-	390
Statis	7	42	-	1100		Statis	က	12	-	140		Statistical Summary - Mixed and Wet Weather	4	110	17	1100
	23	10.1	7.8	13.1			11	9.6	7.8	13.0		Ste	12	10.3	8.0	13.1
	20	1.85	0.40	6.73			10	2.18	0.70	6.73			10	1.51	0.40	5.30
	11	98	20	123			9	103	72	123			5	92	70	103
	23	23.5	8.2	35.2			11	22.0	8.2	34.6			12	24.8	12.4	35.2
	11	0.19	0.03	0.40			7	0.22	60'0	0.40			4	0.16	0.03	0.27
	3	0.31	0.20	0.39			0						8	0.31	0.20	0.39
	17	0.95	0.20	2.34			6	1.15	0.45	2.34			8	0.72	0.20	1.60
	Count	MEAN (*)	Minimum	Maximum			Count	MEAN (*)	Minimum	Maximum			Count	MEAN (*)	Minimum	Maximum

ND = Not detected * Mean is geometric for Fecal Coliform and Enterococci

(1) Dry Weather: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day.
 (2) Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or rainfall of more than 1.0" on days 2 and 3 prior to sampling.
 (3) Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Appendix 9

Multiple Station Analyses: Water Resources of the Blackstone River Basin, MA U.S. Geological Survey

(USGS, 2000)

USGS

Forestdale Station

Branch River

Table A9-1a

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by USGS are marked - FORESTDALE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1990	1	0.21			Tr	0.01		0.63			0.01		
1990	2		0.18		0.03	5.51		Tr		Tr			
1990	3		Tr		2.31		0.03						0.02
1990	4	0.06	0.47		0.19	0.25	0.02			,	0.15	1	2.09
1990	5		Tr	Tr		0.57			Tr		0	Tr	2.00
1990	6		-	0.14	. Tr	Trl		Tr	0.08	No. 24 - W. March 1000000 A C 1-0	i l	0.99	
1990	7		i		0.11	0.29	0.17		0.02	Tr	l i	0.00	0.05
1990	8	0.39				0.03	0.02		1.15			0.13	0.26
1990	9	0.03	Tr			2.000	0.49				0.31	0.10	0.20
1990	10	0.03	0.51		0.06	1.22	0.08		Tr	Tr		1.12	
1990	11	Tr			0.44	Tr	0.05		1.18		0.07	Tr	
1990	12	Tr		0.34				1.28			0.30	Tr	
1990	13					0.43		0.20			0.71		
1990	14	Tr!		0.02		0.33		55			1.52		
1990	15	0.15	0.37	0.01	1.19		Tr	0.01		0.61	Tr	1	0.75
1990	16		0.39			0.72	Tr	Tr					0.17
1990	17		Tri	0.11	0.25	0.17				0.26		Tr	
1990	18	Tr		0.38		0.01	Tr				0.45	Tr	0.29
1990	19			0.19			0.03		0.08	0.09	0.31	1	Tr
1990	20	0.36		0.26	Tr	0.10	Tr		Tr	0.05			
1990	21	0.59		0.01	0.45	0.35	Tr		Tr				0.04
1990	22	0.07	0.32					Tr	0.04	1.20	Tr		0.07
1990	23		0.15			Tr	Tr	Tr	Tr		0.51	0.11	0.13
1990	24	0.03	0.35				Tr	0.53	1.15		0.27	0.08	1.18
1990	25	0.55	0.15		0.05	Tr		0.55	0.04	'		ļ	
1990	26	0.77			0.01				Tr	0.02	0.12		
1990	27		0.04				Tr	0.32		0.01		Tr	
1990	28	أنمد						Tr		İ	0.23	Tr	0.37
1990	29	1.34			0.07	0.90	0.24	Tr	Tr			0.02	Tr
1990	30 31	0.43		0.55	0.41	0.32	Tr	Tr		0.04		****	Tr
1990	31	<u></u>		Tr									0.06

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1991	1				Tr		Tr		0.00	0.00	0.00	0.31	0.08
1991	2			0.54	0.01	0.02		Ì				Tr	0.07
1991	3			0.61			Tr	0.20	0.07		Tr	Tr	0.98
1991	4			0.85			0.25		0.79	ļ		Tr	0.15
1991	5	0.10	Tr	Tr	Tr		0.03	0.03		1,10	1		
1991	6	Tr	0.02	0.10		0.98		1			0.53		0.23
1991	7]]	0.53	0.50	Tr			0.08				MANAGE V	Tr
1991	8	Tr.			1		Tr]				Tr	
1991	9	0.55			·		l		0.33				0.10
1991	10			Tr		0.66		Tr	1.67	'	Tr	0.22	0.25
1991	11	0.20	Tr	Tr				0.10		Tr	0.15	1.93	
1991	12	0.74					0.11		·	COUNTY MET VEST SHEET E.	Tr	0.13	7 5 m 3 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2
1991	13		0.10		0.10	-	****	0.36			''1	0.01	0.27
1991	14		0.92	0.51		0.05		0.03	(S. 1982)	0.25	İ	****	0.12
1991	15		0.05	0.07	0.26		0.02		0.02	0.09	0.48	0.01	Tr
1991	16	1.33	Tr		Tr		0.01	-	0.02	0.50	0.15	0.01	''
1991	17	0.04	Tr		0.08	0.57				Тг	0.20	-	0.21
1991	18	Tr	0.04	1.26	0.08	0.01	Tr		0.02	0.07	0.40		Tri
1991	19		0.42	0.08			0.47		2.51	0.46			
1991	20	li l	0.10		Tr			}	0.14	0.62	1		ŀ
1991	21	0.11		Tr	3.06			Tr	0.43		İ	0.45	0.12
1991	22			0.39	0.08		0.01				·	0.69	
1991	23			0.90			0.01	0.36		0.07	·	0.51	Tr
1991	24			0.35		Tr			Tr	0.15		0.39	
1991	25		Tr	0.02	•	Tr		Tr		1.75	Tr		
1991	26	Tr	0.05					1.55		0.53		i	ļ
1991	27	Tr	0.08	0.07	Tr	0.03		0.05			Tr		ľ
1991	28	0.07	Tr	Tr		0.02					Tr		
1991	29			0.15				Tr				Tr	0.59
1991	30	0.10		0.21	1.13	0.77.	0.02				0.25	Tr	Tr
1991	31	0.20	100		10173	0.19			Tr		0.49		

Table A9-1b

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by USGS are marked - FORESTDALE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992	1		Tr,	· · ·	0.01	0.08	2.04		Tr			The state of the s	
1992	2		Tr	Tr		0.13						Tr	0.05
1992	3			0.02		0.05		0.25		2.04		0.80	0.41
1992	4	1.33	0.09			Tr		0.18	0.10			Tr	0.01
1992	5	0.01	Tr				0.67	Tr				0.35	0.24
1992	6]					0.73	0.16				Tr	
1992	7		Tr	0.95			Tr			Tr		' î	Tr
1992	8		0.08	0.06	0.01	0.58	Tr	Tr		0.31		i	
1992	9	0.17		Tr	0.01	0.12		0.17	2.73		0.03	ļ	
1992	10			0.01	Tr	·			Tr	i	0.60	I	Tr
1992	11		Tr	1.38	0.25	Tr			0.23	0.09	0.01	0.03	2.40
1992	12				0.06	Tr		0.29			0.11	0.09	1.43
1992	13	İ	0.03			A SAME TO		0.04	Tr			1.02	0.14
1992	14	0.85	0.14			Tr	·	0.75	0.30				Tr
1992	15		0.68		625000 ·			0.73	0.22		Tr	Τr	
1992	16	0.07	0.31		0.60	0.04		0.28	0.39		Tr		ĺ
1992	17	Tr		Tr	0.64			Tr	0.71		0.01	0.04	0.82
1992	18		0.05		0.18	Tr		0.01	1.11				Tr
1992	19		Tr	0.24	0.03		0.05		0.04	Tr	0.25	- 1	Tr
1992	20	0.02			Tr		0.10		Tr			i	0.15
1992	21		Tr Tr		Tr		0.02				0.14	0.04	l
1992	22			0.19	0.13		0.01			0.28		0.91	0.01
1992	23	2.37	Tr	0.04	Tr			0.51		0.48		1.24	Tr
1992	24	Tr	0.03		0.10	0.09	0.79				0.10	0.02	Tr
1992	25		0.09		0.31	0.02					0.27	0.07	0.02
1992	26		0.52	0.44	Tr	0.05		0.01	0.14	1.86		0.44	
1992 1992	27 28	Tr		0.24	0.01	0.01	0.20	0.05	Tr	Tr		Tr	_
1992	26 29	['[Tr 0.08	0.03				ا م	2.55				Tr
1992	30		0.08	0.05	Tr			0.05	0.09	0.03	_		0.52
1992	31	Tr.		0.05	11	0.25	Tr	0.11			Tr 0.04		0.37
1382		<u></u>		0.39		0.25	180	0.11			0.01		0.26

1993 1993 1993 1993 1993	1 2 3 4 5	0.02 0.01	0.04 Tr		1.44		0.55						
1993 1993 1993	3 4		Tr				0.58					0.05	
1993 1993	4		!		0.18			Tr	12.00				
1993		0.04			0.01	READ TO		0.38		0.04	0.19		Tr
11 1	5		Tr	0.29	Tr	Tr	0.04			0.03		1	0.19
1 4000		0.73		0.65		Tr	0.09					0.60	2.86
1993	6		0.12	0.01		Tr	0.12		Tr			Tr	0.01
1993	7		Tr				X 01.767	0.10	Tr	0.02			Tr
1993	8	Tr	Tr	√. Tr			0.01	0.01	Tr	0.09			Tr
1993	9	Tr		0.01	'		0.30			Tr			
1993	10	Tr		0.21	0.45			0.01		0.87			0.25
1993	11	0.04	1	0.11	0.03	0.05							0.63
1993	12	0.05	1.43		0.76			0.15	1		0.27	Tr	0.00
1993	13	0.57	0.58	2.44	0.02	0.02			0.23			[Te
1993	14	0.01		0.14				Tr				Tr	Tr Tr
1993	15	0.06			Tr				Tr	Tr	0.06	Tr	Tr
1993	16		2.32		Tr	0.06	1		Tr	0.32			0.01
1993	17	Tr	0.03	0.72	0.90	0.12			0.13	0.02	0.02	0.35	
1993	18	Tr	0.07	0.08	Tr	0.14			0.61	0.47	0.02	0.23	Tr
1993	19		0.02			0.16	Tr	0.23			0.03	0.57	0.33
1993	20		ŀ			0.17	Tr	0.22	Tr		0.30	Tr	ŀ
1993	21		0.19	0.01			0.10		1	0.07	0.88	ŀ	1.10
1993	22	0.56	0.26		0.14	0.04	Tr		ľ	0.10		ŀ	
1993	23	0.02	Tr	0.01	Tr				[0.02			
1993 1993	24	0.22	Tr	1.44		_						0.05	Tr
1993	25 26	Tr		0.08	0.02	Tr			0.15			Tr	0.05
1993	26	Tr	Tr		0.85	_			·	1.28			Tr
1993	28	Tr	Tr	0.29	0.22	Tr	0.16	0.73		0.75	0.53		
1993	29	0.01	11	0.29	1	Tr O.O.		0.05	0.11		0.01	1.50	
1993	30	0.01		0.50 Tr		0.05		0.35	658000004 secondo.		2 22	ł	0.15
1993	31	0.12		1	i.	0.24	Tr				0.82 0.42		0.18

Table A9-1c

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by USGS are marked - FORESTDALE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994	1		0.03		Tr	0.06	0.01	Tr		0.15	0.04	0.20	
1994	2	0.10	Tr	0.04	Tr]			0.03	Tr	· ·
1994	3	0.05	0.02	1.06	Tr				Tr		37.5		
1994	4	0.78		0.03	Tr	0.10			i			i	
1994	5	Tr				0.64			1.06	0.20			1.10
1994	6	0.08		Tr	0.08	0.26	0.26	1	0.02			0.09	
1994	7	0.40		.0.01	0.04	0.06	Tr	0.02			i	Tr	0.13
1994	8	0.70	0.20	0.58		0.44		0.13					Tr
1994	9		0.28	0.26				Tr		0.22	Tr	Tr	0.06
1994	10		Tr	2.32	0.23						1	0.40	0.56
1994	11		0.55	0.01			Tr		0.03		1		0.13
1994	12	0.11	Tr		0.13	0.02	Tr		0.33	Tr			
1994	13	0.01	0.05		0.85		0.43		0.95	Tr			Tr
1994	14	Tr	Tr				1.52		0.15	0.01			Tr Tr Tr
1994	15	1		0.11		0.09		0.72					Tr
1994	16			Tr		0.54				Tr			Tr
1994	17	0.51		0.04	Tr	0.06			0.08	0.04	1		0.10
1994	18	1.00		0.05		0.03		0.01	1.22	0.51	0.01		0.10
1994	19	{		0.02	Tr	Tr			0.04		Tr		
1994	20	}		Tr		Tr	Tr	[0.02		
1994	21	_	0.16	0.06			0.01		1.36			0.27	
1994	22	<u>T</u> r		1.15					0.88	0.25	Tr		
1994	23	Tr	0.30			0.60	_	0.08		2.45		Tr	
1994	24		0.26	_ !		Tr	Tr			0.04			1.66
1994	25			Tr		0.07	Tr			Tr			Tr
1994	26	0.09	0.25	0.00	0.05	0.01	~	Tr		Tr			
1994	27	1.70		0.38	0.10		Tr			0.25 Tr		0.01	
1994	28	1.70		0.44			0.47	0.11		i ir		1.50	Tr
1994	29	1		0.61	Tr		0.47		0.22		1		
1994	30			0.02	Tr			_			_		
1994	31							Tr			Tr		0.01

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1995	1	0.54		Tr		0.77						0.02	0.13
1995	2 3	0.30				Tr	'	0.03	0.05	Tr	1 Sept. 1	0.78	0.00
1995	3	†		Tr	22/53/5/5		0.06		0.04			0.03	0.11
1995	4	Tr	0.81		0.06		0.32		0.73		0.01	0.11	0.06
1995	5		Tr	0.12		0.05			0.42		1.08		
1995	6	0.02		0.03			0.07		0.54		1.92	80.00	0.35
1995	7	0.90	, ,	Tr	0.10		0.98		0.01		0.17	1.09	
1995	8			0.04	0.24		0.30	0.01		ı		Tr	
1995	9			0.87	0.56		. Tr						1.03
1995	10		Tr		0.01	0.04	Tr	77 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
1995	11	0.10		Tr		0.39	0.10	0.30				0.05	1
1995	12	0.08		Tr	0.08	Tr	0.46	i	Tr			0.69	
1995	13				0.53	Tr	0.21	Ī		0.12		0.05	1
1995	14	Tr		Tr	0.02	0.09	0.04			0.35	0.30	1.15	0.35
1995	15	0.05	0.57	0.02		0.35					0.61	0.52	Tr
1995	16	0.26	0.28	0.01		Tr							0.05
1995	17	0.01		0.44		0.30		0.05		2.72	Tr		0.01
1995	18	0.01		0.05	Tr	0.02		0.37				0.15	
1995	19	Tr			0.58	0.22						0.25	0.05
1995	20	1.22	Tr		Tr		0.28				0.04		0.03 Tr
1995	21	0.09	0.01	0.40	0.39			Tr			1.29	Tr	Tr:
1995	22	0.02	0.04	Tr	0.01					0.49			
1995	23	0.07	0.19	Tr			_	Tr		0.02			
1995	24		0.20	Tr		0.03	Tr					Tr	0.01
1995	25	Tr	Tr			0.02	0.06			0.04			i
1995	26		Tr			Tr	0.01	Tr		0.32		_	i
1995	27	Tr	0.05			_		Tr	0.01			Tr	
1995	28		0.99		0.58	Tr		0.01			0.95		
1995	29				Tr	0.52		0.40				0.21	
1995	30			0.05	0.18	0.03		!					
1995	31		***	Tr				L	Tr				

Table A9-1d

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by USGS are marked - FORESTDALE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1996	1				0.07	0.02		Tr	0.28	0.14			0.20
1996	2	0.07	0.03	0.30	0.52	0.02				0.13	0.02		1.16
1996	3	0.22	0.09	0.02		0.25	0.45	0.52			Tr	i	
1996	4	Tr		14.28.25		Tr	0.18	0.35		0.01		ľ	
1996	5	Tr		0.19	Tr	0.03	0.07		127.00			0.01	
1996	6			0.83	Tr	0.26			Tr				0.87
1996	7	0.06		0.48	0.42					1.21		0.16	1.15
1996	8	0.12	Tr	0.03	0.03	0.18				0.02	2.06	0.08	0.36
1996	9	Tr	0.12		0.32		Tr	0.04	Tr		0.30	0.53	
1996	10	0.05			0.13	0.27	0.05	0.01	0.07	0.01	0.01		
1996	11		0.27		Tr	0.15	Tr				1		0.08
1996	12	1.08			0.04	0.10	Tr			0.04		i	0.04
1996	13				0.04			3.57	0.93	0.13	Tr		0.03
1996	14		0.16		0.01					0.03	Tr		0.16
1996	15			0.17				Tr					Tr
1996	16	Tr	0.05		2.00	0.47							Tr
1996	17	0.03	Tr		Tr	0.14	0.03			0.93			0.68
1996	18		·				0.06			1.91		J	
1996	19	0.98		0.04			0.10	0.11	i		0.25	0.16	1.17
1996	20	!		0.64			0.46				2.81		0.01
1996	21	Tr	0.73		Tr	0.19	0.14		Tr				
1996	22		Tr		Tr		0.02			0.41	0.10		l l
1996	23		0.02	Tr	0.04	1	Tr	0.45	0.05	0.26	0.34	1	
1996	24	0.85	0.57		0.04	Tr	0.35		0.39	0.05	0.01		0.46
1996	25	Tr		Tr			0.04		0.01	0.17		0.02	0.10
1996	26	i i		0.01	0.03			0.07	0.01			1.42	
1996	27	1.42	0.02				Tr					Tr	0.03
1996	28	Tr	0.13				Tr		0.45	0.03	0.21		Tr
1996	29	0.11			0.69	Tr	Tr			0.24			0.07
1996	30	0.02			0.50	0.36	0.22		[0.09	Tr	
1996	31	0.01			N.			0.45			Tr		0.02

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1997	1	Tr	0.03	0.01	0.11	0.28	0.53			Tr		1.39	0.30
1997	2	0.11		0.16			0.11	0.07				0.54	
1997	3	0.02	0.02	0.04		0.18		0.08E	0.09	0.02	0.15		
1997	4	!	0.03	0.02		Tr		0.16E	0.01			9 .700 (1)	0.06
1997	5	0.03	0.91	0.10					0.45		0.16		0.06
1997	6	•		0.15	Tr	0.09			0.18				
1997	7	Tr		0.00								0.04	
1997	8		Tr	0.03			Tr	0.01	0.25	0.12		0.81	
1997	9	0.13				0.12			0.45			1.24	
1997	10	0.09		0.17		0.15		0.06				0.01	0.31
1997	11	0.27	Tr	Tr						0.36			0.02
1997	12		Tr		0.68				0.01	Tr			0.01
1997	13	l	Tr		0.49	0.11	0.06	I	0.65	0.02			
1997	14	i I	0.66	0.68								1.10	Tr
1997	15	i l	0.03	0.36		0.07		i			Tr	Tr	
1997	16	0.81	0.02		-	0.30		Tr	0.18		Tr	Tr	
1997	17	Tr	0.06		0.39	Tr	48.2023		0.29				
1997	18	1			0.45	Tr	0.05		1.09				
1997	19	1	0.07		0.53	0.60	0.19					I	
1997	20	1	1	Tr		0.08			0.05E	0.04			
1997	21	i I	Tr	Tr		Tr		0.02	1.16			0.08	
1997	22	0.31	Tr	0.23	Tr	Tr	1.26	0.14E	0.12			0.58	
1997	23	0.04							i	Tr		0.04	0.73
1997	24	0.11	L		0.01		Tr	0.09E			Tr	Tr	Tr
1997	25	1.40		0.05	0.08	0.70	Tr	0.33	ĺ		0.82		0.47
1997	26		0.02	0.50			0.03			Tr	0.09	0.14	
1997	27	Tr	0.04								0.58	Tr	0.21
1997	28	0.95]	0.51				Tr	0.02		Tr	0.06
1997	29			0.67		į			1.34	0.41			0.42
1997	30	Tr		Tr						Tr		0.09	0.19
1997	31			1.51							Τr		Tr

Table A9-1e

Rainfall at T.F. Green Airport (*)

Sampling Periods of Monitoring by USGS are marked - FORESTDALE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1998	1			0.15		0.31	0.27				0.12		0.02
1998	2				0.27	0.49	Tr						ŀ
1998	2 3			0.01	:	Tr	0.36				i		
1998	4	Tr	0.17	Tr		0.19							Į.
1998	5		0.40	0.03	Tr	0.25		0.51					
1998	6 7 8	0.07	Ţr			0.62							
1998	7	0.73	•	Tr	· i	0.42	0.29			0.54			
1998	8	0.79		0.39	0.02	0.02	0.06	Tr		0.47	0.46		0.20
1998	9	0.36		3.02	0.63	0.83				0.05			
1998	10			Tr	0.29	1.64					0.88	Tr	
1998	11		0.22	_		0.31			0.15		0.08	1.38	
1998	12		1.08	Tr			0.13				Tr		
1998	13	0.23					3.29						ŀ
1998	14			0.11	_		1.37			_	1.23E		
1998	15	0.26		Tr Tr	Tr		0.88	_		Tr		Tr	
1998	16	0.63			0.01		0.14			0.13		0.00	
1998	17	Tr	0.29		1.53	0.08	Tr		0.71			0.49	0.07
1998	18	0.10	1.87	0.13			0.46		0.45			1	
1998	19	1	Tr	1.68	0.06		0.50		0.20		Tr		
1998	20	Tr	Tr	Tr	0.35		0.04	Tr				0.23	Tr
1998	21	1		0.19								0.03	
1998	22		1	0.15			Tr			0.99			0.06 Tr
1998	23	1.68	0.05		0.55		0,01	0.37	Tr				Tr
1998	24	1.63	1.22		0.01		Tr						0.18
1998	25	0.05	0.06			0.09			Tr				
1998	26		1		0.34			Tr	0.62			0.63	
1998	27				0.01		0.16		Tr	0.10			
1998	28	Tr	0.49						0.06		0.34		0.10
1998	29	Tr				0.14	0.18	0.09	0.16		0.02		0.45
1998	30	0.01			Tr		1.47		0.04	0,02E			0.19
1998	31	0.01				0.66	1	0.40	Tr				

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1999	1		1	0.20	Tr			0.06					
1999	2 3		2.12				0.02	0.02				0.39	
1999	3	1.70	0.51	0.12		0.19	0.02					1.78	
1999	4	1	0.14	0.44	0.04	0.28		0.03			0.90		Tr
1999	5	1	Tr			0.14			Tr		0.12		
1999	6 7	Tr	0.02	0.69	Tr			Tr		0.14			0.48
1999	7	0.03	0.04	0.02	Tr					0.01			1.02
1999	8	0.36	Tr			0.20			0.72	0.56			
1999	9	0.45			0.13			Tr		0.01	0.01		
1999	10				Tr			Tr	Tr	2.27	0.39	0.02	0.03
1999	11	Tr		Tr	0.29				Tr			0.01	1
1999	12	0.05	0.22	Tr	0.04			Tr	Tr			0.07	
1999	13	0.01	0.02	Tr	1			0.13	Tr		0.54	Tr	0.04
1999	14	0.26	Tr	0.12			0.08		0.07	0.01	0.28	0.05	0.27
1999	15	1.43		0.45		Tr	Tr		0.41	1.12			0.28
1999	16				0.55					1.98	1		0.01
1999	17		Tr		0.02		0.03			Tr			
1999	18	0.93	0.83			0.01	Tr		Tr		0.83		
1999	19					0.63		0.24					
1999	20				Tr	0.45			0.04		0.96	0.05	0.14
1999	21	0.04	Tr	0.08			Tr		0.12				0.12
1999	22	0.03		0.47	0.19	ļ			0.01	0.01			0.14 0.12 Tr
1999	23	0.04			0.28	1.85		0.33			0.11		
1999	24	1.29	Tr	0.34		0.50		0.01				0.02	
1999	25 26	Tr	0.06	Tr		Tr	Tr	Tr		0.09		0.20	
1999	26		0.01		Tr	ł			1.67			0.03	
1999	. 27	Tr		0.02	Tr				0.21			0.23	
1999	28	0.07	1.48	0.37		Tr							
1999	29	0.01		0.01			Tr			0.01		Tr	
1999	30						0.02			0.79			
1999	31												

-		tseW bexiM	•	Ţ		•	T	Γ	П	Ţ	П	I		Ī	• •	I	•	•	Ī	•		I		₽	• •		Ţ	•	•	Ī	•	F		•	I	•	4	14	•	1
ŀ		Dry Weathe	_	• •	•	╁┼	• •	•	•		•	•	•	•	+	•	•		•	-	•	• •		•	+	•	• •	<u> </u>		•	•	•	•	H	• •	-	•	•	_	_
	Streptococci, Fecal, KF Agar	lm 00 N.bo	22	13	32	18	9 00	8 6	170	22 88	620	4 4	24	6	3 8	31,625	200	1,300	57	212	13	2 2	5 22		2,964	3	172	2 %	8	7	7	7	17	1,280	9	12	78	973	77 0	2
ŀ	miotilo3 lese 7	Im 00 N/60	800	35	4 8	8	8 3	1 g	35	8 4 5	400	8 8	38	80 (2 2	97	26 45	35	Σ 8	26 92	98	က	, 4		80 60	3	= 8	77 5	8	လ	9 6	3	62	49	4 c	* E	17	500	2	Ŧ
	Total Coliform	Im 00 l\lps	440	8 8	950	1,100	000	3400	820	900	8,200	8 8	1,000	230	2,200	370	256	244	625	1,475	238	8 5	00,1		430	345	175	4 0	926	2	281	293	800	306	9 5	139	178	4,700	202	322
ŀ	listot, tatariqe orliqorithO	4 kgm			1	1 1				ı			1 1		1			1 1		1		- 1	1				- 1				+		<u> </u>	H	1	_		H	+	4
ŀ	e uno rideo rid lesto T	4 Npm			1	L	_ [_	_L_						. !									i		į		I			0.01	0.01	0.11	0.01	0.03	0.01	0.05	0.01	0.03	0.01	0.02
	letot ,etirtiN+eterliV	V Apm	0.40	0.20	200	0.20	0.20	0.10	0.20	2020	0.20	0.30	0.20	0.30	0.30	0.22	0.19	0.26	0.26	0 28	0.28	0.63	0.21	0.15	0.28	0.20	0.35	5 6	3		1			\prod	Ť	Ť	İ	H	Ť	-
	oinsgvO lstoT + sinommA negortiV	14 12 0				1 1	_ i	_L_	<u> </u>		11		1	İ	1	11	1		l	1	1 1			ΙI	. !		1	1	1.	0.30	0.40	06.0	0.30	0.30	0.20	0.40	0,40	0.40	0.40	C.4C
	kronia, total	И Лет	0.19	0.11	2 0	0.05	0.07	9 6	0.17	0.10	0.07	0.0	9.0	0.09	0.06	0.10	0 0	0.07	0.08	0 0	0.0	0.69	0.13	0.06	0.0	0 0	0.06	0.0												
	Znc, dissolved	nay			1	Ш	_		Ц	_	Ш			_		Ш				_		-			╧		-	1	L	Ш	╧	L		Ш	╝	╧		Ш	┵	_
	Silver, dissolved	nây	H					1												-					+		-	1					<u> </u>	H		+			<u> </u>	-
	Nickel, dissolved	_	H	\dashv	+	+	+	+	H	+	Н	+	+	+	+	H	+		dash	+	H	+	╀	H	+	H	+	+	+	Н	+		H	${\color{blue}+}$	\dotplus	+	H	${\color{blue}+}$	+	4
	Copper, dissolved Lead, dissolved	-	F		-		-																		+						+	1		H	+	+	1			_
	Chromium, dissolved	γδn	┢	H	-	$\dagger \dagger$	+	+	H	T	H	Ť	T	+	\dagger	H	\dagger	Н	\dag	\dagger	H	\dagger	\dagger	H	+	T	\dagger	\dagger	\dagger	H	+	\dagger	t	H	\dagger	\dagger	t	$\dagger \dagger$	+	4
	Cadmium, dissolved		F		111111111111111111111111111111111111111											H	+		+	-	H				+	-	1	+		H	+	$\frac{\perp}{\parallel}$		H	╁	\dagger	1		1	-
Station	Znc, total	γБп	Γ	- 8	₹		T	T	유	T	П	T	9	1		П	9				П	20	T	H			1	T		П	\top		T	П	1	T	T	П	1	7
le Sta	Silver, total	убп		Ħ,	-		-		T				Τ				-					-	Ť		-						\dagger			H	Ť	$\frac{\perp}{\parallel}$		Ħ	-	-
stda.	Nickel, total	γbn	Γ	ď	7		T		-		П	T	_	Ī		П	T		T	T	П	7	T	П	T			T		П	T	T	Ī	П	Ť	-	T	П	T	1
USGS Forestdale	Lead, fotal	γ6n		ď					-				-				8					2	Ī				-				1	İ			1			П	1	
SGS	Copper, total	γ6n		ľ	ກ	LŢ			က		LT		2			LĪ	3					2											Ĺ	LT		_[_		∐Ī		
	Chromium, total	убл		Į,		П	1		2				9				Ī					_	ļ								ļ			П		ļ		П	Ī	_
h River,	stot, total	γ6n	L	Щ	_		1			_	Ш	1		_		Ц					Ц		_	Ш	1	1		_			_		1	Щ	_	_	Ļ	Щ	\perp	
Branch	munimuA	yen	L		5		1		0 120				0 170				06				Ш	120	_								_				_	_	<u></u>	Щ	_	-
ш	Manganese, total	убп			2		_		8		Ш		20				8					9	<u> </u>	Ш				_				_	_	Ш	_	_		Щ		
	lstot, froti	убп	L		300		1	_	4 770				220				089					7 230			_	_	-			Ш	┵			Щ		1	_	\coprod	1	_
	Sultate, dissolved	40S Agm	L	Ш	9.7		1	_	5.4	1			7.2		-		10.0		Щ		Ш	7.7	-		1	5 7.0		_			4.4			Щ	\perp	0.0			1	
	Chloride, dissolved	γ6w	L		10				4				11				18					12			_	15					6			Ш	_	52		Ш	_	
	Potassium, dissolved	үбш	L		1.2		1		1.0		Ш		3 0.8				13				1 1	0.8		Ш	\perp	1.3	\perp	1			6.0			Ц	_	2.1	L	Щ	\perp	
	bevlossib ,muiboS	γ6w	L		1		\perp		8.7	\perp	Ш	╧	7.3		┸		7		Ш		ш	8.2		Ц	┙	9.7	\perp	1	L		8.7		L	Ц		15	1	Ш	\perp	
	Magnesium, dissolved	<u> </u>	-	H	2.0		4		7 0.7	-	Ц		8 0.6		+		4.6					3.3 0.7			_	1 0.9	-			Н	9.0			Ц	-	1.3	1	\prod	4	-
	Calcium, dissolved	<u> </u>	L			1.5	+ -	0 15	3.7	\perp		-	2		_		4		Ш	-		က	1,-	Щ		4.1	_		-		2	<u> </u>	_	Щ	ľ	S.	1	Ц	100	
	Akalinity, Carbonate	- Mgm CacO3	Ĺ	Ц	┸	Ш	\perp	9	Ш	-	Щ				1	Ц	╧		Ш	_	Ш		9	Ш	7	┸	ω (┸	┸	Ш	┵	1	┸	Ш	_		100	4	1	•
	Chemical Oxygen Demand	!			7		33		21		16		12		12		25			9		13		19	_	16		+	2		45		0 25			3 22	10	7 21	6	
	negyxO bevlossiO (%Saturation)	7/0	ll	_			10							_									1					101-	J				1	1	1		1	107	1	
	negyxO bevlossiG (Concentration)	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1		1		- 1		11		1					11	-		1 1		1 1		1	1 1				1	1	11		1	1	11	- 1		İ		ì	
	Hq		il		1	9 8			11		1 1					11					1 1	1		1 1		ı			1	11	- 1	I	1	l i	ì	1	i	1 1	-	
	Conductance, spec.	}	1	1	1	11	- 1	ı	11	1	1 1	-	1			1 1	1	1	1		1 1		1	1 1		1	1	1		1 1	1	1	1	1 1	1	1	1	1 1	į	1
	Temperature	ე _{ნო} ხ	1	1 1	1	1 1	- 1	1	1 1		1 1	i				1 1	- 1	1	1 1		1 1	- 1	1	1 1		1	- 1	- 1	1	1 1			1	1 1	- 1	1	1	1 1	- 1	
	əmiT					11:12																																		
	ejsQ		17-Jan-90	19-Jan-90	11-Apr-90	9-May-90	6-Jun-90	11-Jul-90 8-Aug-90	5-Sep-90	3-Oct-90 7-Nov-90	5-Dec-90	9-Jan-91	6-Mar-91	3-Apr-91	8-May-91 5-Jun-91	10-Jul-91	14-Aug-91	9-Oct-91	6-Nov-91	11-Dec-91 8-Jan-92	5-Feb-92	4-Mar-92	13-May-92	9-Jun-92	8-Jul-92	2-Sep-92	6-Oct-92	2-Nov-92	4-Jan-93	8-Feb-93	8-Mar-93	3-May-93	7-Jun-93	12-Jul-93	2-Aug-93	30-Aug-93	1-Nov-93	10-Nov-93	10-Jan-94	#5-Q8-1-/

	yer (3)	bseW bexiM	•		Ī	•	Ī	•				•	•	•		Ī	Ī	Ī	T			• (•		•		•			-	•	•	•	-	1	•	•	Ī	•	٦		•		T
	(S) I	erttseW teW	_		\downarrow	4	1	_	ļ	_	•	L	<u> </u>			•	•	-	•	_	_			1	L	•						L	I							•	•		•	Ţ
	(μ).	Dry Weather	7	•		- 1	• •		•	1	1		4	0	•		- 1	•	- 1	•	- 1	1	- 1	D 7	1			1		•	ī.	L	•	1	1	_	_	•	_			_	L	ľ
	Streptococci, Fecal, KF Agar	lm 00 N.bo	L		i_		799	_!_	<u>i</u> _	1_	1_	i_		1 1	_1	Š	230	1,58	1,58	3,90	99	ກ `	,,,	3	2	1	Š	326	93(94(1 23													***************************************
	rmotilo3 lsoe 7	im 00 N.bo	12	4	6	48	38	30	3 4	9	25	SS	6	-	2		183	148	9 ;	4	4 (5	717	25	9	3	38	54	51	27	32	25	3 0	7	3 8	3 6	20	9	35	2,000	-	7	967	-
	rmotiloO istoT	lm 00 N/loo	261	395	1,125	325	200	117	83	122	395	406	166	263	146	230	475	9/2	138	400	2	2 6	275	0 0	103	73	929	140	292	120	77				Ť									T
	lstot, ets hqz o hqo rb O	4 Agm			1	1	Ť	1	l	l						-	1	1	1		1	+	+	\dagger						-				-			-	+	1	-	-			t
	eunonlopeon 9 leto 7	4 Ngm	10.0	0.01	0.02	0.03	20.0	0.02	0.02	0.0	0.01	0.01	0.01	0.01	0.03	0.03	0.03	0.03	000	0.03	0.02	0.0	20.00	20.0	0.02	0.01	0.02	0.03	0.04	0.02	0 03	0 0	5 6	5 6	200	5 6	0.07	0.01	0.01	0.02	0.05	0.05	0.05	
	lstot ,ethtiN+etstiN	И Мрт				-		Ī	Ī	Ī					İ	1		1				-	-		l						-	Ī	Ī	Ť		-			-			_		+
	oinsprOlstoT+sinommA negortiN	И Лрт	0.30	0.20	0.40	0.30	0.40	040	040	0.30	0.30	0.20	0.20	0.20	0.30	93	9 6	0.40	0.40	0.40	0.40	0.40	3 5	3 6	0 20	0.20	0,40	0.40	0.30	0.30	0.40	0.30	3 6	5,00	20.0	5	3	0.24	0.40	0.33	0.30	0.46	0.45	
	Ammonia, total	И Арт																																Ī	-	1								-
	Devlossib ,an⊠	убл																		-						111111111111111111111111111111111111111						G	2	0 0	- C	? 5	4 b2	0	7.28		3.52			
	bevlozzib, nevli2	ηđη				_												T	Ī													٦	7	Ī	Ī	Ī	7	0.0	0.0	0.2	9.0	0.2	0.2	***************************************
	Mickel, dissolved	γδn								Γ					I	I	I		Ī	Ī	Ī											۲	,	Ī	ľ	Ī			Ŧ		-		Γ	***************************************
	bevlossib ,bsed	γδn	L			I		I										Ī	I	I					I							Ŧ	- 5	47.0	2 1	0 1	0	0.75	0.65				٦	+
	Copper, dissolved	yBn		$oxed{J}$												I	I	Ī	J	Ī	J	I		Ī								٢	Ī	2 13	2 00	8	2 12	18	<u>2</u>		1.23			·
	Chromium, dissolved	nay															Ī				Ī											T	Ī	7	T	Ť	T	7	7		T			
	Cadmium, dissolved	убп				Ī																										۲	ċ	ָ ט ע	2 4	8 5	200	0.22	0.55	0. 35	-	-	-	
Table A9-2 USGS Forestdale Station	Zinc, total	γδn								Γ								Ī		Ī	Ī	Ī													Ī	Ī								•
le Si	Silver, total	γБп																	Ī	T	T				- Indiana	i								Ī	Ī	Ť	Ť	Ì	Ì	Ì				
stda	Nickel, total	γ6n														Ī				Ī				T									Ī	Ī	Ī	Ī			Ī					•
A9-2 Fore	Lead, total	γδη			İ															T	Ī			Ī							İ	Ī	Ì	Ī										-
Table A9-2	Copper, total	yan														Ī	Ī			1		Ī	Ī	Ī								Ī	l	Ī		1	Ì	T	T					
	Chromium, total	γБn			Ī	Ī								T	Ť	Ť	Ť	Ì				Ť	Ť	Ť	T	 					Ī		Ť	Ť	Ť	+	İ	Ì	1	-			l	
Rive	Sadmium, total	γ6n			T	T			İ	Г					-		Ī	İ	İ	T	Ť	Ť	Ť	T	T								İ	T		T		1	1	-			Γ	+
Branch River,	munimuA	убл			Ť	Ī			İ	-					-	1	Ť	Ť	İ	Ť	Ť	Ť	Ť	Ť							1	150	2 5	7	1	3 8	Q ह	5	33	8	25	39.5	71.2	
Ba	Manganese, total	уБл												1		1						1			-									2 4										
	lstor, total	γδп																Ī															L	3 2	i	i	ı			İ				į
	Sulfate, dissolved	408 Agm	Ш					7.8	L					7.2		-			ᆚ	0.0					6.0						6.0	į	7.4	1	6.3	1	_	0.0	-	5.7	ļ	- 1	5.9	
	Chloride, dissolved	убш	L			1	1	18						21	1			-		7.7					18						6 25		17 22	<u>i</u> _	28 60	Ŷ		13.73		21.16		29.44	5 28.78	i
	beviose ib ,muisesto q	убш	1	4	1	1	1	1.5	<u> </u>	ļ.,	L			3 1.0	1	1	\downarrow	ļ	_	7	1	_	+	ļ	2 0.9			_			-	L	20	┸	7	_!_	1	O.S.		1.7	_ 1		2.6	ı
	bevlossib ,muibo2	γδω	_	4	1	1	-	1		L	L			3	1	1	1	1		2	1		1	1	12		Ц				16	L	15	L	18.6		_	9.0		13.9	_		19.2	
	bevlossib, muisengsM	mgń Mg		-	+	+		4.3	<u> </u>		L			3.4 0.8	-	1	1	+	1	5.0	+		-	1	3.4 0.8		4	-			11	i_	34 07	1.	5 E 1 2	1	_!_	7.0 0.7	i_	4.7 1.0		- 1	5.8, 1.4	1
	Caldum, dissolved	CaCO3		2	200	0 0	3 6	i	i	ဖြ	m	6	ı		4,	0 -	10	n •	i	i	211	211) ~	01 ~	i		+	80	2	+	i		i	ĺ	ĺ		i	į	i	į	i		5	i
	Alkalinity, Carbonate	- уьш	Ц	1		1	ľ	18	<u> </u>		32		\Box	_	1	1	14	1	\perp	┸	1	1	1	L	┕		1		ĭ	7	L	Ľ	į	100		1	1	-	-		I		-	į
	(%Saturation)		11	<u>ල</u>		ı	101					7		8	3 9	1	ļ	3 5	1	2 2	3 5	2 5	1		100 12		86	¥	25	ည	17	12	_								_]	ť	=	
	negyxO bev loss iO	%	1	1	1			1	i			·				- 1	- 1			•	- 1	1	1	1	i		1	- 1	- 1			i	ì	ł	i	1		- 1	- 1	- 1		œ		-
	negyxO bev lozziQ (Concentration)	ұ6ш	L. I	i	į	1	1	1	1			i	Į	- 1	ì	1	1	1	i	1		1		1			ı	- 1	-			1	1	1	ì	1		1	1	- 1	- 1	- 1		ì
	н		_ :			1	7.1	L.,	1.			- 1	- 1	_ [1	1	-	1		1	1	1		1	1		- 1	- 1	- 1		ı	i	i	1	1	1	1	1	i	ļ	i	- !		i
	Conductance, spec.	mo/Su	111	2	108	2 2	122	96	100	133	77	75	જ્ઞ	\$	4 6	3 3	\$ 5	2 5	125	9 5	3 8	8 8	142	6	92	\$	86	118	130	115	128	96	06	114	146	125	3 2	9 8	20	116	8	151	153	
	erutsreqmeT	- 1		- 1	•	1	28.0	i :	1 1			- 1	- 1	- 1	1		i	1	1	1	- 1	1	1	1	1		- 1	- 1	. !					1	1	1			- 1	ı	- 1	- 1		ŧ
	етіТ	-		- 1	- 1	1	13:00						- 1	11:30																			i		12.45	2 5	3 6				- 1	- 1		•
	ejs (I	`	7-Mar-94	4-Apr-94	-May-94	8-111-94	-Aug-94	1-Aug-94	3-Oct-94	7-Nov-94	7-Dec-94	9-Jan-95	3-Feb-95	6-Mar-95	CR-IdV-C	-May-90	0-1-1-95	20 01 4	20 C. A	20-60	CC-50	-Day 95	-Jan-96	Feb-96	4-Mar-96	1-Apr-96	6-May-96	96-unr-0	96-Inc-8	5-Aug-96	-Aug-96	Nov-96	Mar-97	17-Jun-97	12-Aug-97	No. 07	47 Mar 08	- Nat -30	96-Unr-s	-Aug-98	-Nov-98	-Aug-99	16-Sep-99	0
age A9-10	111111111111111111111111111111111111111		'`	- 10	7 4			82			ďΣ	"	9	۱,	ľ	-15	1		280	97	۷ (14	19		4		9	유		3	56	19	25	17	12		Ţ	- 8	3 5	2	17	9	9	_

		tseW bexiM
		ertseW teW
		Dry Weathe
	Streptococci, Fecal, KF Agar	lm 00 Nao
	rmotiloO lsae?	lm 00 l\loo
	motiloO letoT	lm 00 l\loo
	Orthophosphate, total	Я Ngm
	≃unorlopeorl9 betoT	4 Ngm
	Mitrate+Witrite, total	
	oinsgnO latoT + sinommA negortiM	И Мрт
	Ammonia, total	N Ngm
	bevlossib, on⊠	yBn
	bevloszib , wevli?	y6n
	Nickel, dissolved	γδn
	bevlossib ,bsed	y6n
	Copper, dissolved	уБп
	Chromium, dissolved	γδη
	Cadmium, dissolved	
tion	Shot, tortal	
Sta	Silver, total	
tda/6	Nickel, total	
ores	Lead, total	
3S F.	Copper, total	
λSΩ	Chromium, total	
iver,	Cadmium, total	
Branch River, USGS Forestdale Station	munimuM	
Bra	Manganese, total	
	lstot, fotal	убл
	Sulfate, dissolved	≯OS V6m
	Chloride, dissolved	ybw
	bevlozeib ,muizasto9	γ6w
	Sedium, dissolved	γ6щ
	bevlozzib ,muizengsM	БМ Арт
	Calcium, dissolved	
	Alkalinity, Carbonate	- Vem CacO3
	Chemical Oxygen Demand	убш
	negyxO bev lozziO (%Saturation)	%
	negyxO bevlozziG (Concentration)	убш
	Hq	
	Conductance, spec.	up/Su
	enutare qme T	Э бар
	өт іТ	(y)
	ejsQ	

Table A9-2

1	•	•	•	•			Ē	_	<u> </u>								•	•	•	•
	•	•	•	•			•	•	•	•		•	•	•	•		•	•	•	•
	62	20	0	31625			39	51	0	31625		13	152	12	2300		40	929	5	5264
	06	28	-	2000			43	19	7	i 1		15	69	-	2000		47	385	2	2800
	62	383		8200			40	310	62	1250		13	720	73	8200		39	2228	150	
	36	0.01	0.01	0.12 8			18	0.02	0.01			7	0.01	0.01	0.01		18			0.03 10
	93	٥		0.17 0.			4	_		Ш		17	0.02 0.		0.05 0.		49			0.10
	36		0.10	0.63 0.			18		0.20	0.63 0.		7	0.21 0.	0.10 0.	0.30 0.		18	0	0.25 0.	0.70 0.
	93		0.20				4			!		17	0.42 0.	0.20	0.90 0.		49	0.76 0.		1.40 0.
	36		0.01	0.69 1.			18	0	0.06			7	0.07 0.	0.01 0.	0.13 0.		18	0.16 0.	0.06 0.	0.32 1.
	8		1	10			ŀ	9				-	3.5	o	o		9	8.3		10.8 0.
	12	9.0	0.2	1.0			4	0.7	0.2	1		3	0.3	0.2	9.0		8	1.1	0.4	1.6
	12 8	1.0	0.1	3 1.0			3	1.0	1.0			3 1	9 1.0	9	0		8 5	3 2.0	3 2.0	3 2.0
	8	1.5 0.8	1.0 0.4	2.2 1.3			3	.4 0.7	1.0 0.4	2.1 1.0		-	1.2 0.9	ö	1.		5	2.9 1.8	ľ	3.4 2.3
	8	1.0	0.				3	1.0	_	1.0		7	1.0				9	2.0	2.0	2.0
	12	9.0	0.1	1.0			4	9.3	0.1	9.0		ო	1 0.7	0.1	1.0		8	1.4	0.6	2.0
ļ	5 5	1.0 14	1.0 10	1.0 20			4	.0 15		1.0 20		-	1.0 10				1	0 10		
,	2	1.4	1.0	2.0 1	!		4	1.5		2.0 1		-	1.0 1			ler.	1	1.0 1	-	-
Said	2	1.6	1.0	3.0		ther	4	1.8	1.0	3.0	ther	-	1.0			1 Weath	-	1.0		
Statistics - All Samples	5 5	6 2.6	1.0 2.0	3.0		Statistics · Dry Weather	4 4	3 2.8	1.0 2.0	3.0	Statistics - Wet Weather	1	0.2.0			Statistics - Wet and Mixed Weather	1	0.2.0		
3	2	1.0 1.6	1.0	1.0 3.0		tics • D	4	1.0 1.3	1.0	1.0 2.0	ics - W	-	1.0 3.0	_		Net and	-	1.0 3.0	_	
Statis	17		٠.	201		Statis	8	115	4	201	Statist	4	98	20	170	stics - \	6	178	75	363
	17	29	17	123			8	65	က	123		4	69	17	120	Stati	6	137	42	222
	17	440	147	895			8	384	147	770		4	471	220	895		6	974	483	1633
	21	7.0		11.4			10	7.8	5.4	11.4		က	6.3	5.7	7.2		111	12.7		15.8
	21	٦	9.0	١.,			10	17.4	12.0	25.0		3	20.3	11.0	28.8		Ŧ	41.6	20.0	58.2
	1 21	1.4		2.6			10	1.3	0.8	2.1		3 3	1.7	8.0	2.6		11	3.1	1.7	5.0
	21 21	0.9 12.7	0.6 7.3	1.4 19.2			10 10	0.9 11.4	0.7 8.2	1.3 16.0		3	1.0 13.5	0.6 7.3	1.4 19.2		11 11	2.0 27.4	.2 16.0	2.8 38.3
	21						10					က		2.8			11	8.7		11.5
	73	6.9	2.0	45 15.0			32	7.2	2.0			12	7.0		15.0		38		i	li li
	38	16.4 6	2				15	16.9	10	1		თ	16.3	5	32		23	32.4	163 20 6.0	1
	46	86	72	.				4 99		١. ا		6 /	<u>2</u>		ľ		97 6		,	- 11
		7 10.6					44	7 10.4				71 17	Ì	9 6.0	14.0		9 49	5 21.5		3 28.6
		97 6.7					44	99 6.7	50 5.8	2 7.8		17 17	93 6.8	•	3 7.4		49 49		5 11.7	15.3
	1	13.0 9		Ì			4		1.0 5			17 1		1	26.0 153		49 4	24.6 192		53.5 304
		13	٥	28			Ļ	13	_	28		L	12	0	26		7	ষ		53
	Count	Mean (*)	Minimum	Maximum			Count	Mean (*)	Minimum	Maximum		Count	Mean (*)	Minimum	Maximum		Count	Mean (*)	Minimum	Maximum

Dry Weether: Rainfall of less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day.
 Wet Weether: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or rainfall of more than 1.0" on days 2 and 3 prior to sampling.
 Mixed Weether: Conditions that did not meet Wet or Dry Weather ontenta.

USGS

Manville Station

Blackstone River

Table A9-3a

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by USGS are marked - MANVILLE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1990	1	0.21			Tr	0.01		0.63			0.01		
1990	2 3		0.18		0.03			Tr		Tr			
1990	3		Tr		2.31		0.03						0.02
1990	4	0.06	0.47		0.19	0.25	0.02			,	0.15		2.09
1990	5	1 1	Tr	Tr	ļ	0.57			Tr			Tr	
1990	5 6			0.14		Tr		Tr	0.08			0.99	
1990	7		All the Manager	23	0.11	0.29	0.17		0.02	Tr	1		0.05
1990	8 9	0.39				0.03	0.02		1.15		1	0.13	0.26
1990	9	0.03	Tr				0.49			•	0.31		
1990	10	0.03	0.51		0.06	1.22	0.08		Tr	Tr	Tr	1.12	i i
1990	11	Tr			0.44	Tr	0.05	Tr	1.18		0.07	Tr	
1990	12	Tr		0.34				1.28			0.30	Tr	i !
1990	13					0.43		0.20			0.71		
1990	14	Tr		0.02		0.33			1		1.52		
1990	15	0.15	0.37	0.01	1.19		Tr	0.01		0.61	Tr		0.75
1990	16		0.39			0.72	Tr	Tr					0.17
1990	17		Tr	0.11		0.17				0.26		Tr	
1990	18	Tr	'	0.38		0.01	Tr	[0.45	Tr	
1990	19			0.19			0.03 Tr		0.08	0.09			Tr
1990	20	0.36		0.26		0.10	Tr		Tr	0.05			i
1990	21	0.59		0.01	0.45	0.35	Tr		Tr			1	0.04
1990	22	0.07	0.32				_ :	Tr	0.04	1.20			0.07
1990	23		0.15			Τr			Tr		0.51	0.11	0.13
1990	24	0.03	0.35			_	Tr		1.15		0.27	0.08	1.18
1990	25 26	0.55	0.15		0.05	Tr		0.55	0.04				i
1990	26	0.77	0.04		0.01				Tr	0.02			
1990	27		0.04				Tr			0.01		Tr Tr	
1990	28 29	1 4 4			0.07	0.00	0.24	Tr T-	Tr		0.23		0.37
1990 1990	29	1.34 0.43		0.55	0.07	0.90	0.24		i r	0.04	Ì	0.02	Tr Tr
1990	30 31	0.43		0.55 Tr	0.41	0.32	Tr	i r		0.04	ł		0.06
1990	31			11				L	L		<u> </u>		0.00

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1991	1				Tr		Tr		0.00	0.00	0.00	0.31	0.08
1991	2 3			0.54	0.01	0.02						Tr	0.07
1991	3			0.61			Tr	0.20	0.07		Tr	Tr	0.98
1991	4			0.85		İ	0.25		0.79			Tr	0.15
1991	5	0.10	Tr	Tr	Tr		0.03	0.03		1.10			
1991	6	Tr	0.02	0.10		0.98					0.53	1. (4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	0.23
1991	7	l	0.53	0.50	Tr			0.08					Tr
1991	8	Tr					Tr					Tr	
1991	9	0,55					!		0.33				0.10
1991	10			Tr		0.66		Tr	1.67		Tr	0.22	0.25
1991	11	0.20	Tr	Tr Tr				0.10		Tr.	0.15	1.93	
1991	12	0.74					0.11				Tr	0.13	
1991	13		0.10		0.10			0.36				0.01	0.27
1991	14		0.92	0.51		0.05		0.03		0.25			0.12
1991	15		0.05	0.07	0.26		0.02	1	0.02	0.09	0.48	0.01	
1991	16	1.33	Tr		Tr		0.01				0.15		!
1991	17	0.04	Tr		0.08	0.57				Tr			0.21
1991	18	Tr	0.04	1.26	0.08	0.01	Tr		0.02	0.07			Tr
1991	19	1	0.42	0.08			0.47		2.51				
1991	20	i	0.10		Tr		1		0.14	0.62			
1991	21	0.11		Tr	3.06			Tr	0.43			0.45	
1991	22	i i		0.39	0.08		0.01					0.69	
1991	23			0.90			0.01	0.36	_	0.07		0.51	
1991	24		_	0.35		Tr		i _!	Tr			0.39	1 1
1991	25		Tr	0.02		Tr		Tr		1.75			
1991	26	Tr Tr	0.05	0.07	т.	0.00		1.55		0.53			
1991	27	0.07	80.08 Tr	0.07	Tr	0.03		0.05			Tr Tr		
1991 1991	28 29	0.07	15	Tr 0.15		0.02		Tr			"	Tr	ا محما
1991	30	0.10		0.15	1.13	0.77	0.02				0.25	Tr	
1991	31	0.10		0.21	1.13	0.77			Te		0.25	- 11	''

Table A9-3b

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by USGS are marked - MANVILLE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1992	1		Tr		0.01	0.08	2.04		Tr				
1992	2		Tr	Tr		0.13					i	Tr	0.05
1992	3			0.02		0.05		0.25		2.04		0.80	0.41
1992	4	1.33	0.09			Tr		0.18	0.10			Tr	0.01
1992	5	0.01	Tr				0.67	Tr				0.35	0.24
1992	6						0.73	0.16				Tr	
1992	7		Tr	0.95			Tr			Tr			Tr
1992	8		0.08	0.06	0.01	0.58	Tr	Tr		0.31	İ	·	
1992	9	0.17		Tr	0.01	0.12	54. 8. 1885	0.17	2.73		0.03		
1992	10	1	ļ	0.01	Tr				Tr		0.60		Tr
1992	11	1	Tr	1.38	0.25	Tr			0.23	0.09	0.01	0.03	2.40
1992	12	i .	ļ		0.06	Tr		0.29			0.11	0.09	1.43
1992	13		0.03			A Tr		0.04	Tr			1.02	0.14
1992	14	0.85	0.14			Tr		0.75	0.30				Tr
1992	15		0.68		3470			0.73	0.22		Tr	Tr	i
1992	16	0.07	0.31		0.60	0.04		0.28	0.39		Tr		
1992	17	Tr		Tr	0.64			Tr	0.71		0.01	0.04	0.82
1992	18		0.05		0.18	Tr		0.01	1.11				Tr
1992	19		Tr	0.24	0.03		0.05		0.04	Tr	0.25		Tr
1992	20	0.02			Tr		0.10		Tr				0.15
1992	21		Tr		Tr		0.02				0.14	0.04	
1992	22		Tr	0.19	0.13		0.01			0.28		0.91	0.01
1992	23	2.37	Tr	0.04	Tr			0.51		0.48		1.24	Tr
1992	24	Tr	0.03		0.10	0.09	0.79				0.10		Tr
1992	25		0.09		0.31	0.02					0.27	0.07	0.02
1992	26		0.52	0.44	Tr	0.05		0.01	0.14	1.86		0.44	
1992	27	_	_	0.24	0.01	0.01	0.20	0.05	Tr	Tr		Tr	
1992	28	Tr	Tr	0.03		ĺ				_			Tr
1992	29		0.08		_		_	0.05	0.09	0.03	_		0.52
1992	30			0.05	Tr		Tr				Tr		0.37
1992	31	Tr		0.39		0.25		0.11			0.01	San San San	0.26

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1993	1		0.04		1.44		0.58					0.05	
1993	2		Tr		0.18			Tr					i i
1993	3	0.02			0.01			0.38		0.04	0.19		Tr
1993	4	0.01	Tr	0.29	Tr	- 4 3 Mi	0.04			0.03			0.19
1993	5	0.73		0.65		Tr	0.09	'				0.60	2.86
1993	6		0.12	0.01	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Tr	0.12		Tr			Тг	
1993	7	l	Tr			'		0.10	Tr	0.02			Tr
1993	8	Tr	Τr	Tr			0.01	0.01	Tr	0.09			Tr
1993	9	Tr	33.00	0.01			0.30	Í		Tr			
1993	10	Tr		0.21	0.45			0.01		0.87	Tr		0.25
1993	11	0.04		0.11	0.03	0.05							0.63
1993	12	0.05	1.43		0.76			0.15			0.27	Tr	
1993	13	0.57	0.58	2.44	0.02	0.02		22 00000000000000000000000000000000000	0.23				Tr
1993	14	0.01		0.14				Tr				Tr	Tr
1993	15	0.06			Tr				Tr	Tr	0.06	Tr	Tr Tr
1993	16		2.32		Tr	0.06			Tr	0.32			0.01
1993	17	Tr	0.03	0.72	0.90	0.12			0.13	0.02	0.02	0.35	
1993	18	Tr	0.07	0.08	Tr	0.14			0.61	0.47	0.02	0.23	Tr
1993	19		0.02			0.16	Tr	0.23			0.03	0.57	0.33
1993	20					0.17	Tr	0.22	Tr		0.30	Tr.	
1993	21		0.19	0.01			0.10			0.07	0.88		1.10
1993	22	0.56	0.26		0.14	0.04	Tr			0.10			
1993	23	0.02	Tr	0.01	Tr					0.02			
1993	24	0.22	Tr	1.44								0.05	Tr
1993	25	Tr		0.08	0.02	Tr		,	0.15			Tr	0.05
1993	26				0.85	_				1.28			Tr
1993 1993	27	Tr Tr	Tr Tr		0.22	Tr	0.16	0.73		0.75	0.53		
1993	28 29		11	0.29		Tr			0.11		0.01	1.50	
1993	30	0.01		0.50 Tr		0.05	-	0.35					0.15
1993	30	0.12		ır		0.04	Tr		C. 10 3023299 W.		0.82		0.18
1993	31	0.12			59	0.31			er Orki		0.42		

Table A9-3c

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by USGS are marked - MANVILLE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1994	1		0.03		Tr	0.06	0.01	Tr		0,15	0.04	0.20	
1994	2	0.10	Τr	0.04	Tr						0.03	Tr	
1994	3	0.05	0.02	1.06	Tr				Τr	'			1
1994	4	0.78		0.03	Tr	0.10							
1994	5	Tr				0.64			1.06	0.20			1.10
1994	6	0.08		Tr	0.08	0.26	0.26	1	0.02			0.09	
1994	7	0.40		0.01	0.04	0.06	soca Tr	0.02	*			. Tr	0.13
1994	8	0.70	0.20	0.58		0.44		0.13					Tr
1994	9		0.28	0.26				Tr		0.22	Τr	Tr	0.06
1994	10	l i	Tr	2.32	0.23			1				0.40	
1994	11	建第二次列联	0.55	0.01	i		Tr		0.03				0.13
1994	12	0.11	Tr		0.13	0.02	Tr		0.33	Tr			
1994	13	0.01	0.05		0.85		0.43		0.95	Tr			Tr
1994	14	Tr	Tr				1.52	r	0.15	0.01			Tr
1994	15			0.11		0.09		0.72					Tr
1994	16			Tr	0.55	0.54				Tr			Tr
1994	17	0.51		0.04	Tr	0.06			0.08	0.04			0.10
1994	18	1.00		0.05		0.03		0.01	1.22	0.51	0.01	2.37	0.10
1994	19			0.02	Tr	Τr			0.04		Tr	0.41	
1994	20			Tr		Tr	Tr.				0.02		
1994	21		0.16	0.06			0.01		1.36			0.27	
1994	22	Tr		1.15					0.88	0.25	Tr	0.09	
1994	23	Tr	0.30			0.60		0.08		2.45	0.30	Tr	0.73
1994	24		0.26			Tr	Tr	0.03		0.04			1.66
1994	25			Tr	0.04	0.07	Tr			Tr			Tr
1994	26	0.09	0.25		0.05	0.01		Tr		Tr			
1994	27	Tr	ł	0.38	0.10		Tr	0.24		0.25		0.01	
1994	28	1.70		0.44	_			0.11		Tr		1.50	Tr
1994	29			0.61	<u>T</u> r		0.47		0.22				
1994	30			0.02	Tr								
1994	31						3016	Tr			Tr		0.01

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1995	1	0.54		Tr		0.77						0.02	0.13
1995	2	0.30		-	l i	Tr		0.03	0.05	Tr	ĺ	0.78	0.00
1995	3			Τr			0.06		0.04		7.0	0.03	0.11
1995	4	Tr	0.81		0,06		0.32		0.73		0.01	0.11	
1995	5		Tr	0.12		0.05			0.42		1.08		100 mg/100
1995	6	0.02		0.03			0.07		0.54		1.92		0.35
1995	7	0.90		Tr	0.10		0.98		0.01			1.09	
1995	8			0.04	0.24	i	0.30	0.01				Tr	
1995	9			0.87	0.56		Tr						1.03
1995	10		Tr		0.01	0.04	Tr						
1995	11	0.10		Tr		0.39	0.10	0.30				0.05	
1995	12	0.08		Tr	0.08	Tr	0.46		Tr			0.69	
1995	13				0.53	Tr	0.21			0.12		0.05	
1995	14	Tr		Tr	0.02	0.09	0.04			0.35	0.30	1.15	
1995	15	0.05	0.57	0.02		0.35					0.61	0.52	
1995	16	0.26	0.28	0.01		Tr							0.05
1995	17	0.01		0.44		0.30		0.05		2.72	Tr		0.01
1995	18	0.01		0.05	Tr	0.02		0.37				0.15	
1995	19	Tr	_		0.58	0.22						0.25	
1995	20	1.22	Tr		Tr		0.28		ļ		0.04		0.03
1995	21	0.09	0.01	0.40	0.39			Tr			1.29	Tr	Tr
1995	22	0.02	0.04	Tr	0.01			_		0.49			
1995 1995	23 24	0.07	0.19	Tr Tr		0.00	_	Tr	1	0.02			
1995	25	Tr	0.20 Tr	ır		0.03	Tr					Tr	0.01
1995	26	''	Tr			0.02 Tr	0.06	Tr Tr		0.04			
1995	27	Tr	0.05			Ir	0.01	Tr	0.01	0.32			
1995	28	''	0.03		0.58	Tr		0.01	0.01		0.95	Tr	
1995	29				Tr	0.52		0.40	200 se inc6, iliger (Sa		0.95	0.04	
1995	30			0.05	0.18	0.03		0.40	MACACON NAME.			0.21	
1995	31			Tr	0.10	0.03							

Table A9-3d

Rainfall at T.F. Green Airport

Sampling Periods of Monitoring by USGS are marked - MANVILLE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1996	1				0.07	0.02		Tr	0.28	0.14			0.20
1996	2	0.07	0.03	0.30	0.52	0.02				0.13	0.02		1.16
1996	3	0.22	0.09	0.02		0.25	0.45	0.52			Tr	. 1	
1996	4	Tr				Tr	0.18	0.35		0.01			
1996	5	Tr		0.19	Tr	0.03	0.07					0.01	
1996	6		24.	0.83	Tr	0.26			Tr			·	0.87
1996	7	0.06		0.48	0.42		i			1.21		0.16	1.15
1996	8	0.12	Tr	0.03	0.03	0.18				0.02	2.06	0.08	0.36
1996	9	Tr	0.12		0.32		Tr	0.04	Tr		0.30	0.53	
1996	10	0.05			0.13	0.27	0.05	0.01	0.07	0.01	0.01		
1996	11		0.27		Tr	0.15	T						0.08
1996	12	1.08			0.04	0.10	Tr			0.04			0.04
1996	13				0.04			3.57	0.93	0.13	Tr		0.03
1996	14		0:16		0.01					0.03	Tr		0.16
1996	15			0.17				Tr					Tr
1996	16	Tr	0.05		2.00	0.47							Tr
1996	17	0.03	Tr		Tr	0.14	0.03			0.93			0.68
1996	18						0.06			1.91			
1996	19	0.98		0.04			0.10	0.11			0.25	0.16	1.17
1996	20			0.64		1	0.46				2.81		0.01
1996	21	Tr	0.73		Tr	0.19	0.14		Tr				
1996	22		Tr		Tr		0.02			0.41	0.10		
1996	23		0.02	Tr	0.04		Tr	0.45	0.05	0.26	0.34		
1996	24	0.85	0.57	_	0.04	Tr	0.35		0.39	0.05	0.01		0.46
1996	25	Tr		Tr	Tr		0.04		0.01	0.17		0.02	0.10
1996	26	ا ـ ا		0.01	0.03		_	0.07	0.01			1.42	
1996	27	1.42	0.02			1	Tr					Tr	0.03
1996	28	Tr	0.13		2.00	_	Tr.		0.45	0.03	0.21		Tr
1996	29	0.11			0.69	Tr	Tr			0.24		_	0.07
1996	30 31	0.02			0.50	0.36	0.22	0.45			0.09	Tr	0.00
1996	37	0.01						0.45			Tr		0.02

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1997	1	Tr	0.03	0.01	0.11	0.28	0.53			Tr		1.39	0.30
1997	2	0.11		0.16			0.11	0.07				0.54	
1997	3	0.02	0.02	0.04		0.18		0.08E	0.09	0.02	0.15		
1997	4	i l	0.03	0.02		Tr		0.16E	0.01				0.06
1997	5	0.03	0.91	0.10					0.45		0.16		0.06
1997	6	ł I		0.15	Tr	0.09			0.18		1		
1997	7	Tr		0.00			Í					0.04	
1997	8	i I	Tr	0.03			Tr	0.01	0.25	0.12		0.81	
1997	9	0.13				0.12			0.45			1.24	
1997	10	0.09		0.17		0.15		0.06				0.01	0.31
1997	11	0.27	Tr	Tr]			0.36			0.02
1997	12		Tr		0.68				0.01	Tr			0.01
1997	13		Tr		0.49	0.11	0.06		0.65	0.02			
1997	14		0.66	0.68								1.10	Tr
1997	15		0.03	0.36		0.07					Tr		
1997	16	0.81	0.02			0.30		Tr	0.18		Tr	Tr	
1997	17	Tr	0.06		0.39	Tr			0.29				
1997	18		ŀ		0.45	Tr	0.05		1.09				
1997	19		0.07		0.53	0.60	0.19		0.00E				
1997	20		İ	Tr		0.08		'	0.05E	0.04			
1997	21		Tr	Tr		Tr		0.02	1.16			0.08	
1997	22	0.31	Tr	0.23	Tr	Tr	1.26	0.14E	0.12			0.58	
1997	23	0.04								Tr		0.04	0.73
1997	24	0.11	ł		0.01		Tr	0.09E			Tr	Tr	Tr
1997	25	1.40	Í	0.05	0.08	0.70	Tr	0.33			0.82		0.47
1997	26]	0.02	0.50			0.03			Tr	0.09	0.14	
1997	27	Tr	0.04	Karvet i							0.58	Tr	0.21
1997	28	0.95			0.51				Tr	0.02		Tr	0.06
1997	29			0.67					1.34	0.41			0.42
1997	30	Tr		Tr						Tr		0.09	0.19 Tr
1997	31			1.51							Tr		Tr

Table A9-3e

Rainfall at T.F. Green Airport (*)

Sampling Periods of Monitoring by USGS are marked - MANVILLE Station

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1998	1			0.15		0.31	0.27				0.12		0.02
1998	2				0.27	0.49	Tr						
1998	3			0.01		Tr	0.36						
1998	4	Tr	0.17	Tr		0.19							
1998	5		0.40	0.03	Tr	0.25		0.51					
1998	6	0.07	Tr			0.62							
1998	7	0.73		Tr		0.42	0.29	Tr		0.54			
1998	8	0.79		0.39	0.02	0.02	0.06	Tr		0.47	0.46		0.20
1998	9	0.36		3.02	0.63	0.83				0.05	0.65		
1998	10]		Tr	0.29	1.64					0.88	Tr	
1998	11		0.22			0.31			0.15		0.08	1.38	
1998	12	1 1	1.08	Tr			0.13				Tr		
1998	13	0.23					3.29						
1998	14	1 1		0.11			1.37				1.23E		
1998	15	0.26		Tr	Tr		0.88			Tr		Tr	
1998	16	0.63		Tr			0.14	Tr		0.13		0.00	
1998	17	Tr	0.29		1.53	0.08	Tr	Tr	0.71			0.49	0.07
1998	18	0.10	1.87	0.13			0.46		0.45				
1998	19	l i	Tr	1,68			0.50		0.20		Tr	55. W. S. W. S. W. S. W. S. S. S. S. S. S. S. S. S. S. S. S. S.	
1998	20	Tr	Tr	Tr	0.35		0.04	Tr]	0.23	Tr
1998	21			0.19				1				0.03	
1998	22			0.15			Tr			0.99			0.06
1998	23	1.68	0.05	'	0.55		0.01	0.37	Tr				Tr
1998	24	1.63	1.22		0.01		Tr						0.18
1998	25	0.05	0.06			0.09	《文·神》等		Tr				
1998	26				0.34			Tr	0.62			0.63	
1998	27				0.01		0.16		Tr	0.10			
1998	28	Tr	0.49						0.06		0.34		0.10
1998	29	Tr				0.14	0.18	0.09	0.16		0.02		0.45
1998	30	0.01			Tr		1.47		0.04	0.02E			0.19
1998	31	0.01	- 4			0.66	7	0.40	Tr				

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1999	1	T		0.20	Tr			0.06					
1999	2 3		2.12		l	İ	0.02	0.02				0.39	
1999	3	1.70	0.51	0.12	I	0.19	0.02					1.78	
1999	4		0.14	0.44	0.04	0.28		0.03			0.90		Tr
1999	5		Tr			0.14			Tr		0.12		
1999	5 6 7	Tr	0.02	0.69	Tr			Tr		0.14			0.48
1999		0.03	0.04	0.02	Tr					0.01			1.02
1999	8	0.36	Tr			0.20			0.72	0.56			
1999	9	0.45			0.13			Tr		0.01	0.01		
1999	10				Tr			Tr	Tr	2.27	0.39	0.02	0.03
1999	11	Tr]		Tr	0.29				Tr			0.01	
1999	12	0.05	0.22	Τr	0.04			Tr	Tr			0.07	
1999	13	0.01	0.02	Τr				0.13	Tr		0.54	Tr	0.04
1999	14	0.26	Tr	0.12			0.08		0.07	0,01	0.28	0.05	0.27
1999	15	1.43		0.45		Tr	Tr		0.41	1.12			0.28
1999	16		1		0.55				C. (100)	1.98			0.01
1999	17		Tr		0.02		0.03			Tr	0.37		
1999	18	0.93	0.83		·	0.01	Tr		Tr		0.83		
1999	19		- 1		į	0.63		0.24					
1999	20	\$ 4/A # 3/8 \$ # #	İ		Tr	0.45			0.04		0.96	0.05	0.14
1999	21	0.04	Tr	0.08	1		Tr		0.12		j		
1999	22	0.03		0.47	0.19				0.01	0.01			0.12 Tr
1999	23	0.04			0.28	1.85		0.33			0.11		
1999	24	1.29	Tr	0.34		0.50		0.01				0.02	
1999	25	Tr	0.06	Tr		Tr	Tr	Tr		0.09		0,20	
1999	26	l i	0.01	Ì	Tr				1.67			0.03	
1999	27	Tr		0.02	· Tr				0.21			0.23	
1999	28	0.07	1.48	0.37		Tr							
1999	29	0.01		0.01			Tr			0.01		Tr	
1999	30						0,02			0.79			
1999	31					j							

7L (5)	Wet Weathe	••	t	•	t	Н	•	Ť	•	•	•	•	Ħ	+	•	Н		+	t	H	+	H	\dashv	•	П	\forall	1	•	•	,	H	H	+	十	1	╁	Н	•	-+	•
	Dry Weathe		•		•				+	+	+	•	•	+	٠	•	•	•	1	H		•	•			•	+	4	•	•	+	•	•	+	•	•	•	\dagger	+	_
Streptococci, Fecal, KF Agar	Im 00 Noo		200	150	41	23	2,400	00 42	7 9	2,100	94	130	n	1200						8				87	54			040	1 300	9	20							149	4,300	24
Fecal Coliform	lm 00 Noa	88	3 9	320	2 5	8 8	2,700	9 0 8	649	1,100	390	390	32	140	240	112	148	204	325	400	1,500	23	27	122	750	140	51	5 1	3 5	27.	127	45	223	4 00 t	103	163	73	700	3,400	80
motiloO lstoT	lm 00 No	[1 1	1	1 3	- 1	1	1 1	1	- 1		11	- 1	1		1 1	- 1	1			1 1						1			560	1,075	11,000	8/9 10 750	850	1,050	1,050	11,300	92,000	2 800
Orthophosphate, total	4 հ քո			1 1					1 1													1						1					<u> </u>	1				1	-	_
eunoriqeoriq listot	4 Ngm																													100	0.14	0.03	0.01	0.23	0.70	0.77	99.0	0.29	0.13	
Witrate+Witrite, total	N V Du	:	1	1 1	- 1	1 1	- 1	1	1 1	- 1	- 1	- 1	1 1	- 1	- 1	1 1	1 1	- 1	1	1 1	1	1 1		•	1 1		1	1	- 1				1	T				Ì	1	-
Organis + Total Organic Necogen	N Ngr	II :							: :						7	: :	: :			: :		: :			: :					40	1.50	09.0	0.20	2 C	0 0	1 70	0.70	1.30	0.50	-
Ammonia, total	N Ngm	1.00	0.71	0.46	0.20	0.29	0.0	0.7	0.20	0.34	0.84	0.76	0.59	0.28	1 20	0.63	0	0.07	0.46	0.54	0.81	0.52	0.44	0.34	1 7	0.68	0.72	0.70	0.72											_
⊠n c, dissolved	убг																											i												
bevloss ib , reviis	убг	╂┼																										1						1				7	1	
Nickel, dissolved	убг		┡	Ш	_		1	1	Ш	-	_	_	Ц	_	_	1	Ц	1	L		_		4	_				1				Ц	_	╧			Ш	_	4	-
Copper, di ssolved Lead, di ssolved	y6r V6r	₩	-								-	-		+	-			-					-					1	-	-			+	_		-		-	_	
	убг	₩	╁	H	+	+	+	÷	H	1	+		H	-	-			+	Ŧ	H	÷	H	+	╀			ł	+	+	1	_	H	+	\dotplus	╁	H	H	\dashv	4	
Cadmium, di ssolved	убг	╫┼			+		Ť	+	╁╢	1	-		H	+	T								-				+			-	-	H	+	+	t	H		1	+	
Znc, total	убп	$\parallel \parallel$	20	H	T	Ħ	5	2	Ħ	1	1	20		+	T		8	+	Ť	H	30		20	t	Н	င္ပ	- 6	200	5	2	8	H	9	2	3	20	П	30	-	
Silver, total	ybr		T				1	-		1	+	+		-			+		-		+		Ŧ	1		-	ŀ	-	7	-	-		-	+	-	╆		Ŧ		
Nickel, total	yfin	オ┼	9	H	Ť		9	מ				2	Ħ	Ť	Ť		ø	Ť	+	H	4		4	Ť		-	(ກ	r	2	4	Н	ω	1	+	0		ø	_	
Lead, total	y6r	╬	49		\dagger		1	4		1		4		T	T		2	+	t		c.		က			17	-	N	c	7	က		က	67	2	9		Ŋ		
Copper, total	убг		18		T		7				Ì	÷		Ì	Ī		Ξ	Ī	Ť	П	T		9	Ť		ဖ	ľ	Ť	c	7	00	П	တ	oc.		16	П	Ξ	1	
Chromium, total	VBL		6	Ħ	Ť		c	7			Ť	4	П	Ť	Ī		7	Ī	T		-		-	İ		2	1	Ŧ	·	7	-		Φ		4	٢		4		
Cadmium, total	ybr		۲		Ī		1				Ī	-		Ī			-	Ī			۲		٢			Т	Ţ,	-	7	-	۲		T	T		-		-		
миліти¶А	yfir		710				S	8			Ì	210					100				130		2			8	1	20	170	2	100		130	9	3	8		110		
Mangan ese, total	ybr		130				S	3				80					130				100		130			150	,	110	7.0	2	110		100	200	3	230		70		
iron, total	y6r		1 900	<u> </u>				0				450					570				370		570			290	300	920	2,5	•	440		99	380	3	320		99		
Sulfate, di ssolved	≯OS l⁄gm		15.0				14	19.0				110					24.0				14.0					26.0					15.0				L	32.0				
Chloride, di <i>s</i> solved	ybu																																							
Potassium, dissolved	ybu	╟┼	2.3	++	1			2			_	3 1.7	ш			\perp	3.7				23	₩				3 4.2					3.26	<u> </u>		ļ	ļ	1.9	∔ -∔	I	ļ	
Sodium, di ssolved	убщ	Ш	34	Ш	1			9	11	_	1	18		_ _	L		37		L		96	Ш	1			88			_	L	53	1 1		ļ		12			_	
baylozzib ,mulzanyeM	БМ Л Еп	₩	9.9	1 1	-					1	-	7.0 1.2	l i	+	-		12.0 2.1		-		9.1	₩	+	-		12.0 2.1	-		-		10.01		_	\dotplus		14.0 2.8	1 1	\dashv	4	
Caldium, di ssolved	EOOSO BO Ngm	1 1		12	o u	7	1				_			_	-		12		_		0,		7	4 6	9	Ĺ	ω o	7 0	ρ τ	-			15	5 6	4 6	1	1 1		7	
Alkalinity, Carbonate	- y5w	₩	24	\sqcup	2			3		23	+	15	H	٥	20	-	क्ष	-	<u> </u>		17	Ш	_	2 6	Ñ	4	či c	1	2	-	15 2	Ш	16		2 2				28 1.	
(%Saturation) Chemical Oxygen Demand	չճա 	H	2		-	1	c	+	$\frac{\parallel}{\parallel}$	2		-			_		က	-	+		-	-	4	7		72	+	┦	1	65	丄	Ш	96		3 6	97 37				
negyxO bev loss iO	70		2 00	7	4 n	, w	9 0	0 4	· -	က	о т	. 0	ဖ	4.0	7 0	9	ø)	4 C	2 -	0)	2	ω 1	, ₄	7	ဖ	0 0 0	ם מ	ρα			1 1					: :			
Dissolved Oxygen	убш		l.	10.2				l																																
Hd		9 6.9	L	LL				L	Ш				Ш	┸				┸		Ш	┸	Ш			Ш															
Conductance, spec.	шо/вп			<u> </u>	_ !		L	1								L			<u> </u>		1	ΙI								!	1	LL		l l		1.	0 378	L. I	.1	
өтизеле фи	O geb	#	1	1 1		1 1	1	1	1 1	- 1		1	1 1			1 1				1 1		1 1			1 1	- 1		-				1 1	-				ΙÌ	- 1	- 1	
өтіТ	(4)	13:30																	1																		12:30			
		10 9	3	2	218	11-Jul-90	8-Aug-90	8 8	7-Nov-90	8	6 6	2 2	3-Apr-91	<u>تا ت</u>	7 2	أها	5	2 2	11-Dec-91	8-Jan-92	7 0	N	0	8-111-92	2	N	2	7 8	5-Dec-92	2 0	10-Mar-93	6-Apr-93	4-May-93	2 0	4-Aug-93	۱ B	မ္တ	8	7-Dec-93	

age A9-19

	\parallel		eriseW sethe	•	H	Н	•	\dashv	+	•	\dagger	+,	•	•	•	t	•	•	H	•	+		•	•	•	•	. •	╁	-	H	•		•	•	•	-	•	H	•	ŕ	•	H	Н	•	•	-
	۲			Н	•	•	+	•	•	t	,	•	Ť	Ť	1	•		-	•	-	•	•		Ĭ	Ĭ	+	Ť	•	•	•	Н	•				•	_	•				•	•	ť	7	
	Ē			400	4	တ	:	<u> </u>	9		<u> </u>	2 5	000	2 6	3 5	1	440	960	: :			94	700	240	403	9 9	2 5				: :										Г		П		7	
The second of the control of the con	4	Streptococci, Fecal, KF Agai	lm 00 Moo						. !																																					
		Fecal Coliform								l	Ì			۲					1	- 1	- 1							1		ŀ			440	131	540	8	1,483	180	255	328			45	1	1,925	
The series of th		mrotiloO lstoT	lm 00 Moo	5,333	1,173	17,600	4,500	820	900	1,680	20 4	1,960	16,000	0042	4 r	850	2,200	4,533	5,000	850	417	1,100	5 067	13,400	22,333	293	3,900	4 800	1,020	1.140	933														_	+
The second of th		Orthophosphate, total	4 kgm	-	_			-																-		-	+	+	-				_				_					<u> </u>			_	
The control of the co	l	e vro hqe o d9 lstoT	4 kgm	0.21	0.11	0.23	0.30	0.26	0.40	45.0	9 5	0.45	0.17	20.00	2 5	0.15	0.21	0.29	0.24	0.29	0.37	0.72	7 1	0.19	90.0	0.08	2 2	0.22	0.33	0.28	0.32	0.19	0.16	0.97	1.73	0.65	0.18	0.21	0.87	0.80	0.21		1.56	0.73	0.72	
		lstot ,estrsti¥+eststil	N Ngm				-			Ì		İ	Ī	İ	Ì								Ī									_													_	*
			N Ngm	1.00	0.60	1.10	1.30	1.60	3.00	0.80	2 6	0.90	0.80	3 6	2 5	0.70	0.90	0.80	1.50	1.50	1.70	8 8	2 6	1.70	0.90	8 8	3 6	0 0	060	0 70	1.70	1.30	1.40	2.27	5.03	1.76	0.94	0.76	1.69	3.06	1.02		5.10	2.30	1.32	
The second of th		ls3o3 ,sinommA	M Ngm																																											
The companies of the	L	Ān¢, dissolved	yōn																																											
The property of the property o		Silver, dissolved	yān					-																										1 1			1			0.2			0.2		0.2	
### 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Nickel, dissolved	yBn	Γ		П			T	T	I	T	Ī	Ī	T	Ī			П	7	T		Ī			Ī	Ī									1		1								***************************************
The control of the co		bevlossib ,bsed	уБл							Ī	Ī																			L						;			Į	0.			0.		1,2	
The control of the co		Copper, dissolved	yBn																													3.0	4.0	5.8	8.2	5.1	3.6	4.4		4.8						-
Time of the presentation o	$\ \cdot \ $	Chromium, di <i>a</i> solved	yan	Γ			Í		T	T	T	Ť	T	T	Ī	Ī	Ī	Ī	П	1		Ī		ľ	Π	T	Ī	Ī				1.0	1.0	1.0	1.3	1.2	1.0	1.0		1.0				-	_	1
Time of the control o		Cadmium, di ssolved															I	Ī									Ī	Ī	Ι			0.1	3.0	0.7	0.7	0.7	9.0	9.0	0.2	0.			0		20	
Times of the control		Znc, total	ybn	8		8		8		20	Č	8	3	₹	ç		8		5	J	9	6	3	20		္က	ç	3	20		10															
Times of the control		Silver, total	y6n	F		Ŧ		٦		Ī	T	1		Ī	T	T	~		F	Ţ	Ī	1	Ŧ	-	П	Ŧ	7	T	T		F												П			7
2	ľ	Ni ckel, total	yfin	4		4		9		တ	1	/		4	ជ	1	7		7	İ	ဖ	4	0	5	Ħ	ი	7	1	2	İ	9		Ī										П		_	-
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Lead, total	y6n	က		4		4		Φ	,	4	(7	٥	1	ю		ß	İ	7	c	9	-		7	u	n	5	1	9													-	_	
The Section of Section 1 and the Section 2 and the Section 1 and the Section 1 and the Section 1 and the Section 1 and the Section 1 and the Section 1 and the Section 2 and the Section 1 and the Section 1 and the Section 1 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and the Section 2 and t	ľ	Copper, total	yan	6								L			4		ဖ		σ		7	•	0	9		2	Ç	2	6		1														_	
12 12 12 13 14 14 15 15 15 15 15 15		Chromium, total	ytin	1.3		1.6		2.9	Ī	2.2	Ī	2.4	,	ρ.	T	I	1.7		<u>.</u>		5.		I				,	o i	2.3		2.6														_	
The control of the co		Cadmium, total	yBn	Ē		F		-	1		Ī					L	-					Ī	I	r		Ţ	Ţ	I	ľ	I		ľ					ſ		ſ		Γ				_	-
Time		munimulA	yBn	220		130		6			0	8	100	22	110		140	ſ	120		20	5	3	8	П	8	100	3	110		110	110	110	87	8	2	340	156	9	78			55.5		114	
Times Ti	Ī	lajoj ,ese nagras M	ybn	110		150		l		L	L	┙	í	2	150	3	L							110	Ш	- !	┸	L	L	<u> </u>	120			Γ.	_			ľ					215		193	
Time Time		iron, total	y6n			900		510		1	2	230	000	900		L	640		640		_	210	0/0	470		-	6.70	0/0	720		L		_			_	567	943	L	<u> </u>	_				641	i
Titologo 25 25 24 6 6 7 7 7 8 6 6 7 7 7 7 8 8 6 8 7 7 7 7		Sulfate, dissolved	+OS Vēm	22.0						25.0					16.0					_	44 C	-				14.0					24.0		16.0		59.2	L	14.2		31.3		11.1		46.9	0.5	29.5	***************************************
Time Conductance, specification (Concentration) Time Conductance, specification (Conc	L	Chloride, dissolved	y6w	L	_																									L	L	L					L		L						_	***************************************
Time Time Time Time Time Time Time Time		Potassium, dissolved	ybu	1	╙				-	+				Ī	4	┷.				_	_				Ц	_ i				Ĺ	ـــــ		<u> </u>			<u> </u>	<u> </u>	<u> </u>	1	!	į	<u> </u>	!!		4	1
Time Triple 1970 Care of the conductance, spec. 112.00 Care of the conductance, spec. 122.00 Care of the con		Sodium, di <i>ss</i> olved	убш	1_				ļ					-		Ĺ	L	L	<u> </u>	Ш	_	_				Ш		_		L		L		L			_			L	<u> </u>	1					į
Time Time Time Time Time Time Time Time	L	Magnesium, dissolved	6М №	11	1	Щ			1	1	1	1	-	1		1_			Ц		_1	1	-		1	- 1	+		-	Ļ	1		<u> </u>					_	!	!	<u> </u>	1		- 1		ŧ
Time Time Time		Calcium, di ssolved	BO Ngm	Ę						13.					9 0	5					16.0					9.			-		13.0		10.8		16.4		8.5		12.5		7.1		17.1	15.5	12,	
Time Time		Alkalinity, Carbonate		5	11	17	2	27			2 8	77	77	7 9	2 0	ń	9	18	24	27	၉	8	0 0	2 5	<u>ი</u>	9	2 3	† ¢	<u>6</u>	Ŧ	15	22	24	સ	44	19	14	4	26	27	တ	44	43	37	23	
Time Titlo Conductance, spect 11.10		· .	убш		1						I		-			L		1	ΙI	!	- 1	I		1	1 1			L	L		L	_	L		31	╙	_	L	_	_	<u> </u>		38		2	
Time Conductance, spec. 112:00 230 450 55 5 65 65 65 65 65 65 65 65 65 65 65 6			%																																			1		<u>!</u>	1				_	1
Time 14.15 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2			убш								L																					٢	L			L	L		L	L						
Time 1 14:15 1 12:00 1 12:0		Hq		6.8	6.5	7.0	7.1	7.4	7.4	9 0	ם ו פ	7.7	9 0	0 0	0 0	99	6.9	6.6	6.5	6.3	6.4	6.2	0 0	5.8	6.7	6.9	9 7	7.9	7.2	7.0	7.2	6.8	6.3	6.4	6.6	6.6	7.0	7.1	7.4	6.8	6.2	5.9	7.3	6.8	7.1	
### (n) ### (n		Conductance, spec.	пБіст	ŀ			- 1	- 1				1		ļ	1											ı												1				ı		1		
		өтиле өга биге	O geb		Ì	1 1	i	- 1	- 1	1	ᆚ			1					1 1			_ [<u> </u>	1	- 1	1	1		1	1		_			L	<u> </u>	<u> </u>			Ī	1		i		i
Market State		emiT	(4)	11 3		: ;			- 1	- 1		- 1		- 1			:	:	: :	- 1	- 1	- 1		1						1						Τ			9:00	1		1				:
		gsbri		War-94	Apr-94	Иау-94	Jun-94	-Jul-94	Aug-94	Aug-94	5 3	Nov-94	O9C-94	Jan-95	Aar-95	Apr-95	Jay-95	Jun-95	11-Jul-95	Aug-95	Aug-95	Oct-95	20-95	Jan-96	Feb-96	Mar-96	Apr-96	May-96	96-111	96-DIT	96-pu∳	Nov-96	Mar-97	Jun-97	4ug-97	76-707	War-98	Jun-98	4uq-98	Vov-98	Jan-99	99-UN	12-Aug-99	4ug-99	99-0et	2

Table A9-4

F		UseW bexiM
1		ertzseW teW
Ļ	(L) 4	Dry Weather
J	Streptococci, Fecal, KF Aga	lm 00 l\loo
	Fecal Colitorm	lm 00 Mo
	Total Coliform	Im 00 h\loo
	Orthophosphate, total	4 l\gm
	zunońązoń9 listoT	4 l/bm
L	Nivate+Nivite, total	И Лет
	oinsgtO IstoT + sinommA negortiN	V Ngm
L	ls1o1, s inommA	И №
ŀ	Znc, dissolved	_
ŀ	Nickel, dissolved Silver, dissolved	
\vdash	Lead, dissolved Mickel dissolved	
1	Copper, dissolved	
-	Chromium, dissolved	l/gu
ľ	Cadmium, dissolved	l\gu
-	Znc, total	_
ľ	Silver, total	l/gu
	Nickel, total	l/Br
L	Lead, total	Ngu
_	Copper, total	l/Bn
	Cadmium, total Chromium, total	
-	munimulA	
-	lstot, ezensgasM	μδn
1	Fon, total	ηđη
	Sulfate, dissolved	+OS l\gm
	Chloride, dissolved	I/Bw
ľ	Potassium, dissolved	yāw
	Sedium, dissolved	րճա
ľ	bevlozzib, muizengsM	₽M Ngm
	Calcium, dissolved	
l	Alkalinity, Carbonate	- 7,000
-	(%Saluration) Chemical Oxygen Demand	
ŀ	(Concentration) Dissolved Oxygen	_{7°}
ŀ	negyxO bevlossiO	
	Conductance, spec. PH	шэ/вр
L	Temperature Conductance snec	O geb
-	emiT	(y)
	e15Q	

	•	•	•	•								•	•	•	•			•	•	•	•
	81	74	0	5,700			37	53	•	595		21	318	40	4,300			44	1,156	46	10,000
	91	160	0	3,400 €			40	8	0	380		26	514	43	3,400 4			51	1,130	- 1	4,900 10
	81	2,939	9	92,000			37	1,208	9	23,000		21	9,356	820	92,000			44	25,221	_ !	128,000
	36	0.18	0.01	0.53			17	0.22	0.01	0.53		8	0.15	0.02	0.32			19		0.08	0.64
	96	0.32	0.01	1.73			41	0.34	0.01	1.56		28	0.35	0.07	1.73			22	0.62	0.15	2.71
ĺ	36	0.90	0.26	1.90			17	1.02	0.26	1.90		8	<u>8</u> .	0.40	1.60			19	1.59	0.94	2.70
	96	1.21	0.20	5.10			41	1.17	0.20	5.10		28	1.24	0.50	5.03			55	2.49	9	8.09
	98	0.47	0.01	1.20			17	0.47	0.05	1.20		8	0.39	0.01	0.84			19	0.92	0.08	1.94
	2 8	91	2 11	0 21			4 3	7 16	2 12	21		9	5 16	12	21			8	30		39
	8 12	4.5 0.6	2.9 0.2	6.7 1.0			3	3.8 0.7	2.9 0.2	5.6 1.0		3	4.2 0.5	3.0 0.2	6.5 1.0			2	10.4	8.7 0.4	13.2 2.0
	12	1.0	9.0	1.3			4		0.	1.3		9	6.0	9.0	1.2			8	1.9	9.	2.2
	80	4.9	3.0	8.2			3	4.2	3.0	5.1		9	5.3	3.6	8.2			5	10.5	8.3	14.0
	11 8	1.1	0.1	٢			4 3	0.8 1.1	0.6 1.0	0 1.2		5	1.1	0.2 1.0	3.0 1.3			7 5	2.1 2.1	0.8 2.0	4.0 2.3
	31	23	9	20			14	21	9	20		8	26 1	0				17	48 2	8	80
	34	1.0	-	7			14	1.0	÷	-		8	1.0	-	-			17	2.0	7	2
S	1 31	4 5.4	-	49 9		76	14 14	1 5.9	2	49 9	ər	8 8	0 5.4	1	5 9		Statistics - Wet and Mixed Weather	17 17	6.3 10.2	2 5	11 16
Statistics - All Samples	31 31	8.2 5.4	-	18 4		Statistics - Dry Weather	14 1	9.3	-	18 4	Statistics - Wet Weather	8	7.6 3.0	က	11		lixed W	17 1	14.6 6.	7	22 1
. A	31	2.1	-	ø		- Dry	14	2.3		8	- Wet	8	2.0	-	4		t and N	17	3.7 1	2	7
atistic	33	1.0	-	Ŧ		atistic	14	1.0	-	+	histics	80	1.0	-	-		s-We	17	2.0	7	7
Š	43	125	20	710		Š	18	132	20	710	Sta	14	136	20	340		tatistic	25	237	110	520
	43	٦	5	230		Ш	18	139	60	230		14	106	70	193		S	25	231	124	393
		572		١,			18			٠, ا		14	-	330				25	1041	069	1410
	24	23.5	0.5	59.2			80	27.1	14.0	46,9		6	26.9	1.0	59.2			16	42.0	11.5	84.2
	0						0					0						0			
	24 24	4.0	1.7	5 8.0			8 8	4	0 2.3	6 8.0		6 6	9 3.7	1.7	5 6.7			16 16	9 7.5	3.9	### 14.4
	24 2	2.1 45.4	1.2 18.0	3.1 91.5			8	2.3 45.3	1.7 26.0	3.1 79.6		[6	2.0 45.9	1.2 18.0	2.9 91.5			16 1	4.0 90.9	2.7 48.0	5.7 ##
	24	11.7	7.0		-		ھ	12.6	9.1			6	11.3	7.0	16.4			16	22.4	14.1	31.8
	82	20.4	8.0				အ		10.0			24		12.0				45			
	38	22.2	67 10.0 8.0	117 38.0 46.0			14	98 24.6 21.5	91 10.0 10.0	105 38.0 46.0		14	98 22.2 19.6	67 10.0 12.0	117 35.0 44.0	Ш		74	196 40.9 39.2	158 21.0 20.0	220 62.0 81.0
	7 49		1				42 20			6 105		28 16			8 117			55 29	4 196	3 158	
	26	10.6		15.6						,			11.2		ľ				22.4	13.3	29.4
	26	6.9	5.8				42		5.9			28	6.7	5.8	7.4			22	13.6	12.0	15.1
		284	1	623			42	.,		590		28	262		623			55	542		1116
	16	13.1	0.0	27.0			42	16.0	1.0	27.0		28	10.8	0.0	24.0			22	21.6	0.5	50.5
	Count	Mean (*)	Minimum	Maximum			Count	Mean (*)	Minimum	Maximum		Count	Mean (*)	Minimum	Maximum			Count	Mean (*)	Minimum	Maximum

Dry Weather. Rainfall of less than 0.05° on the day of sampling and rainfall of less than 0.3° on days 1 to 4 prior to sampling day.
 Wet Weather. Rainfall of more than 0.3° on day of sampling, rainfall of more than 0.5° one day before sampling, and/or rainfall of more than 1.0° on days 2 and 3 prior to sampling.
 Mixed Weather. Conditions that did not meet Wet or Dry Weather criteria.

Appendix 10

Water Quality Sampling of Tributaries 1997 - Present

Fecal Coliform Data

(NBC, 1998 - 2001)

Blackstone River Water Quality

Figure A 10-1 NBC WATER QUALITY SAMPLING

Table A10-1a

Rainfall at T.F. Green Airport

Sampling Periods of Continuous Monitoring by NBC are marked

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1996	1				0.07	0.02		Tr	0.28	0.14			0.20
1996	2	0.07	0.03	0.30	0.52	0.02				0.13	0.02		1.16
1996	3	0.22	0.09	0.02		0.25	0.45	0.52			Tr		
1996	4	Tr	- 1		ì	Tr	0.18	0.35		0.01			
1996	5	Tr		0.19	Tr	0.03	0.07					0.01	
1996	6			0.83	Tr	0.26			Tr				0.87
1996	7	0.06		0.48	0.42					1.21		0.16	1.15
1996	8	0.12	Τr	0.03	0.03	0.18		l		0.02	2.06	0.08	0.36
1996	9	Tr	0.12		0.32		Tr	0.04	Tr		0.30	0.53	
1996	10	0.05			0.13	0.27	0.05	0.01	0.07	0.01	0.01		
1996	11		0.27		Tr	0.15	Tr						0.08
1996	12	1.08			0.04	0.10	Tr			0.04			0.04
1996	13				0.04			3.57	0.93	0.13	Tr		0.03
1996	14		0.16		0.01			i		0.03	Tr		0.16
1996	15		- 1	0.17				Tr					Tr Tr
1996	16	Tr	0.05		2.00	0.47	Ì						Tr
1996	17	0.03	Tr	j	Tr	0.14	0.03			0.93			0.68
1996	18	1		- 1			0.06			1.91			
1996	19	0.98		0.04	Į.		0.10	0.11			0.25	0.16	1.17
1996	20			0.64	İ		0.46	1			2.81		0.01
1996	21	Tr	0.73		Tr	0.19	0.14	i	Tr				
1996	22		Tr		Tr	l	0.02			0.41	0.10		
1996	23		0.02	Tr	0.04	Ī	Tr	0.45	0.05	0.26	0.34		
1996	24	0.85	0.57		0.04	Tr	0.35	ļ	0.39	0.05	0.01		0.46
1996	25	Tr		Tr	Tr		0.04	ŀ	0.01	0.17		0.02	0.10
1996	26			0.01	0.03			0.07	0.01			1.42	
1996	27	1.42	0.02		l		Tr					Tr	0.03
1996	28	Tr	0.13				Tr		0.45	0.03	0.21		Tr
1996	29	0.11			0.69	Tr	Tr			0.24			0.07
1996	30	0.02			0.50	0.36	0.22				0.09	Tr	
1996	31	0.01						0.45			Tr		0.02

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1997	1	Tr	0.03	0.01	0.11	0.28	0.53			Tr		1.39	0.30
1997	2	0.11		0.16			0.11	0.07				0.54	5.5
1997	3	0.02	0.02	0.04		0.18		0.08E	0.09	0.02	0.15		
1997	4		0.03	0.02		Tr		0.16E	0.01		1	İ '	0.06
1997	5	0.03	0.91	0.10	Į.				0.45		0.16		0.06
1997	6			0.15	Tr	0.09			0.18	· ·		l	
1997	7	Tr	i								ľ	0.04	
1997	8	1	Tr	0.03			Tr	0.01	0.25	0.12		0.81	
1997	9	0.13				0.12			0.45			1.24	
1997	10	0.09		0.17		0.15		0.06				0.01	0.31
1997	11	0.27	Tr	Tr						0.36			0.02
1997	12		Tr		0.68				0.01	Tr		1	0.01
1997	13		Τr		0.49	0.11	0.06		0.65	0.02			
1997	14		0.66	0.68	I			i				1.10	Tr
1997	15		0.03	0.36	Ī	0.07		l			Tr	Tr	
1997	16	0.81	0.02		ŀ	0.30		Tr	0.18		Tr	Tr	
1997	17	Tr	0.06		0.39	Tr			0.29				
1997	18				0.45	Tr	0.05		1.09				
1997	19		0.07		0.53	0.60	0.19						
1997	20	ļ i		Tr		0.08			0.05E	0.04]	
1997	21		Tr	Tr	j	Tr		0.02	1.16			0.08	
1997	22	0.31	Tr	0.23	Tr	Tr	1.26	0.14E	0.12	i		0.58	
1997	23	0.04		i						Tr		0.04	0.73
1997	24	0.11	i		0.01		Tr	0.09E			Tr	Tr	Tr
1997	25	1.40		0.05	0.08	0.70	Tr	0.33			0.82		0.47
1997	26		0.02	0.50	1		0.03			Tr	0.09	0.14	•
1997	27	Tr	0.04								0.58	Tr	0.21
1997	28	0.95			0.51				Tr	0.02		Tr	0.06
1997	29			0.67					1.34	0.41			0.42
1997	30	Tr		Tr						Tr		0.09	0.19
1997	31	<u></u> _		1.51							Tr		Tr

Table A10-1b

Rainfall at T.F. Green Airport

Sampling Periods of Continuous Monitoring by NBC are marked

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1998	1			0.15		0.31	0.27				0.12		0.02
1998	2				0.27	0.49	Tr		l i			. 1	
1998	3			0.01		Tr	0.36				:	•	
1998	4	Tr	0.17	Tr		0.19							
1998	5		0.40	0.03	Tr	0.25		0.51					
1998	6	0.07	Tr		i	0.62							
1998	7	0.73		Tr		0.42	0.29	Tr		0.54			
1998	8	0.79		0.39	0.02	0.02	0.06	Tr		0.47	0.46		0.20
1998	9	0.36		3.02	0.63	0.83				0.05	0.65		
1998	10			Tr	0.29	1.64					0.88	Tr	
1998	11		0.22		ľ	0.31			0.15		0.08	1.38	
1998	12	1	1.08	Tr			0.13				Tr		
1998	13	0.23			ļ		3.29	·					
1998	14			0.11			1.37				1.23E		
1998	15	0.26		Tr	Tr		0.88			Tr		Tr	
1998	16	0.63		Tr	0.01		0.14	Tr		0.13			
1998	17	Τr	0.29		1.53	0.08	Tr	Tr	0.71			0.49	0.07
1998	18	0.10	1.87	0.13	į		0.46		0.45				
1998	19		Tr	1.68	0.06		0.50		0.20		Tr		
1998	20	Tr	Tr	Tr	0.35		0.04	Tr	İ			0.23	Tr
1998	21	1.0		0.19								0.03	
1998	22			0.15			Tr			0.99			0.06
1998	23	1.68	0.05		0.55		0.01	0.37	Tr				Tr 0.18
1998	24	1.63	1.22 0.06		0.01		Tr		r e				0.18
1998	25	0.05	0.06			0.09			Tr				
1998	26				0.34			Tr	0.62			0.63	
1998	27				0.01		0.16		Tr	0.10			
1998	28	Tr	0.49				}		0.06		0.34		0.10
1998	29	Tr				0.14	0.18	0.09	0.16		0.02		0.45
1998	30	0.01			Tr		1.47		0.04	0.02E			0.19
1998	31	0.01				0.66		0.40	Tr				

Year	day	Jan	Feb	Man	A		T						
	day	Jan	reb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1999	1	ļ		0.20	Tr		1 W 14.5	0.06					
1999	2		2.12				0.02					0,39	
1999	3	1.70	0.51	0.12		0.19	0.02				ļ	1.78	
1999	4	ļ	0.14	0.44	0.04	0.28		0.03			0.90		Tr
1999	5	_	Tr			0.14		l	Тг		0.12		
1999	6	Tr	0.02	0.69	Tr] Tr		0.14			0.48 1.02
1999	7	0.03	0.04	0.02	Tr			i l		0.01		perg - e	1.02
1999	8	0.36	Τr			0.20			0.72	0.56		1	
1999	9	0.45			0.13			Τr		0.01	0.01	ļ	
1999	10				Tr		ļ	Tr	Tr	2.27	0.39	0.02	0.03
1999	11	Tr		Tr	0.29				Tr			0.01	
1999	12	0.05	0.22	Tr	0.04			Tr	Tr		2	0.07	
1999	13	0.01	0.02	Tr			l i	0.13			0.54	Tr	0.04
1999	14	0.26	Tr	0.12			0.08		0.07	0.01	0.28	0.05	0.27
1999	15	1.43		0.45	·	Tr	Tr		0.41	1.12			0.28
1999	16				0.55					1.98		}	0.01
1999	17	1	Tr		0.02		0.03			Tr	0.37		
1999	18	0.93	0.83			0.01	Tr		Tr		0.83		
1999	19					0.63		0.24					
1999	20			į	Tr	0.45			0.04		0.96	0.05	0.14
1999	21	0.04	Tr	0.08			Tr		0.12				0.12 Tr
1999	22	0.03	1	0.47	0.19				0.01	0.01			Tr
1999	23	0.04	I		0.28	1.85		0.33	. *		0.11		
1999	24	1.29	Tr	0.34		0.50		0.01				0.02	1
1999	25	Tr	0.06	Tr		Tr,	Tr	Tr		0.09		0.20	
1999	26		0.01		Tr				1.67			0.03	
1999	27	Tr		0.02	Tr				0.21			0.23	
1999	28	0.07	1.48	0.37		Tr							* * *
1999	29	0.01		0.01			Tr			0.01		Tr	1
1999	30	1					0.02			0.79			
1999	31												i

Table A10-1c

Rainfall at T.F. Green Airport (*)

Sampling Periods of Continuous Monitoring by NBC are marked

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2000	1	Tr		Tr		Tr			0.03				
2000	2	Tr		Tr		0.08	0.42		0.04	0.62			
2000	3	Tr	0.03		0.03			Tr	0.23	Tr			
2000	4	1.25	0.03		0.32			0.09	0.01	0.15	0.03	Tr	
2000	5	0.21	0.01	Tr			Tr				0.22	0.03	
2000	6		Tr				2.57	i	Tr		0.06		
2000	7					Tr	0.08		0.18				1
2000	8		100		0.04	Tr							0.02
2000	9	0.02		0.03	0.47	0.03		Tr	Tr	0.08	Τr	Tr	
2000	10	1.33		Tr		0.87	ľ	Tr	0.43			1.83	0.03
2000	11	Tr	Tr	1.96	0.03	0.03	0.90		0.03			0.04	0.03
2000	12			0.56			0.08						0.01
2000	13	0.12	Τr			0.64			0.46	0.17		0.03	
2000	14		1.47 Tr			0.01	0.07		0.45			0.75	0.64
2000	15		Tr	i	0.04		0.03	0.85	0.04	0.96			
2000	16	Tr	Tr	0.25	0.06		Tr	0.05	0.22		0.09		0.49
2000	17			0.87	0.09		0.26			Tr		Tr	2.23
2000	18		0.35		0.38	0.24	0.01	0.41	0.11		0.69		Tr
2000	19		0.05		0.17	0.50	0.09	0.02	0.01	1.11			0.27
2000	20	Tr	Tr	Tr	0.01	0.07				0.18			0.15
2000	21	Tr	2.5	Tr	1.61	Tr			- 1			ł	
2000	22	i		Tr	1.14	0.30		0.02					0.05
2000	23	Tr			0.05	0.08			0.17	0.21			
2000	24		Tr			0.87			Tr	0.02			
2000	25	0.61	0.35	0.01	5.1			0.01					
2000	26	0.01	0.11	0.04	0.09		· Tr	0.45		0.28		1.91	
2000	27			**			0.20	0.81				·.	1
2000	28		0.20	1.53		Tr	Tr						Tr Tr
2000	29			0.12			0.07				1		Τr
2000	30	Tr		Tr			Tr	0.32	Tr		0.10	0.14	0.34
2000	31	0.64						0.61			0.12		Tr

Year	day	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2001	1					1.12		0.07		<u> </u>	0.09		
2001	2		0.01	0.01			1.54						
2001	3						0.02	1	0.25				
2001	4	6 July 19						0.15	0.37	0.05			
2001	5	0.10	0.93	1.53				0.35					
2001	6	0.20		0.30	0.23						0.05		
2001	7												
2001	8	0.10	0.04		0.84			0.04					
2001	9	0.02	0.03	0.25	0.11								
2001	10		0.03	0.01				0.09	0.09				
2001	11						2.01	0.41	0.01	li			
2001	12		·		0.72		0.01	0.01	0.61	i l			
2001	13	}		1.01	0.01				0.92	ŀ			
2001	14		0.01								0.04		
2001	15	0.44	0.02	i		0.02					0.03		
2001	16		0.23								0.33		
2001	17			0.04	0.04		2.66	0.08	0.11		0.01		
2001	18		Ī	0.04	0.06		,						
2001	19	0.56			Ī								
2001	20	0.13							1.69	0.01			
2001	21	0.11		0.78	0.02	į				1.05			
2001	22	· .	0.04	2.04		0.66	0.23	1		2.08			
2001	23	i	0.06	0.04		0.75	0.23		0.05		0.07		
2001	24		-	0.01	0.01	1.70	0.02			0.01			
2001	25		0.55		ľ	0.05		0.11		0.32	0.01		
2001	26		0.01	0.12		0.47		0.60	j				
2001	27					0.16			0.17				
2001	28		ļ			0.15			0.01	0.11			
2001	29	.		0.03	İ								
2001	30	0.74		2.57									
2001	31				***************************************								

^(*) Data from May 2000 to December 2001 are from the National Weather Service from their Providence Station.

Table A10-2

Fecal Coliform Monitoring Data

Narragansett Bay Commission

	Fecal Co Concen (col/10	tration		Weather	_	Rainfall Amount during and before Sampling (inches)					
Date	S-2 Whipple Bridge, Lonsdale Ave	S-3 Slater's Mill Dam	Dry Weather (1)	Wet Weather (2)	Mixed Weather	Same Day	1 day	2 days	3 days		
1/14/97	110	1,600	•						0.27		
1/28/97	300	1,600		•		0.95			1.40		
2/11/97	39	930	•						<u> </u>		
2/25/97	93	2,300	•								
3/5/97	230	2,300			•	0.10	0.02	0.04	0.16		
3/11/97	93	2,100			•		0.17		0.03		
3/18/97	93	3,500	•						0.36		
3/25/97	23					0.05	<u></u>		0.23		
4/2/97	430	4,300		•			0.11	1.51	ļ		
4/9/97	23	93	•						ļ		
4/18/97	40	930		•		0.45	0.39		ļ		
4/24/97	43	930				0.01					
4/29/97	40	2,000		•			0.51				
5/7/97	40	930	•				0.09		ļ		
5/16/97	43	1,500			•	0.30	0.07		0.11		
5/20/97	230	4,300	,,	•		0.08	0.60		ļ		
5/29/97	15	4,300									
6/2/97	140	23,000		•		0.11	0.53				
6/10/97	43	4,300							ļ		
6/19/97	230	23,000	•••••			0.19	0.05		ļ		
6/23/97	230	4,300		•			1.26		ļ		
7/1/97	750	230							ļ		
7/10/97	30	150				0.06		0.01	ļ		
7/17/97	40	2,100							ļ		
7/22/97	930	43,000		(•)		0.14	0.02		ļ		
7/29/97	70	930	•						ļ		
8/5/97	330	4,300		•		0.45	0.01	0.09			
8/12/97	40	2,300	······			0.01			0.45		
8/18/97	230	93,000		•		1.09	0.29	0.18			
8/26/97	9	90		- 				0.00	ļ		
9/5/97	23	1,200	•	+		0.36		0.02	0 10		
9/11/97	23	230		+	-	0.36		l	0.12		
9/16/97	43	2,300							0.02		
9/24/97	93	70	.	_		0.44		ļ			
9/29/97	430	93,000		•		0.41	0.02	ļ	0.16		
10/8/97 10/17/97	23	140	<u>-</u>	+					0.16		
10/17/97	230 15	70 43		···		·		·······			
10/27/97	150	1,500	-	•		0.58	0.09	0.82	<u> </u>		
11/3/97	640	430				0.50	0.54	1.39	t		
11/10/97	90	2,300	***************************************	•		0.01	1.24	0.81	0.04		
11/17/97	90	2,300	•	-	-		1.47	<u></u>	1.10		
12/2/97	930	930		+	•		0.30	0.09	T		
12/8/97					<u>-</u>				0.06		
12/17/97	280 93	930						<u></u>	0.06		
12/17/97	2,300	430							 		
12/22/97	2,300 430	150 430			•	0.19	0.42	0.06	0.21		

Table A10-2

Fecal Coliform Monitoring Data

Narragansett Bay Commission

	Fecal Concen (col/10	itration		Weather		Rainfall Amount during and before Sampling (inches)					
Date	S-2 Whipple Bridge, Lonsdale Ave	S-3 Slater's Mill Dam	Dry Weather (1)	Wet Weather (2)	Mixed Weather (3)	Same Day	1 day	2 days	3 days		
06-Jan-98	70	140	•			0.07					
14-Jan-98	230	230	•	***************************************	1		0.23				
21-Jan-98	210	750	•	1	***************************************			Ì	0.10		
29-Jan-98	4,300	2,300	•	1	·				***************************************		
04-Feb-98	930	29	•	<u> </u>	·	0.17	••••••	Ī			
11-Feb-98	23	93			•	0.22					
18-Feb-98	750	4,300	***************************************	•		1.87	0.29				
25-Feb-98	430	430		•		0.06	1.22	0.05			
03-Mar-98	93	39	•		1	0.01	***************************************	0.15	0.49		
10-Mar-98	4,300	4,300	***************************************	•	1		3.02	0.39			
18-Mar-98	150	150	•			0.13			†·····		
26-Mar-98	930	2,300	•				***************************************		İ		
01-Apr-98	230	43	***************************************	•		0.84	•••••	·	İ		
09-Apr-98	23	15	•••••	•		0.63	0.02		†		
14-Арг-98	21	39				1			†		
21-Apr-98	230	43			•		0.35	0.06	İ		
28-Apr-98	9	43	•		·	-	0.01	0.34	·····		
04-May-98	93	93			•	0.19		0.49	0.31		
11-May-98	930	2,300	***************************************	-	·	0.31	1.64	0.83	0.02		
18-May-98	75	2,300 93					0.08	······	1		
26-May-98	43	23					0.09		†·····		
02-Jun-98	230	2,300					0.27	0.66	İ		
15-Jun-98	750	2,300			ļ	0.88	1.37	3.29	0.13		
29-Jun-98	150	2,300		.	·	0.18	1.01	0.16	1		
29-Jun-98 13-Jul-98		93			ļ <u>.</u>	0.10	••••••	V. 10			
27-Jul-98	43 15	93	-		· 		*******				
	43	210			<u> </u>		0.15	·	ł		
12-Aug-98	150	230	<u>.</u>				V. 13	·			
24-Aug-98						0.47	0.54	·			
08-Sep-98	93 150	23,000				U.4/	0.04	·	 		
21-Sep-98		93	•		·						
05-Oct-98	23	430	•						ł		
19-Oct-98	43	93	•		·				 		
02-Nov-98	230	230	•		·						
17-Nov-98	230	230			<u> </u>	0.49			 		
01-Dec-98	430	2,300				0.02					
15-Dec-98	150	460	•					. 	 		
28-Dec-98	15	75	•			0.10		l	1		

Table A10-2

Fecal Coliform Monitoring Data

Narragansett Bay Commission

	Fecal C Concer (col/10	tration		Weather		Rainfa	Sam	during and pling thes)	before
Date	S-2 Whipple Bridge, Lonsdale Ave	S-3 Slater's Mill Dam	Dry Weather (1)	Wet Weather (2)	Mixed Weather	Same Day	1 day	2 days	3 days
11-Jan-99	14,000	4,300		(●)				0.45	0.36
14-Jan-99	1,100			(●)	***************************************	0.26	0.01	0.05	
26-Jan-99	9,300	4,300	•••••	•				1.29	0.04
09-Feb-99	430	150	•	1	·····		•••••••••••	0.04	0.02
23-Feb-99	460	240	•	1			••••••	<u> </u>	
09-Mar-99	93	43	•	1	T		0.02	0.69	
23-Маг-99	460	2,400		I	•		0.47	0.08	
30 - Mar-99		240	•	<u> </u>		<u> </u>	0.01	0.37	0.02
05-Apr-99	43	43	•				0.04		
20-Apr-99	15	43	•						0.02
04-May-99	23	460			•	0.28	0.19	<u> </u>	<u> </u>
18-May-99	93	240	•			0.01		<u> </u>	<u> </u>
01-Jun-99	43	75	•						<u> </u>
14-Jun-99	93	43	•			0.08	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>
21-Jun-99	93	240	•	1		1			
28-Jun-99	23	43	•		<u> </u>				
06-Jul-99	93	460	•					0.03	
12-Jul-99	93	460	.,		<u> </u>				
19-Jul-99	150	750		<u> </u>	•	0.24			
26-Jul - 99	930	430	•	1				0.01	0.33
03-Aug-99	230	90	•					ļ	
10-Aug-99	40	4,300			•		,,	0.72	
16-Aug-99	15,000	2,400		(●)			0.41	0.07	
23-Aug-99	930	230	•				0.01	0.12	0.04
30-Aug-99	2,400	230	•						0.21
07-Sep-99	460	9,300	•	<u> </u>		0.01	0.14		ļ
13-Sep-99	430	230	•	<u> </u>					2.27
21-Sep-99	230	70	•	.	<u> </u>			ļ	ļ <u></u>
28-Sep-99	40	90		4				ļ	0.09
04-Oct-99	150	930			. 	0.90			ļ
12-Oct-99	40	90	•			- 		0.39	0.01
18-Oct-99	110	***************************************		ļ <u>•</u>		0.83	0.37	0.11	
25-Oct-99	90							U.11	
01-Nov-99	40	90	<u> </u>						
08-Nov-99	43		•				0.05	ļ	0.07
15-Nov-99	43		•				0.05		0.07
22-Nov-99	43	93	•					0.05	0.03
29-Nov-99	430	**************	•		<u> </u>	0.40		0.23	10.03
06-Dec-99	150				<u> </u>	0.48			0.02
13-Dec-99	230	43	•			0.04			0.03
20-Dec-99 28-Dec-99	150 150	150 430				0.14		. 	+

Table A10-2

Fecal Coliform Monitoring Data

Narragansett Bay Commission

	Fecal Concen (col/10	tration		Weather		Rainfall Amount during and before Sampling (inches)					
Date	S-2 Whipple Bridge, Lonsdale Ave	S-3 Slater's Mill Dam	Dry Weather (1)	Wet Weather (2)	Mixed Weather (3)	Same Day	1 day	2 days	3 days		
04-Jan-00	1,500	930		•		1.25					
10-Jan-00	930	230	***************************************	•		1.33	0.02				
18-Jan-00	230	230	<u> </u>								
24-Jan-00	93 150	93	•	•			0.64		}		
01-Feb-00 08-Feb-00	23	230 43					0.04		0.01		
15-Feb-00	110	430			·		1.47				
21-Feb-00	230	93	•					0.05	0.35		
28-Feb-00	390	430		1	•	0.20		0.11	0.35		
07-Mar-00	4	23	•						ļ		
13-Mar-00	2,300	2,300		•			0.56	1.96	ļ		
22-Mar-00	930	430	•		ļ			ļ <u></u>	ļ <u>.</u>		
28-Mar-00		24,000				1.53		0.04	0.01		
04-Арг-00		230			ļ•	0.32	0.03	0.47	0.04		
11-Apr-00	150 2,100	240 1,100				0.03	0.09	0.06	· + · · · · · · · · · · · · · · · · · · ·		
18-Apr-00 25-Apr-00		1,100	•		·	0.30	0.09	0.05	0.04 1.14		
01-May-00		23	•					0.00	† <u>!:::</u> -		
08-May-00		43	•						†		
15-May-00	150	150			•		0.01	0.64	1		
22-May-00		230		••••••••••	•	0.30		0.07	0.50		
30-May-00	93	240	•						İ		
05-Jun-00	120	93	•						0.42		
13-Jun-00	930	430			•		0.08	0.90			
20-Jun-00	93	230	•				0.09	0.01	0.26		
26-Jun-00	43	150	•						ļ		
05-Jul-00	39	93	•				0.09				
10-Jul-00		93	•		ļ <u>.</u>			0.05	 		
17-Jul-00		2,300					0.05	0.85 0.02	· 		
24-Jul-00 31-Jul-00	240 430	39 930				0.61	0.32	0.02	 		
07-Aug-00		230	***************************************			0.61 0.18	U.J.L		0.01		
15-Aug-00		240		•	·	0.04	0.45	0.46	†		
21-Aug-00		43	•	T	·†			0.01	0.11		
28-Aug-00		23	•								
05-Sep-00	430	2,300			•		0.15		0.62		
11-Sep-00	43	93	•				•••••	0.08	ļ		
18-Sep-00	75	430	•						0.96		
25-Sep-00		150	•				0.02	0.21			
02-Oct-00	43	150	•		4				 		
10-Oct-00		93					0.09		 		
17-Oct-00 24-Oct-00		93 150			·		0.09		·		
30-Oct-00	3	150	•		+	0.10		†	·		
06-Nov-00	3	23	•		 	··· 	0.03		†		
14-Nov-00		2,300		•		0.75	0.03		0.04		
20-Nov-00		15	•	<u> </u>	<u> </u>				I		
27-Nov-00	210	750		•			1.91		1		
04-Dec-00		93	•						.		
11-Dec-00		23	•			0.03	0.03		0.02		
18-Dec-00 27-Dec-00	***************************************	430 43					2.23	0.49			

Table A10-2 **Fecal Coliform Monitoring Data** Narragansett Bay Commission

	Fecal C Concen (col/10	tration		Weather		Rainfa	Sam	during and pling ches)	before
Date	S-2 Whipple Bridge, Lonsdale Ave	S-3 Slater's Mill Dam	Dry Weather (1)	Wet Weather (2)	Mixed Weather (3)	Same Day	1 day	2 days	3 days
04-Jan-01	93	43	•						
08-Jan-01	43	23	•			0.10		0.20	0.10
16-Jan-01	2,400	210	•••••		•		0.44		
22-Jan-01	230	75			•		0.11	0.13	0.56
29-Jan-01	93	75	•						
05-Feb-01	430	93		•		0.93			0.01
12-Feb-01	750	2,400	•					0.03	0.03
19-Feb-01	430	1,500	•						0.23
26-Feb-01	93	23		•		0.01	0.55		0.06
12-Mar-01	75	43	•	Ī				0.01	0.25
19-Mar-01	430	430	•	1	T		0.04	0.04	
26-Mar-01	430	230	.,	1	•	0.12		0.01	0.04
02-Apr-01	280	230	•	1	1				2.57
09-Apr-01	230	93	***************************************	•	1	0.11	0.84		0.23
16-Apr-01	43	43	•	1	1		***************************************		0.01
23-Apr-01	75	23	•	†				0.02	†····
01-May-01	93	23	•		***************************************				
07-May-01	15	43	•	***************************************					†
14-May-01	93	43	•		†·····				†
21-May-01	43	93	•	1	†·····		***************************************		†
29-May-01	150	210		†	•	1	0.15	0.16	0.47
04-Jun-01	2,400	1,500		•	ļ		0.02	1.54	ļ
11-Jun-01	43	230	***************************************	•	·	2.01		ļ	†····
18-Jun-01	2,300	15,000			·		2.66		f
25-Jun-01	24,000	930	•	†	†·····	†····	0.02	0.23	0.23
02-Jul-01	4,300	430	•	†····	†·····		0.07		†
09-Jul-01	150	230	•	†	 		0.04		†
16-Jul-01	230	210	•	†····	†				†
23-Jul-01	90	90	•	†	†	†			†
30-Jul-01	9	43	<u> </u>	†·····		†·····		· · · · · · · · · · · · · · · · · · ·	t
06-Aug-01	430	430		†·····	•	T		0.37	0.25
14-Aug-01	2,300	2,300		•	ļ		0.92	0.61	0.01
20-Aug-01	2,300	4,300				1.69			0.11
27-Aug-01	<u>2,300</u>	230		† <u>-</u>	 	0.17			† <u>*::</u> -!
04-Sep-01	40	230	•	 	·····	0.05		•••••	
10-Sep-01	93	230	•	·					
17-Sep-01	230	230	•	+	 				ł
24-Sep-01	430	930		·	ļ	0.01		2.08	1.05
01-Oct-01	230	230	•	ļ	·	0.09		2.00	0.11

 ⁽¹⁾ Dry Weather: Rainfall less than 0.05" on the day of sampling and rainfall of less than 0.3" on days 1 to 4 prior to sampling day.
 (2) Wet Weather: Rainfall of more than 0.3" on day of sampling, rainfall of more than 0.5" one day before sampling, and/or rainfall of more than 1.0" on days 2 and 3 prior to sampling.
 (3) Mixed Weather: Conditions that did not meet Wet or Dry Weather criteria.

Table A10-2

Fecal Coliform Monitoring Data
Narragansett Bay Commission

	All Samples		Dry W	eather	Wet W	eather	Mixed V	Mixed Weather		
	S-2 Lonsdale Ave	S-3 Slater's Mill	S-2 Lonsdale Ave	S-3 Slater's Mill	S-2 Lonsdale Ave	S-3 Slater's Mill	S-2 Lonsdale Ave	S-3 Slater's Mill		
	Statistics - 1997									
Count	47	46	26	25	14	14	7	7		
Geom. Mean	101	1,268	60	547	213	5275	153	1477		
Minimum	9	43	9	43	40	430	23	230		
Maximum	2,300	93,000	2,300	4,300	930	93000	930	23000		

	Statistics - 1998								
Count	37	37	23	23	8	8	6	6	
Geom. Mean	140	245	102	171	384	943	125	162	
Minimum	9	15	9	23	23	15	23	43	
Maximum	4,300	23,000	4,300	2,300	4,300	23,000	230	2,300	

	Statis	tics - 1999						
Count	41	41	30	31	6	5	5	5
Geom. Mean	183	264	128	145	1,812	3,287	99	882
Minimum	15	43	15	43	110	930	23	150
Maximum	15,000	9,300	2,400	9,300	15,000	9,300	460	4,300

Statistics - 2000								
Count	52	52	32	32	11	11	9	9
Geom. Mean	100	179	41	78	520	861	311	500
Minimum	3	15	3	15	110	230	43	150
Maximum	2,300	24,000	930	430	2,300	24,000	2,100	2,300

Statistics - 2001								
Count	39	39	25	25	9	9	5	5
Geom. Mean	222	201	140	136	555	596	434	201
Minimum	9	23	9	23	43	23	150	75
Maximum	24,000	15,000	24,000	2,400	2,400	15,000	2,400	430

Statistics - All Samples from 1997-2001									
Count	216	215	136	136	48	47	32	32	
Weighted Mean	149	431	94	215	697	2,192	224	645	
Minimum	3	15	3	15	23	15	23	43	
Maximum	24,000	93,000	24,000	9,300	15,000	93,000	2,400	23,000	

The Blackstone River
- Fish Toxics Monitoring
Massachusetts Department of Environmental Protection

(Maietta, 1993)

Table A11-1 1993 Blackstone River Fish Toxics Monitoring Survey for **Tupperware Impoundment**

Species Code	Sample Code	Sample Type	Length (cm)	Weight (grams)
BRF93-1	С	I	54.5	2,300
BRF93-2	LMB	Ī	44.1	1,380
BRF93-3	LMB	Ī	40.4	1,080
BRF93-4	LMB	Ċ	33	510
BRF93-5	LMB	С	32.9	500
BRF93-6	LMB	C	34.5	620
BRF93-7	CP	I	36.9	320
BRF93-8	BB	C	29.7	350
BRF93-9*	BB	C	32.2	370
BRF93-10	BB	С	30.5	370
BRF93-11*	BB	C	29.9	300
BRF93-12	В	C	18.6	120
BRF93-13	В	C	18.9	120
BRF93-14	В	C	21	160
BRF93-15	В	C	21.6	170
BRF93-16	В	C	17.7	130
BRF93-17*	YP	C	25.4	260
BRF93-18	YP	C	26.9	260
BRF93-19	YP	C	22.9	180
BRF93-20	YP	C	20.3	110
BRF93-21	WS	C	44.6	990
BRF93-22	WS	C	46.5	990
BRF93-23	WS	С	41.7	850

^{*}Abnormality noted on field sheets (lesions, tumors, or melanoma)

Species Code	Common Name	Scientific Name
LMB	Largemouth bass	Micropterus salmoides
BB	Brown bullhead	Ameiurus nebulosus
YB	Yellow bullhead	Ameiurus natalis
WP	White perch	Morone americana
YP	Yellow perch	Perca flavescens
В	Bluegill	Lepomis macrochirus
C	Common carp	Cyprinus carpio
WS	White sucker	Catostomus commersoni

Sample Type I – Individual

- C- Composite

Table A11-2 1993 Blackstone River **Results of Metals Analysis for Tupperware Impoundment**

Sample Code	Species	Sample	As	Cd	Cr	Cu	Hg	Pb	Se
	Code	Туре	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
BRF93-1	C	I	Bdl	Bdl	Bdl	1	0.068	Bdl	0.35
BRF93-2	LMB	Ι	Bdl	Bdl	0.6	Bdl	0.479	Bdl	0.16
BRF93-3	LMB	I	Bdl	Bdl	Bdl	Bdl	0.487	1.8	0.15
BRF93-4-6	LMB	C	0.06	Bdl	1.2	Bdl	0.316	Bdl	0.12
BRF93-7	CP	I	Bdl	Bdl	1.4	Bdl	0.038	Bdl	0.07
BRF93-8-11	BB	C	0.03	Bdl	1.4	Bdl	0.055	Bdl	0.09
BRF93-12-16	В	C	Bdl	Bdl	Bdl	Bdl	0.226	2.2	0.28
BRF93-17-20	YP	C	Bdl	Bdl	Bdl	Bdl	0.097	Bdl	0.25
BRF93-21-23	WS	C	Bdl	Bdl	Bdl	0.6	0.100	Bdl	0.31

Abbreviations: Bdl = below method detection limits

Species Code	Common Name	Scientific Name
LMB	Largemouth bass	Micropterus salmoides
BB	Brown bullhead	Ameiurus nebulosus
YB	Yellow bullhead	Ameiurus natalis
WP	White perch	Morone americana
YP	Yellow perch	Perca flavescens
В	Bluegill	Lepomis macrochirus
C	Common carp	Cyprinus carpio
WS	White sucker	Catostomus commersoni

Sample Type I – Individual

C- Composite

Metal	Method Detection Limits (mg/kg wet weight)
Arsenic (As)	0.002
Cadmium (Cd)	0.03
Chromium (Cr)	0.03
Copper (Cu)	0.03
Lead (Pb)	0.05
Mercury (Hg)	0.0002
Selenium (Se)	0.002

Table A11-3
1993 Blackstone River
Results of PCB, Organochlorine Pesticide¹, and Lipids Analyses for
Tupperware Impoundment

Sample Code	Species Code	Sample Type	% Lipids	PCB 1254 (mg/kg)	PCB 1260 (mg/kg)
BRF93-1	С	I	3.90	2.4	2.3
BRF93-2	LMB	I	0.20	Bdl	0.31
BRF93-3	LMB	I	0.13	Bdl	0.19
BRF93-4-6	LMB	C	0.12	Bdl	0.15
BRF93-7	CP	I	0.11	Bdl	Bdl
BRF93-8-11	BB	C	0.60	Bdl	Bdl
BRF93-12-16	В	C	0.21	Bdl	0.26
BRF93-17-20	YP	C	0.12	Bdl	Bdl
BRF93-21-23	WS	C	0.78	0.8	Bdl

Abbreviations: Bdl = below method detection limits

¹ The following organochlorine pesticides were below detection in all samples analyzed: Aldrin, BHC<Lindane, DDD, DDT, DDE, Dieldrin, Endosulfan, Endosulfan Sulfate, Endrin, Endrin aldehyde, Heptachlor, Heptachlor epoxide, Methoxychlor, Toxaphene, Chlordane, Hexachlorocyclopentadiene, Hexachlorobenzene, and Trifurlin.

Species Code	Common Name	Scientific Name
LMB	Largemouth bass	Micropterus salmoides
BB	Brown bullhead	Ameiurus nebulosus
YB	Yellow bullhead	Ameiurus natalis
WP	White perch	Morone americana
YP	Yellow perch	Perca flavescens
В	Bluegill	Lepomis macrochirus
C	Common carp	Cyprinus carpio
WS	White sucker	Catostomus commersoni

Sample Type

I – Individual

C- Composite

Rapid Bioassessment Screening of Rhode Island Freshwater Benthic Macro-invertebrates

(Gould, 1998; 1999; 2000)

Table A12-1 Nipmuc River

Biological Protocol Ranking

		Count	
Organism	1998	1999	2000
Chimarra		6	37
Chironomidae		3	2
Coleoptera	က		
Diptera		_	
Ephemeroptera	6	13	
Hemiptera			_
Hydropsyche	73	36	41
Megaloptera	က	5	4
Odonata	-	7	_
Oligochaeta		_	4
Plecoptera	7	25	6
Porifera	-		
Sialidae			_
Simulidae	2		
Tipulidae	-		
Score Calculation			
Total Count	100	100	100
Taxa Richness	6	6	6
Shredders/Total	0.110	0.260	0.090
EPT Index	68	83	87
FBI	3.99	3.63	3.84
% Contribution	73.00%	36.00%	41.00%
Scrapers/Filter	0.180	0.280	0.010
Community Loss	0.950	0.950	0.930
Jaccard Coefficient	0.500	0.556	0.500
Total	81 %	75%	20%

Table A12-2

Pascoag River

Biological Protocol Ranking

3.88 36.00% 0.360 0.930 0.438 **75%** 0.200 2000 100 36 19 24 37.40% 0.390 0.789 0.333 **75%** Count 0.065 1999 85 3.73 23 9 46 2 2 9 89.00% 0.030 0.980 0.222 **75%** 0.030 89 4.12 1998 89 m m d Jaccard Coefficient **Total** Score Calculation Community Loss **Ephemeroptera** Shredders/Total axa Richness % Contribution Scrapers/Filter **Hydropsyche** Vegaloptera -epidoptera Oligochaeta otal Count Organism Stenonema Coleoptera Hemiptera Simulidae EPT Index Chimarra Hirudinea Odonata ipulidae. EB

Table A12-3 **Keech Brook**

Biological Protocol Ranking

		Count	
Organism	1998	1999	2000
Amphipoda	_		
Chironomidae		38	34
Coleoptera		τ-	1
Ephemeroptera		_	
Hemiptera		2	
Hydropsyche	81	44	34
Megaloptera	12	14	5
Odonata	4		∞
Oligochaeta	2		
Plecoptera			17
Tipulidae			τ-
Score Calculation			
Total Count	100	100	100
Taxa Richness	5	9	7
Shredders/Total	0.010	0.010	0.190
EPT Index	81	45	51
FBI	4.46	7.73	6.24
% Contribution	81.00%	44.00%	34.00%
Scrapers/Filter	0.000	0.090	0.030
Community Loss	0.980	0.970	0.940
Jaccard Coefficient	0.222	0.375	0.462
Total	20%	44%	63%

Table A12-4 **Clear River**

Biological Protocol Ranking

		Count	
Organism	1998	1999	2000
Amphipoda		1	2
Chimarra		20	
Coleoptera		10	-
Decapoda	_		2
Ephemeroptera	15		
Gastropoda	τ-	_	
Hemiptera			-
Hirudinea		က	τ-
Hydropsyche	99	40	29
Megalopetera			τ-
Odonata	_		4
Oligochaeta		4	τ-
Simulidae	16	7	29
Stenonema			29
Tipulidae		3	
Score Calculation			
Total Count	100	100	100
Taxa Richness	တ	12	1
Shredders/Total	0.000	0.170	0.030
EPT Index	81	67	58
FBI	4.48	4.37	4.71
% Contribution	%00.99	40.00%	29.00%
Scrapers/Filter	0.480	0.340	1.020
Community Loss	0.970	0.970	0.920
Jaccard Coefficient	0.333	0.214	0.533
Total	93%	81%	%69

Table A12-5
Abbot Run Brook (North Attleboro)

Biological Protocol Ranking

		Count	i
Organism	1998	1999	2000
Chimarra		20	
Chironomidae	-		-
Decapoda			-
Ephemeroptera	13		2
Hemiptera	က		
Hirudinea	ဗ	2	2
Hydropsyche	99	26	68
Isopoda		5	
Megaloptera	ဗ	_	က
Oligochaeta		_	11
Pelecypoda	10		11
Plecoptera	7	45	
Tipulidae			_
Score Calculation			
Total Count	110	100	100
Taxa Richness	∞	7	6
Shredders/Total	0.100	0.500	0.010
EPT Index	06	91	70
FBI	4.69	2.84	5.11
% Contribution	80.09	45.00%	88.00%
Scrapers/Filter	0.240	0.000	0.030
Community Loss	0.873	0.970	0.940
Jaccard Coefficient	0.400	0.333	0.400
Total	81%	63%	20%

Table A12-6
Abbot Run Brook (Cumberland)

Biological Protocol Ranking

Count

Organism	1998	1999	2000
Chimarra		31	6
Decapoda		-	
Ephemeroptera	06		42
Hydropsyche	10	62	34
Megaloptera			
Oligochaeta		_	
Plecoptera		5	
Stenonema			4
Score Calculation			
Total Count	100	100	100
Taxa Richness	2	5	5
Shredders/Total	0.000	0.050	0.000
EPT Index	100	86	89
FBI	4.9	3.58	4.77
% Contribution	90.00%	62.00%	42.00%
Scrapers/Filter	9.000	0.000	0.980
Community Loss	0.980	0.980	0.970
Jaccard Coefficient	0.333	0.250	0.214
Total	26%	20%	63%

Table A12-7 Blackstone River

Biological Protocol Ranking

Amphipoda Chironomidae 1 Decapoda 1 Ephemeroptera 16 Hirudinea 2 Hydropsyche 79 Odonata 79 Pelecypoda 1 Stenonema 1 Tipulidae 1 Total Count 98 Total Count 6 Shredders/Total 95 EPT Index 95 FBI 4.36 % Contribution 79.00% Scrapers/Filter 0.200		
a 16 2 2 2 79 79 1 1 1 1 8 6 8 6 95 19 95 19 95 79.00%	_	
1 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7	∞
16 2 2 79 79 79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	
2 79 79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16	20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 1	
1 1 1 1 1 1 1 1 1 1	79 91	46
lation 98 6 6 95 95 95 95 95 729.00%		∞
lation 98 98 6 6 95 95 4.36 79.00%		∞
1 98 98 6 910 95 95 4.36 79.00%		10
lation 98 6 6 10.010 95 4.36 79.00%	1	
98 6 6 19 95 79.00%		
6 al 0.010 95 4.36 79.00%	98 100	100
al 0.010 95 4.36 79.00% 0.200	6 4	6.00
95 4.36 79.00% 0.200	0.010 0.010	0.00
4.36 79.00% 0.200	95 91	76
79.00%	4.36 4.62	5.00
0.200	79.00% 91.00%	46.00%
	0.200 0.000	0.54
Community Loss 0.980	0.980 0.990	0.96
Jaccard Coefficient 0.200	0.200 0.125	0.29
Total 69%	69% 20%	63%

Dr. John King University of Rhode Island

Sediment Core Data
- Tupperware Impoundment
- Valley Falls Pond

(Unpublished data)

Table A13-1

Magnetic Susceptibility in Sediments Tupperware Impoundment

DEPTH	Core	Core
cm	TUPP1	TUPP2
2	14.7	
	25.3	***************************************
8	30.5	***************************************
11	39.4	
14	44	
17	41.3	••••••
20	44 41.3 35.8	
14 17 20 23 26	27.6	•••••
26	22.8	•••••
29	15.4	13.5
32	8.9	8.6
35	6.1	6.2
38	5.5	5.3
41	5.2	4.8
44	4.9	4.2
47	4.5	3.8
50	4	3.4
47 50 53 56	4 3.6 3.4	3.4
56	3.4	3.5
59	3.4	3.4
62	3.4 3.3	3.3
65	3.3	3.4
68	3.4	3.5
71	3.6	4.2 3.8 3.4 3.5 3.5 3.4 3.5 3.5 3.4 3.5 3.5 3.4 3.5 3.3 3.3 3.3 3.3
74	3.8	3.4
77	4.9	3.5
80	•••••••••••••••••••••••••••••••••••••••	3.4
80 83 86	•••••	3.3
86		3.3
89		3.2
89 92	••••••••••••	3.2
95		3
98		2.5

Source: Dr. John King, URI (unpublished data)

Note: No indications were given as to which core was chosen for trace metal analysis. Magnetic susceptibility was utilized as a field procedure to screen for polluted sediments. In general, polluted sediments register greater magnetic susceptibility than non-polluted sediments, i.e., give the sampler some selective capability as to which samples should be laboratory tested.

Table A13-2

Metal Concentrations in Sediments Tupperware Impoundment

Sample	Depth									
Depth	Range	Cadmium	Chromium	Copper	Lead	Nickel	Silver	Zinc	Manganese	Iron
сш	ш	g/gn	6/6n	6/6n	6/6n	6/6n	6/6n	g/gn	ng/g	ug/g
_	0-5	73.9	478.0	630.0	450.0	230.0	1.5	1,560.0	407	26,200
က	2-4	43.4	243.0	450.0	240.0	130.0		1,040.0	306	17,600
5	4-6	31.6	186.0	240.0	180.0	120.0		775.0	279	15,000
7	8 - 9	24.1	223.0	330.0	220.0	100.0		968.0	187	14,600
6	8-10	42.2	470.0	0.006	570.0	110.0		2,140.0	387	32,200
11	10-12	23.5	327.0	580.0	400.0	0.09		1,380.0	246	24,800
13	12-14	25.6	353.0	700.0	450.0	0.09		1,480.0	293	26,200
15	14-16	27.8	368.0	730.0	480.0	68.0		1,530.0	313	26,500
17	16-18	9.6	229.0	450.0	350.0	40.0		801.0	206	19,800
19	18-20									
21	20-22	0.4	114.0	250.0	1,100.0	13.0		240.0	157	16,800
26	25-27	6.0	13.2	20.0	22.0	4.7		38.2	94	5,100
31	30-32									
36	35-37	0.0	0.9	3.6	3.1	3.3		10.4	02	3,900
41	40-42	0.0	4.5	1.5	2.7	2.5		7.8	29	2,800
51	50-52									
61	60-62	0.0	6.3	1.0	3.5	3.3		7.5	9/	3,200
71	70-72									
81	80-82									
91	90-92	0.0	4.9	0.0	1.5	2.3		6.9	43	3,000
101	100-102	0.0	4.3	0.0	1.3	2.3		6.4	34	2,700

Source: Dr. John King, URI (unpublished data)

Table A13-3

Metal Concentrations in Sediments Valley Falls Pond

Sample									
Depth	Cadminm	Copper	Chromium	Lead	Nickel	Silver	Zinc	Manganese	Iron
cm	6/6n	g/gn	ng/g	6/6n	6/6n	ng/g	g/gn	6/6n	ng/g
1	41.7	377.9	312.6	321.4	116.8	4.00	1,431.6		27,900
3	28.3	239.7	210.2	219.4	81.2	2.71	0.066	375	18,900
5		369.7	323.8	331.4	129.2	3.63	1,515.9	250	27,500
7	41.6	359.8	321.6	323.9	121.1	3.83	1,446.0	496	26,600
6		380.3	342.5	341.8	128.9	3.80	1,559.8		27,200
11		544.8	487.5	470.6	170.6	4.90	2,172.7	999	30,500
16	43.1	448.1	0.744	403.4	130.0	4.40	2,143.7	299	28,500
21		478.9		423.1	153.8	4.50	3,123.5		27,600
26	bi pi patipatipapapapapapapa	6.065	550.7	513.2	125.0	5.18	3,214.5		32,800
31		280.5	302.2	284.5	63.7	2.45	1,771.9	519	22,800
41		646.5		623.1	164.0	4.16	6,481.2	1,899	
51		620.9	1,025.2	627.7	123.4	3.07	7,422.8		63,200
71	40.3	614.5	2.856	637.0	74.2	0.76	4,926.5		34,900
81	6.1	487.3	949.0	616.2	50.9		1,939.0		22,000
83		435.8	8.998	555.8	46.8		1,660.0	383	21,900
91	4.8	474.8	871.9	739.8	95.7		876.4		22,300
113	0.1	12.2	26.6	0.9	7.7		30.8		10,400
123	0.5	12.3	24.8	7.5	6.7	0.18	34.2		009'6
143		6.5	13.5	2.6	0.0	0.21	22.8	116	6,400
153	0.2	7.0	11.9	2.8	5.8	0.20	21.4		5,700

Source: Dr. John King, URI (unpublished data)

Table A13-4

Nutrient Concentrations in Sediments

Valley Falls Pond

Sample Depth (cm)	Carbon (ug/mg)	Nitrogen (ug/mg)	Phosphorus (ug/g)
1	88.8	6.3	1,795
3	71.9	4.8	1,837
9	70.2	4.8	2,112
16	87.9	6.2	2,077
31	151	22.1	1,494
51	172.2	9.4	1,499

Source: Dr. John King, URI (unpublished data)

RIPDES Permitted Discharges

Effluent Monitoring Data January 1997 to October 2001

(Unpublished data)

RIPDES-Permitted Discharges: Effluent Data, 1997 – 2001

(RIDEM, unpublished data)

Effluent discharge data are summarized for the following facilities that discharge constituents of concern (i.e., copper, lead, fecal coliform, nutrients):

•	Atlantic Thermoplastics	Branch River
•	Blackstone Smithfiled Corporation	Blackstone River
•	Burrillville Wastewater Treatment Facility	Branch River
•	Okonite Company	Blackstone River
•	Osram Sylvania Products, Inc (2 outfalls)	Blackstone River
•	Woonsocket Wastewater Treatment Facility	Blackstone River
•	Zambarano Memorial Hospital	Clear River

The location of these facilities is presented in Figures 2-13A and 2-13B in the main text.

Table A14-1 Effluent Monitoring Data: Atlantic Thermoplastics Data Period: January 31, 1997, to October 31, 2001

Flow	gallons per day				2,988	┖	0	10	0		9:	N:O	<u>ज</u> ा		1	<u> </u>	_	T		1 1			1				Γ"		_	63
Fecal molifoD	MPN/ 100 ml			25	24,000		93(2	24,00		93	2	24,00										L							9
Chlorine, Total Residual	l/Bn																													
Zinc, lstot	l/Bn			***************************************									-												***************************************					
Silver, total	l/ôn																													
Mickel, total	/bn																													
Lead, fotal	l/gu																													
Copper, total	l/bn				-												_													
Chromium, total	l/gu			***************************************									-									ŀ								
Chromium (VI)	l/gu						 										-		Ļ		-								_	
,muimbsO	l/6n				-		L									***************************************			L				_							_
Cyanide, total	l/gu										0.1					***************************************											_			:
lstoT sunonqsodd (9 ss)	mg/l										5.42	0.0	9.75			-									,					63
Kjeldahl Nitrogen (as N)	l/gm																						_							
Witrate (N ss)	l/gm						_				12.20		_				-												_	9 63
Mitrite (as N)	l/gm								4		ļ	0.01	2																	3 63
sinommA (M 2s)	l/gm						_				25.09	0.20	8.//														_			3 63
Total Nitrogen	l/gm			6	00		6	0	0		6	0 0				2		7					8	0	7		0	0	0	3 63
881	l/gm				100.00		17.99	1	100.00		17.99	i	- 11				0.0							0.00				0.00		63
BODS	mg/l		hly Averag		84.00	ly Average	14.00	3.00	84.00	num Daily	14.00			,		0.16	9.01						0.07	0.00			00.0	00.0	0.0	63
Нq		ions	ns - Mont	6.95	7.60	ns - Week				ns - Maxir	7.73	7.00	0.30	nds/day	Average			Maximum			fay)	Average				Maximun				63
		Concentrations	Concentrations - Monthly Average	Average	Maximum	Concentrations - Weekly	Average	Minimum	Maximum	Concentrations - Maximum Daily	Average	Minimum	MAXIMUM	Loads (pounds/day)	Loads - Daily Average	Average	Maximum	Loads - Daily Maximum	Average	Minimum	Loads (kg/day)	Loads - Daily Average	Average	Minimum	Maximum	Loads - Daily Maximum	Average	Minimum	Maximum	Count

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit. Data Source: Rhode Island Department of Environmental Management

Table A14-2

Effluent Monitoring Data: Blackstone Smithfield Corporation (Outfall 002)

Data Period: January 31, 1997, to October 31, 2001

	Hq	BOD2	SST	Total Nitrogen	sinommA (N 2s)	Mitrite (N as)	Mitrate (as N)	Kjeldahl Nitrog (as N)	Fibosphorus (9 88)	Cyanide, total	cadmium, fotal	Chromium (VI)	Chromium, total	Copper, total	Lead, total	Nickel, total	Silver, total	Zinc, '	Chlorine, Total Residual	Fecal Coliform	Flow
		l/gm	l/gm	mg/l	mg/l	mg/l	mg/l	l/gm	l/gm	l/ßn	l/gn	l/gn	l/Bn	l/Bn	l/gu	l/ĝn	l/bn	l/Ĝn	l/ôn	MPN/ 100 ml	gallons per day
Concentrations	ons																				
Concentrations - Monthly Average	s - Month	ly Average	ď																		
Average	7.63	31.75					-													4.981	2.99
Minimum	7.60	3.00	2.28																	2	2,400
INIGALITICALITY	Week!	100.00							1											24,000	4,60
Concentrations - weekly Average	IS - Weeki	y Average							-		-										
Minimim			19.01														-				
Maximum			57.00						-			***************************************					-				
Concentrations - Maximum Daily	s - Maxim	um Daily											1			1	1				
Average	7.81		19.61		10.46	2.02	4.21		2.93										1.19		3.65
Minimum	7.70		2.28		0.40	0.01	0.12		0.45										08.0		3,360
Maximum	8.10		57.00		39.80	13.00	27.30		20.00										2.00		4,80
Loads (pounds/day)	nds/day)																				
Loads - Daily Average	4verage																				
Average		0.78	0.52														·				
Minimum		0.07	l																		
Loads - Daily Maximum	Maximum	10.0																			
Average														_							
Minimum																					
Loads (ka/dav)	, <u>e</u>					1	1							1							
Loads - Daily Average	Average														[
Average		0.35																			
Minimum		0.03													***************************************	-					
Maximum		1.74	0.72																		
Loads - Daily Maximum	Maximum																				
Average									-												
Maximum																					
NGAILIGH.							\dagger				\parallel	\dagger		╽	╁	\parallel	\parallel				
Count 48 48 48 48	48	48	48	48	48	48	48		48										48	48	48

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit. Data Source: Rhode Island Department of Environmental Management

Page A14-3

Table A14-3

Effluent Monitoring Data: Burrillville Wastewater Treatment Facility

Data Period: January 31, 1997, to October 31, 2001

	Hq	BODS	SST	Total Nitrogen	sinomm A (N 2s)	Mitrite (N 25)	Nitrate (N 25)	Kjeldahl Nitrogen (8 26)	Photolics (9 28)	Cyanide, total	Cadmium, total	(V) muimort)	Chromium, total	Copper, total	Lead, total	Nickel, total	Silver, total	Zinc, total	Chlorine, Total Residual	Fecal Coliform	Flow
		l/gm	mg/l	mg/l	mg/l	mg/i	mg/l	l/ĝm	l/gm	l/6n	l/ôn	l/gn	l/6n	l/gu	l/6n	l/ĝn	l/ôn	l/bn	l/gu	MPN/ 100 ml	gallons per day
Concentrations	Suc																				
Concentrations - Monthly Average	s - Month	ily Average																			
Average	6.40	5.78		1	1	0.7	5.26	10.29	0.70					22.38	1.31		0.28	32.12	10.00		
Minimum	6.02	2.00	4.70	7.70	0.89	0.09	0.39	3.31	0.35					6.30	1.00		0.20	6.30	10.00	2	640,000
Maximum	6.81					1.6	11.95	23.00	1.56					74.30	2.40		0.50	73.40	10.00		$\overline{}$
Concentrations	s - Weekly	y Average																			
Average		8.10																		75	
Minimum		2.70	6.00																	က	
Maximum		17.80	- 1																	300	
Concentrations	s - Maxin	2																			
Average	7.30		17.83	20.37			3.39	14.24	1.17	10.02	0.81			32.07	2.42	_	0.71	46.32	11.04		1,100,00
Minimum	6.84	3.90	7.50	9.60	1.70		0.01	5.60	0.69	0.10	0.10			9.00	1.00		0.20	8.00	10.00	∞	700,00
Maximum	7.89		54.00	32.70	- 1		16.00	30.00	2.20	22.00	5.00			91.60	8.00		1.40	119.00	40.00		2,580,000
Loads (pounds/day)	ıds/day	_																			
Loads - Daily Average	verage	l																			
Average		39.83	li						4.51			-			-						
Minimum		13.00	27.00						2.60												
Maximum Maximum	Lavimina	1.							7.00			_		1	+	-	\dashv	1			
Average		112 83	164 71													-					
Minimum		34.00													***************************************	***************************************			,		
Maximum		370.00							_												
Loads (kg/day)	3V)																				
Loads - Daily Average	verage																				
Average		18.04	32.22						2.04					H				 			
Minimum		5.89	12.23						1.18												
Maximum].		108.72						3.17						\dashv	-					
Loads - Daily Maximum	Jaximum										j			-			ļ				
Average		51.11	74.61	1	Ť	1	+	1				Ť	†	-		-					
Maximum		167.6	222.4									T	+	-		+	-	+			
														-	-		\parallel				
Count	69	69	69	19	19	19	19	19	19	20	20			69	69	_	69	69	69	69	69

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit. Data Source: Rhode Island Department of Environmental Management

Table A14-4 **Effluent Monitoring Data:** Okonite Co.
Data Period: January 31, 1997, to October 31, 2001

	ay ay		[8	888	3				8	88				_														34
Flow	gallons per day		0	30,000	5				150,0	60,000	2,004																	
Fecal moliloD	MPN/ 100 ml																											
Chlorine, Total Residual	l/8n																										-1	-
Zinc, lstot	l/bn																											
Silver, total	l/6n																											
Nickel, total	l/gu																											
Lead, total	l/ĝn																											
Copper, total	l/gu								0.02	0.02																	Į.	35
Chromium, fotal	l/gu																										ļ	
Chromium (VI)	l/bn																				L						L	
Cadmium, total	l/bn																											
Cyanide, total	l/6n																			Ì								
lstoT sunodqsodq (9 ss)	mg/l						***************************************																					
Kjeldahl Nitrogen (as N)	l/gm																								***************************************			
Mitrate (N 25)	mg/l																											-
Mitrite (N 26)	l/gm																										L	- 11.
sinommA (V 2s)	mg/l																								***************************************			
Total Mitrogen	mg/l									-					-												_	
SST	mg/l		۵.																								L	
BODe	mg/l		hly Averag		lv Average	,		num Daily				7												ا				
Hq		ions	1s - Month	3.30	s - Week			ıs - Maxir	7.28	6.90		nds/day	Average			Maximun			<u> </u>	Average				Maximun			26	5
		Concentrations	Concentrations - Monthly Average	Maximum	Concentrations - Weekly Average	Average	Maximum	Concentrations - Maximum Dally	Average	Minimum		Loads (pounds/day)	Loads - Daily Average	Minimim	Maximum	Loads - Daily Maximum	Average	Minimum	Vehinale (knidav	Loads - Daily Average	Average	Minimum	Maximum	Loads - Daily Maximum	Average	Minimum	ţ	Country 34

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit. Data Source: Rhode Island Department of Environmental Management Table 14-5

Effluent Monitoring Data: Osram Sylvania Products, Inc. (Outfall 001)
Data Period: January 31, 1897, to October 31, 2001

10 10 10 10 10 10 10 10							ľ			 				-			ŀ	-				
Mathematical Participation Mathematical P		Hq	BODe	SST	Total Mitrogen		ll l			Phosphorus			Chromium (VI)			fstot	31	ll l			11	Flow
Might Migh							-														MDM	anolless
Intractions Amonthly Average Interdiors Monthly Average 0.003 0.01 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03			l/gm	mg/l	mg/l	mg/l	mg/l	mg/l	mg//	mg/l	l/ĝn	l/gn	l/gn	l/gn	l/gu	l/gu	l/ôn	l/gn	l/gn	l/gu	100 ml	galloris per day
Company Comp	Concentrati	ions																				
7.50 2.50	Concentration	s - Month	ly Average																			
Table Tabl	Average	7.50					-						0.03	0.01		0.03		0.02				580.000
Interference Maximum Daily	Minimum	7.00											0.03	0.01		0.02		0.00				460,000
The first of the	Maximum	7.40					$\left\ \cdot \right\ $						0.03	0.02		0.05	1	0.04				710,000
The color of the	Concentration	ıs - Weekl	y Average																			
The state of the	Average																					
National Particular National Particular	Minimum		***************************************	-																		
Table Tabl	Maximum			-	1								-				_					
1.55 1.50	Concentration	ıs - Maxim	um Daily			•																
Marche 7.30 March 7.30 Mar	Average	7.55											0.03	0.02		0.03		0.02				
Figure 190 1	Minimum	7.30	_				_						0.03	0.01		0.02	_	0.01				
Second Strategy Page Pag	Maximum	7.90											0.03	0.02		0.05		0.04				
A A A A A A A A A A	mou) spec [(vich/shu																				
1986 28 29 28 29 29 29 29 29	Loads - Daily A	Average																				
19.06 19.0	Average	267121	-	40.28									f				f	-				
Table Fig. 4 Fi	Minimim			30.08				***************************************	+								+					
- Daily Maximum - Sage	Maximum			58.41					\dagger								+					
17.70 17.7	Loads - Daily I	Maximum	-	1																		
Fig. 10 Fig.	Average			65.44		-	H			-					-			-				
178.16 18.	Minimum			53.94																		
- Daily Average - Daily Average 22.32 age mum 26.46 - Daily Maximum 26.46 - Daily Maximum 26.46 mum 24.43 mum 35.41 q 4 4 4 4 4 4	Maximum			78.16				1									_	1				
- Daily Average - Baily Average - Baily Maximum - Indin	Loads (kg/d	(ay)																				
age 22.32 mum 17.70 mum 17.70 mum 26.46 mum 22.32 mum mum 24.43 mum 4	Loads - Daily	Average																				
mum 17.70 26.46 6 70 <	Average			22.32					H				-									
Daily Maximum	Minimum			17.70											-							
- Daily Maximum - 29 64 mum	Maximum			26.46										_								
age 29 64 Property of the property of	Loads - Daily	Maximum																				
mum 2443 mum mum 35.41 4	Average			29.64												-	_					
mum 35.41 4 4 4 4 4 4 4 4 4	Minimum			24.43																		
4 4 4	Maximum			35.41																		
	Count	4	4	4									4	4		V						_

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit. Data Source: Rhode Island Department of Environmental Management

Table 14-6

Effluent Monitoring Data: Osram Sylvania Products, Inc. (Outfall 200)
Data Period: January 31, 1997, to October 31, 2001

	Hq	BOD£	881	Total Nitrogen	sinommA (N 2s)	Mitrite (8 N)	Nitrate (N es)	Kjeldahl Nitrogen (as V)	Total Phosphorus (R 25)	Cyanide, total	Cadmium, total	Chromium (VI)	Chromium, total	Copper, total	Lead, total	Nickel, total	Silver, total	Zinc, total	lstoT ,niT	Fecal moliloD	Flow
		l/gm	l/gm	l/6m	l/gm	mg/l	l/gm	l/gm	l/gm	l/ßn	l/gn	l/gu	l/gu	l/gu	l/ßn	l/ßn	l/gn	l/bn	l/ßn	MPN/ 100 ml	gallons per day
Concentrations	ions																				
Concentrations - Monthly Average	s - Month	ly Average																			
Average	7.63																				330,000
Maximum	8.00																				670,000
Concentrations - Weekly Average	ıs - Weekl	y Average																			
Average Minimum													_								
Maximum																					
Concentrations	ıs - Maxim	- Maximum Daily																			
Average	8.07										0.99	14.00	2.87	13.87	37.43		3.09	29.26	16.55		530,000
Maximim	, 80 40										3 G	0.01	9.0	43.00	123 00		3000	94 00	00.00		310,000
	2										25.5		200	8	20:02		25:25	2	20:00		200,000,1
Loads (pounds/day)	nds/day																				
Loads - Daily Average	Average								ŀ			ļ									
Average			43.09								0.31										-
Minimum			8.01								0.26										
Loads - Daily Maximum	Maximum		2								25.5										
Average			57.96								0.52										
Minimum			9.36								0.38										
Maximum			504.40			1	1		1		0.64	1	1								
Loads (kg/day)	(ay		:																		=
Loads - Daily Average	Average								-				-								
Average			19.52		***************************************			***************************************	***************************************		0.14										
MINIMUM			3.63				1				0 0	1			Ī						
Maximum j	Maximin		200.90								2									T	
Loans - Dally	MAXILINIII		0000								200						\mid			Ī	
Average			4 24				***************************************				0.17	***************************************						***************************************			
Maximum			228.49								0.29										
Count	e.	e.	152								15	15	1.5	15	14		14	14	11		151
Alexander (1997)	7		1			В-					ļ										

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit. Data Source: Rhode Island Department of Environmental Management

Page A14-7

Table A14-7

Final Effluent Monitoring Data: Woonsocket Wastewater Treatment Facility
Data Period: January 31, 1997, to October 31, 2001

		1	рег			8	88																								_	58
	Flow		gallons per day			9,180	5,230,000					_								_										_	_	
mı	Fecal Oillo		MPN/ 100 ml			13	108		<i>(1)</i>	2	200,00	010	0, 0 C	240,000																	T	58
ne, ?esidual	Chlori Total I		l/ĝn			10.59	56.00					45 46	0.25	430.00						Ì	_											58
	Zinc, total		ng/l			87.27	16.00		-			200 74	39.00								-							Ì				28
	Silver, total		ng/l			0.89	338						0.20																			28
	Nickel, total		l/gn				2.90	1			Ī		4.20																			16
	Lead, total		l/gu				13.20					1	1.00	:																		58
؛ ړ٬	Soppe fotal		l/gn				6.90					AE 96	13.00	206.30																		58
'ɯnị	Chrom total		l/Bn			1	10.00	1				20.00	10.08	260.00																		42
(IV) mui	Сһгот		l/gu			l	9.50					1	10.00	: 1																		16
'wn	Cadmi fotal		/bn			l	0.30					1	0.50																			58
ʻəp	Cyanic total		l/ĝn			ı	10.00 407.60	1				144.40	10.00	1330.00																		58
horus	IstoT qsodq (q ss)		l/gm			5.60	10 20					1	0.70																			58
n Mitrogen	Kjeldal (as V)		mg/l			17.67	2.10					22.22	4.30	74.00																		16
	Nitrate (as N)		mg/l			5	4.07 7.68					1	0.01	1																	Ī	58
	Nitrite (as N)		l/gm				0.05					73.0	900	1																		58
sin	ommA (И гв)		mg/l				30 10	II .				Т	2.00	43.00																		58
litrogen	M IstoT		mg/l			1 5	6.50 35.10	1				20.50	9.00	75.00				_														11
	SST		mg/l				2.40		26.78	3.00	9.19	42.00	5.00	132.00			1,622	114	3,658		4,360	250	50.		735	25	1,657		1,975	113	2,2,7	58
	BODe		mg/l		ly Average	15.69	6.00	∥₹	19.97	8.00	- Maximum Daily			130.00			1,267	393	3,897		3,368	684	2575		574	178	1,765		1,526	310	7	58
	Hq			suc	s - Month	6.75	5.60	s - Weekly			- Maxim	7 20	6.94		ids/day)	Verage				Maximum			* 	Verage				Maximum				52
				Concentrations	Concentrations - Monthly Average	Average	Minimum	Concentrations - Weekly	Average	Minimum	Concentrations		Average	Maximum	Loads (pounds/day)	Loads - Daily Average	Average	Minimum	Maximum	Loads - Dally Maximum	Average	Minimum	Loads (kg/day)	Loads - Daily Average	Average	Minimum	Maximum	Loads - Daily Maximum	Average	Maximum	MGAILUIT	Count

(1) Reported values was 1,550 col/100 ml, which does not appear to the reflected by the original data.

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit.

Data Source: Rhode Island Department of Environmental Management

Table A14-8

Effluent Monitoring Data: Dr. U.E. Zambarano Memorial Hospital
Data Period: January 31, 1997, to October 31, 2001

	Hq	BODS	881	Total Nitrogen	sinommA (V 25)	Witrite (88 N)	Witrate (N 26)	Kjeldahl Nitrogen (as V)	lstoT Phosphorus (9 ss)	Cyanide, total	,muimbeO lesot	(IV) muimondO	Chromium, total	Copper, total	Lead, total	Nickel, total	Silver, total	, cini. Siot	Chlorine, Total Residual	Fecal mrofiloD	Flow
					:			:			:									MPN/	gallons
		mg/l	mg/l	mg/l	mg/	mg/l	mg/l	mg/	mg/l	l/6n	l/Bn	l/gu	l/gu	l/gu	l/ĝn	l/ĝn	l/gu	l/ôn	l/6n	100 m	per day
Concentrations	Suc																				
Concentrations - Monthly Average	s - Month	lly Average	100												f	-	-		000	Ī	000
Minimum	6 23	9,84	1 00												+				0000	4 C	30,000
Maximum	7.03	16.30	35.00																1.30	99	70,000
Concentrations - Weekly Average	s - Weekl	y Average																			
Average		5.88																	3.11	22	
Minimum		2.10																	0.10	0	
Maximum	_	26.00	65.00											 .					128.00	1,100	
Concentrations	- Maxin	- Maximum Daily																			
Average	90.7	16.98																	1.81	22	80,000
Minimum	6.86	2.10																	1.20	0	40,000
Maximum	7.38	690.00	65.00																2.20	1,100	90,000
Loads (pounds/day)	ds/day																				
Loads - Daily Average	verage																				
Average		2.13																			
Maximum		0.80														+					
Loads - Daily Maximum	laximum																				
Average																		_			
Minimum																					
Loads (ka/dav)	<u>}</u>								1				1	1	1		1				
Loads - Daily Average	verage																				
Average	,	0.96			-																
Minimum		0.30						1	-		-		+	+	+	†	+	\dagger	+		
I oads - Daily Maximum	Jaximim												1			1	1			Ī	
Average														-			-		-		•
Minimum								-	-				-	1			-	i			
Maximum																				***************************************	
Count	122	122	122																122	122	122
]					4								$\ $				-			

Note: Values measured as ">" or "<" concentrations were averaged in data base using the actual detection limit. Data Source: Rhode Island Department of Environmental Management

Page A14-9

The Blackstone River Initiative:

Water Quality Analysis of the Blackstone River Under Wet and Dry Weather Conditions

(Wright et al., 2001)

Figure A15-1 Sampling Station Location

Figure 2.2 Blackstone River Watershed Sub-basins (Mass DEP/GIS Office)

Section A15-1

Dry Weather Data - Metals

River Stations

- · Dissolved Cd
- Dissolved Cr
- · Dissolved Cu
- · Dissolved Ni
- · Dissolved Pb
- · Dissolved Cd
- · Dissolved Cr
- Dissolved Cu
- Dissolved Ni
- · Dissolved Pb
- Total Cd
- Total Cr
- Total Cu
- Total Ni
- Total Pb
- Partition Coefficients for Metals

Treatment Plant

All metals

Dissolved Cd Conc.(ppb), Avg. Hardness (ppm), Fresh Water Aquatic Life Criteria(ppb)

July Survey 1991

STN.			RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	0.02	0.05	0.02	0.08	0.04	0.03	0.09	0	73.94	2.37	0.76
BLK02	2.49*	3.03*	3.45*	3.30*	3.07*	0.42	3.74	2.4	66.35	2.1	0.7
BLK03	2.14*	1.88*	2.52*	1.54+	2.02*	0.41	2.68	1.36	59.61	1.87	0.65
BLK04	1.33+	1.59+	1.04+	1.07+	1.26+	0.26	1.67	0.85	66.81	2.12	0.71
BLK05	0.02	0.02	0.02		0.02	0	0.02	0.02	52.23	1.61	0.58
BLK06	0.47	0.54	0.91+	0.77+	0.67+	0.2	1	0.35	60.27	1.89	0.65
BLK07	0.12	0.25	0.64	0.92	0.48	0.37	1.06	-0.1	55.95	1.73	0.61
BLK08	0.11	0.16	0.28	0.18	0.18	0.07	0.29	0.07	54	1.67	0.6
BLK09	0.02	0.02	0.02		0.02	0	0.02	0.02	19.16	0.52	0.26
BLK10	0.02	0.02	0.02	0.02	0.02	0	0.02	0.02	21.89	0.6	0.29
BLK11	0.23	0.23	0.28	0.43	0.29	0.09	0.44	0.14	45.74	1.38	0.52
BLK12	0.36	0.22	0.17	0.08	0.21	0.12	0.39	0.02	45.04	1.36	0.52
BLK13	0.12	0.13	0.15	0.19	0.15	0.03	0.19	0.09	40.42	1.2	0.48
BLK14	0.02	0.02	0.02	0.02	0.02	0	0.02	0.02	14.88	0.39	0.21
BLK15	0.02	0.02	0.09	0.02	0.04	0.04	0.09	-0.02	24.54	0.68	0.32
BLK16	0.25	0.02	0.23	0.18	0.17	0.1	0.34	0	35.74	1.05	0.43
BLK17	0.33	0.05	0.26	0.01	0.16	0.13	0.39	-0.02	40.34	1.2	0.48
BLK18	0.16	0.22	0.45	0.23	0.27	0.13	0.47	0.06	41.27	1.23	0.48
BLK19	0.12	0.13	0.22	0.18	0.16	0.05	0.24	0.09	41,32	1.23	0.48
BLK20	0.15	0.06	0.21	0.12	0.14	0.06	0.23	0.04	42.14	1.26	0.49
BLK21	0.02	0.02	0.13	0.17	0.09	0.08	0.21	-0.04	43.55	1.31	0.5

Aug Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	0.22	0.23	0.2		0.22	0.02	0.25	0.18	65.41	2.07	0.69
BLK02	3.27*	4.11*	3.87*	3.82*	3.77*	0.36	4.33	3.2	55,15	1.7	0.6
BLK03	2.93*	2.94*	3.25*	3.32*	3.11*	0.2	3.43	2.79	55.2	1.71	0.6
BLK04	2.10*	2.68*	2.78*	2.15*	2.43*	0.35	2,99	1.87	54.34	1.67	0.6
BLK05	<u> </u>	0.12	0.05	0.02	0.06	0.05	0.19	-0.06	44.17	1.33	0.51
BLK06	1.56+	1.43+	1.64*	2.09*	1.68*	0.29	2.14	1.22	51.31	1.57	0.57
BLK07	0.72+	0.70+	0.74+	1.03+	0.80+	0.16	1.05	0.55	47.96	1.45	0.54
BLK08	1.29+	1.08+	1.30+	1.37*	1.26+	0.13	1.46	1.06	43.83	1.32	0.5
BLK09	0.02	0.31	0.07	0.02	0.11	0.14	0.33	-0.12	16.84	0.45	0.24
BLK10	0.08		0.17		0.13	0.06	0.7	-0.57	18.44	0.49	0.26
BLK11	0.42	0.74+	0.81+	0.67+	0.66+	0.17	0.93	0.38	35.61	1.04	0.43
BLK12	0.50+			0.53+	0.52+	0.02	0.71	-0.19	34.53	1	0.42
BLK13	0.54	0.4	0.99	0.25		0.32	1.05	0.04	30.22	0.87	0.37
BLK14	0.21	0.1	0.25+	0.02	0.14	0.1	0.31	-0.02	16.85	0.45	0.24
BLK15	0.08	0.02	0.02	0.02	0.04	0.03	0.08	-0.01	21.18	0.58	0.29
BLK16	0.16	0.05	0.12	0.17	0.13	0.05	0.21	0.04	28.41	0.81	0.36
BLK17	0.3	0.23	0.21	0.32	0.27	0.05	0.35	0.18	29.56	0.84	0.37
BLK18	0.76+	0.81+	0.73+	0.70+	0.75+	0.05	0.82	0.68	32.66	0.94	0.4
BLK19	0.57+	0.57+	0.92+		0.69+	0.2	1.19	0.18	35.39	1.04	0.43
BLK20	0.45	0.38	0.3	0.08	0.30	0.16	0.56	0.05	38.72	1.14	0.46
BLK21	0.42	0.33	0.24		0.33	0.09	0.55	-0.11	37.59	1.11	0.45

Oct Survey 1991

		vey laat									
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	0.28	0.1	0.15	0.11	0.16	0.08	0.29	0.03	47.98	1.46	
BLK02	0.52	1.17+	2.30*	2.60*	1.65+	0.97	3.19	0.1	53.94	1.66	0.59
BLK03	3.62*	0.87+	1.64*	2.10*	2.06*	1.16	3.9	0.21	52.91	1.63	
BLK04	1.01+	0.62+	1.47+	1.37+	1.12+	0.39	1.73	0,5	49.31	1.5	0.55
BLK05	0.09	0.05	0.05	0.05	0.06	0.02	0.09	0.02	39.59	1.17	0.47
BLK06	0.31	0.58+	1.03+	0.90+	0.70+	0.32	1.22	0.19	46.9	1.42	0.53
BLK07	1.01+	0.79+	0.86+	0.77+	0.86+	0.11	1.03	0.68	44.77	1.35	0.51
BLK08	1.04+	0.92+	0.90+	0.96+	0.96+	0.06	1.05	0.86	44.96	1.35	0.51
BLK09	0.02	0.02	0.02	0.02	0.02	0	0.02	0.02	13.63	0.35	0.2
BLK10	0.2	0.06	0.07	0.05	0.09	0.07	0.21	-0.01	17.57	0.47	0.25
BLK11	0.96+	0.61+	0.71+	0.57+	0.71+	0.18	0.99	0.43	33.24	0,96	0.41
BLK12	0.68+	0.38	0.89+	0.57+	0.63+	0.21	0.97	0.29	33.16	0.96	0.41
BLK13	0.63+	0.55+	0.67+	0.45+	0.58+	0.1	0.73	0.42	31.65	0.91	0.39
BLK14	0.09		0.02	0.02	0.04	0.04	0.14	-0.06	11.54	0.29	0.18
BLK15	0.05	0.05	0.12	0.05	0.07	0.04	0.13	0	18.83	0.51	0.26
BLK16	0.05	0.11	0.05		0.07	0.03	0.13	0	29.14	0.83	0.37
BLK17	0.47+		0.41+	0.41+	0.43	0.03	0.52	0.34	27.98	0.79	0.35
BLK18	0.49+	0.26	0.39+	0,15	0.32+	0.15	0.56	0.09	28.22	0.8	0.36
BLK19	0.49+	0.19	0.3	0.36	0.34	0.13	0.53	0.14	29.32	0.84	0.37
BLK20	0.39+	0.23	0.35	0.43+	0.35	0.09	0.49	0.21	29.49	0.84	0.37
BLK21	0.07	0.26	0.27	0.41+	0.25	0.14	0.47	0.03	30.35	0.87	0.38

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled;

Avg = Average value of all runs considered;

SD = Standard deviation; + Range & -Range = 95% Confidence interval;

* Indicates violations according to the Fresh Water Aquatic Life Criteria;

"+" Indicates violations according to the Chronic Criterion.

BLACKSTONE RIVER WATER SAMPLES ANALYSIS RESULTS Dissolved Cr Conc.(ppb), Avg.Hardness(ppm), Fresh Water Aquatic Life Criteria(ppb)

July Survey 1991

STÑ.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	0.4	2		1.4	1.27	0.81	3.27	-0.74	73.94	1168	148
BLK02	2.1	3.5	2.4	3.5	2.88	0.73	4.04	1.71	66.35	1070	136
BLK03	3	2	1.6	2.7	2.33	0.64	3.34	1.31	59.61	985	126
BLK04	2.1	1.5	2.1	2.7	2.10	0.49	2.88	1.32	66.81	1076	137
BLK05	0.1	0.1	0.1		0.10	0	0.1	0	52.23	882	114
BLK06	1.6	0.9	1.2	1.9	1.40	0.44	2.1	0.7	60.27	990	127
BLK07	1.1	0.4	1.1	2.9	1.38	1.07	3.08	-0.33	55.95	933	120
BLK08	1.3	0.8	<u> </u>	1.4	1.17	0.32	1.97	0.37	54	906	117
BLK09	0.6	0.1	0.3	0.3	0.33	0.21	0.65	0	19.16	397	56
BLK10	0.1	0.1	0.1	0.1	0.10	0	0.1	0.1	21.89	441	61
BLK11	1.6	0.9	0.8	1.2	1.13	0.36	1.7	0.55	45.74	793	103
BLK12	2	0.6	0.9	0.7	1.05	0.65	2.08	0.02	45.04	783	102
BLK13	0.9	0.6	0.6	0.8	0.73	0.15	0.96	0.49	40.42	718	94
BLK14	0.1	0.5	0.1	0.4	0.28	0.21	0.6	-0.05	14.88	325	47
BLK15	0.2	0.1	0.1	0.1	0.13	0	0.1	0.1	24.54	482	66
BLK16	0.1		0.2	0.1	0.13	0.06	0.28	-0.01	35.74	651	86
BLK17	0.6	0.8	0.7	0.4	0.63	0.17	0.9	0.35	40.34	717	94
BLK18	0.4	1	1.1		0.83	0.38	1.77	-0.11	41.27	730	96
BLK19	0.3	0.9	0.5		0.57	0.31	1.33	-0.19	41.32	731	96
BLK20	0.3	0.3	0.6	0.4	0.40	0.14	0.63	0.17	42.14	743	97
BLK21	0.4	0.3	1.3	0.7	0.68	0.45	1.39	-0.04	43.55	762	100

Aug Survey 1991

	Aug Su	rvey 1991				_					
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	ŞD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	3.4	5.9	11.2	4.3	6.20	3.49	11.75	0.65	65.41	1058	135
BLK02	4.3	3.3	i	6.9	4.83	1.86	9.45	0.22	55.15	922	119
BLK03	3.3	3	2.8	4.8	3.48	0.91	4.92	2.03	55.2	923	119
BLK04	2.1	2.9	2.9	2.9	2.70	0.4	3.34	2.06	54.34	911	117
BLK05	0.1	0.4	0.3	0.1	0.23	0.15	0.46	-0.01	44.17	7 71	101
BLK06	1.7		2.2	2.1	2.00	0.26	2.66	1.34	51.31	870	112
BLK07	1.4	2.2	1.7	1.4	1.68	0.38	2.28	1.07	47.96	824	107
BLK08	4.1	1.8	2.4	2.6	2.73	0.98	4.28	1.17	43.83	766	100
BLK09	0.6	0.7	0.4	0.7	0.60	0.14	0.83	0.37	16.84	358	51
BLK10	0.1	0.1	1		0.40	0.52	1.69	-0.89	18.44	385	55
BLK11	1.1	2.3	- 1.7	1.4	1.63	0.51	2.44	0.81	35.61	649	86
BLK12	1.1	1.3	1	1.4	1.20	0.18	1.49	0.91	34.43	633	84
BLK13	1.5	1.2	1.2	0.7	1.15	0.33	1.68	0.62	30.22	569	76
BLK14	0.5		0.3	0.6	0.47	0.15	0.85	0.09	16.85	359	51
BLK15	0.2	0.1	0.1	0.3	0.18	0.1	0.33	0.02	21.18	429	60
BLK16	0.2	0.1	0.1	0.5	0.23	0.19	0.53	-0.08	28.41	542	73
BLK17	0.8	0.6	0.8	0.8	0.75	0.1	0.91	0.59	29.56	559	75
BLK18	1.4	1.3	1		1.23	0.21	1.75	0.72	32.66	605	81
BLK19	0.6	1.1	1	1.1	0.95	0.24	1.33	0.57	35.39	646	86
BLK20	0.9	0.7	0.7	0.9	0.80	0.12	0.98	0.62	38.72	694	91
BLK21	0.9	0.7	0.6	0.8	0.75	0.13	0.95	0.54	37.59	678	89

	Oct	Survey	1991
--	-----	--------	------

		ivey 1991									
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	1.6	1.1	2.1	1.6	1.60	0.41	2.25	0.95	47.98	808	107
BLK02	1.6	1	1.5	2.2	1.58	0.49	2.36	0.79	53.94	889	117
BLK03	1.7	0.8	1.1	2	1.40	0.55	2.27	0.53	52.91	876	
BLK04	1.4	0.6	0.7	1.3	1.00	0.41	1.65	0.35	49.31	826	109
BLK05	0.1	0.1	0.1		0.10	0	0.1	0.1	39.59	690	93
BLK06	0.4	1	0.6	0.5	0.63	0.26	1.04	0.21	46.9	793	105
BLK07	2.1	0.9	0.7	0.9	1.15	0.64	2.17	0.13	44.77	763	102
BLK08	1.3	1	0.8	1.4	1.13	0.28	1.56	0.69	44.96	766	
BLK09	0.4	0.4	0.3	0.4	0.40	0	0.41	0.38	13.63	288	45
BLK10			0.1	0.1	0.10	0	0.1	0	17.57	354	53
BLK11	3.4	0.9	1.1	0.6	1.50	1.28	3.54	-0.54	33.24	598	82
BLK12	1.6	0.8	1.8	0.2	1.10	0.74	2.28	-0.08	33.16	597	82
BLK13	1	0.7	0.6		0.77	0.21	1.28	0.25	31.65	575	79
BLK14	0.3	0.4	0.1	0.1	0.23	0.15	0.46	-0.01	11.54	252	40
BLK15	0.1	0.1	0.1	0.1	0.10	0	0.1	0.1	18.83	376	55
BLK16	0.1	0.1	0.1	0.1	0.10	0	0.1	0.1	29.14	537	75
BLK17	1.5	0.8	0.8	0.7	0.95	0.37	1.54	0.36	27.98	519	72
BLK18	0.9	0.8	0.5	0.7	0.73	0.17	1	0.45	28.22	523	73
BLK19	0.8	0.7	0.7	0.6	0.70	0.08	0.83	0.57	29.32	540	75
BLK20	0.6	0.7	1.3	0.5	0.78	0.36	1.35	0.2	29.49	542	75
BLK21	1.2	1.1	1.1	0.6	1.00	0.27	1.43	0.57	30.35	555	77

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled; Avg = Average value of all runs considered;
SD = Standard deviation; + Range & -Range = 95% Confidence interval;
* Indicates violaitons according to the Fresh Water Aquatic Life Criteria.

Dissolved Cu Conc.(ppb), Avg. Hardness(ppm), Fresh Water Aquatic Life Criteria(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	6.1	1.9	3	1.4	3.10	2.11	6.45	-0.25	73.94	11.34	7.77
BLK02	37.1	27.2	26.4	26.9	29.40	5.14	37.58	21.22	66.35	10.23	7.08
BLK03		22.1	25.2	21.4	22.90	2.02	27.92	17.88	59.91	9.3	6.49
BLK04	19.9	20.4	19.9	19.5	19.93	0.37	20.51	19.34	66.81	10.3	7.12
BLK05	0.1	0.1	0.1		0.10	0	0.1	0.1	52.23	8.17	5.77
BLK06	15.1	14.5	16.9	14.4	15.23	1.16	17.07	13.38	60.27	9.35	6.52
BLK07	7.9	8.6			8.25	0.49	12.7	-4.45	55.95	8.72	6.12
BLK08	7.5	8.3	10.2	7	8.25	1.41	10.49	6.01	54	8.43	5.93
BLK09	0.1	0.1	0.1	0.1	0.10	0	0.1	0.1	19.16	3.18	2.45
BLK10	1.3	0.1	0.1	0.1	0.40	0.6	1.35	-0.55	21.89	3.6	2.75
BLK11	5.1	6.4	8.5	7.6	6.90	1.48	9.25	4.55	45.74	7.21	5.15
BLK12	7.3	5.2	8.1	4.6	6.30	1.67	8.95	3.64	45.04	7.11	5.08
BLK13	5.2	4.1	7.1	2.8	4.80	1.82	7.7	1.9	40.42	6.42	4.63
BLK14	1.2	2.9		0.1	1.40	1.41	4.9	-2.1	14.88	2.5	1.97
BLK15	3.1	0.1	2.2	0.1	1.38	1.52	3.79	-1.04	24.54	4.01	3.03
BLK16	14.7	2.6	4.6	0.1	5.50	6.4	15.69	-4.69	35.74	5.71	4.17
BLK17	4.5	2.9	7.2	1.8	4.10	2.35	7.83	0.37	40.34	6.4	4.62
BLK18		3.7	10.3		7.00	4.67	48.93	-41.93	41.27	6.55	4.72
BLK19	3.8	3.2	6.6	5.4	4.75	1.54	7.21	2.29	41.32	6.55	4.73
BLK20	3.7	3.7	5.2	2.9	3.88	0.96	5.4	2.35	42.14	6.67	4.8
BLK21	3.4	3.7	5.1	3.8	4.00	0.75	5.2	2.8	43.55	6.89	4.94

Aug Survey 1991

		ilvey 1991									
STN.	RUN#1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	6.3	5.3	6	9	6.65	1.62	9.23	4.07	65.41	10.1	7
BLK02	23.2	20.5		20.3	21.90	1.74	24.67	19.13	55.15	8.6	6.04
BLK03	22.4	18	26.6	19.1	21.53	3.87	27.68	15.37	55.2	8.61	6.05
BLK04	24.9	18.2	22.1	19.2	21.10	3.03	25.91	16.29	54.34	8.48	5.97
BLK05	0.1	0.3	2.5	0.1	0.75	1.17	2.61	-1.11	44.17	6.98	5
BLK06	18.5	20.6	20	18	19.28	1.23	21.23	17.32	51.31	8.03	5.69
BLK07	10.8	10.2	12.5	12.4	11.48	1.15	13.31	9.64	47.96	7.54	5.36
BLK08	15	10.3	17.7	16.4	14.85	3.23	19.98	9.72	43.83	6.93	4.96
BLK09	0.1	0.5	0.9	0.1	0.40	0.38	1.01	-0.21	16.84	2.81	2.19
BLK10	0.1	0.3	3.5	2.7	1.65	1.71	4.37	-1.07	18.44	3.06	2.37
BLK11	6	7.2	11.6	6.4	7.80	2.58	11.91	3.69	35.61	5.7	4.16
BLK12	7.2	11.3	8.8	5.8	8.28	2.36	12.03	4.52	34.53	5.53	4.05
BLK13	6	5.1	8.1	4.1	5.83	1.7	8.54	3.11	30.22	4.88	3.61
BLK14	1.5	2.3	1.8	1.5	1.78	0.38	2.38	1.17	16.85	2.81	2.19
BLK15	1.6	0.2	0.1	0.1	0.50	0.74	1.68	-0.67	21.18	3.49	2.67
BLK16	0.5			2.3	1.40	1.27	12.84	-11.44	28.41	4.61	3.43
BLK17	5.4	3.2	4.3	3.9	4.20	0.92	5.66	2.74	29.56	4.78	3.54
BLK18	9.5	6.7	5.5	6	6.93	1.79	9.77	4.08	32.66	5.25	3.86
BLK19	6.5	6.9	6.9		6.77	0.23	7.34	6.19	35.39	5.66	4.14
BLK20	7.8	5.5	5.5	5.6	6.10	0.06	5.68	5.39	38.72	6.16	4.47
BLK21	5.3	6.7	6.4	5.3	5.93	0.73	7.09	4.76	37.59	5.99	4.35

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN#3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	5.4	2.7	8.6	4.8	5.38	2.44	9.26	1.49	47.98	7.54	5.36
BLK02	12.3	8.8	15.4	14.5	12.75	2.94	17.42	8.08	53.94	8.42	5.93
BLK03	12.5	6.8	. 13.6	14.6	11.88	3.49	17.43	6.32	52.91	8.27	5.83
BLK04	12.3	5.6	13.5	15.8	11.80	4.38	18.77	4.83	49.31	7.74	5.49
BLK05	0.8	1.2	1.2	2.5	1.43	0.74	2.6	0.25	39.59	6.29	4.55
BLK06	8.2	8	10.8	10	9.25	1.37	11.43	7.07	46.9	7.38	5.26
BLK07	13.1	7.6	8.6	12.1	10.35	2.66	14.58	6.12	44.77	7.06	5.06
BLK08	11	11.3	10.2	10.2	10.68	0.56	11.57	9.78	44.96	7.09	5.08
BLK09	2	0.8	1	3.1	1.73	1.06	3.41	0.04	13.63	2.3	1.83
BLK10	1.5	1	1		1.17	0.29	1.88	0.45	17.57	2.93	2.27
BLK11	10.6	6.1	8	6.6	7.83	2.02	11.03	4.62	33.24	5.34	3.92
BLK12	7	5	10.9	6.8	7.43	2.49	11.38	3.47	33.16	5.32	3.91
BLK13	7.2	5.9		5.9	6.33	0.75	8.2	4.47	31.65	5.1	3.76
BLK14	3.6	3.8		1.8	3.07	1.1	5.8	0.33	11.54	1.97	1.59
BLK15	2	1.8		1.4	1.73	0.31	2.49	0.97	18.83	3.12	2.41
BLK16	2.5	2.1			2.30	0.28	4.84	-2.54	29.14	4.71	3.5
BLK17	5.1		5.6	6.1	5.60	0.5	6.84	4.36	27.98	4.54	3.38
BLK18	6	8.2	5.6	5.9	6.43	1.2	8.33	4.52	28.22	4.57	3.41
BLK19	4.4	5.3	5.8	6	5.38	0.71	6.51	4.24	29.32	4.74	3.52
BLK20	3.4	4.2		7.6	5.07	2.23	10.61	-0.47	29.49	4.77	3.54
BLK21	6.1	5.3	5.6	5.8	5.70	0.34	6.24	5.16	30.35	4.9	3.63

Blanks represent the statistical outlier (Grubbs & Beck) of total Cu; NS = Not Sampled;

Avg = Average value of all runs considered; SD = Standard deviation; + Range & -Range = 95% Confidence interval;

Dissolved Pb Conc.(ppb), Avg. Hardness(ppm), Fresh Water Aquatic Life Criteria(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	1.9	0.5	0.7	1.1	1.05	0.62	2.04	0.06	73.94	27.8	0.54
BLK02	0.6	0.1	1.1	3	1.20	1.27	3.22	-0.82	66.35	24.22	0.47
BLK03	0.4	0.5	0.6	2.4	0.98	0.95	2.48	-0.53	59.91	21.27	0.42
BLK04	0.1	0.4	2.1	0.2	0.70	0.94	2.2	-0.8	66.81	24.43	0.48
BLK05	0.1	0.1	0.1	2.3	0.65	1.1	2.4	-1.1	52.23	17.86	0.35
BLK06	5.6	94.8	2.6	2	26.25	45.73	99	-46.5	60.27	21.43	0.42
BLK07	1.6	5.8	4.7	5.2	4.33	1.87	7.3	1.35	55.95	19.49	0.38
BLK08	1.8	3	4.2	0.9	2.48	1.44	4.76	0.19	54	18.63	0.36
BLK09	0.9	0.2	0.9	0.7	0.68	0.33	1.2	0.15	19.16	4.98	0.1
BLK10	0.8	1.2	1.6		1.20	0.4	2.19	0.21	21.89	5.91	0.12
BLK11	1.2	3.7	3.4	3.6	2.98	1.19	4.87	1.08	45.74	15.08	0.3
BLK12	2.8		2.6	5.7	3.70	1.73	8.01	-0.61	45.04	14.79	0.29
BLK13	1.5	1.3	2.1	0.8	1.43	0.54	2.28	0.57	40.42	12.89	0.25
BLK14		1.5	0.8	0.2	0.83	0.65	2.44	-0.78	14.88	3.61	0.07
BLK15	0.8			0.4	0.60	0.35	1.31	-0.44	24.54	6.83	0.13
BLK16	5.7	1.3	3.4	1.4	2.95	2.07	6.25	-0.35	35.74	11.02	0.22
BLK17	0.5	0.1	2.3	0.4	0.83	1	2.41	-0.76	40.34	12.85	0.25
BLK18	0.2	0.1	2	0.1	0.60	0.93	2.09	-0.89	41.27	13.23	0.26
BLK19	0.1	0.1	0.8	0.3	0.33	0.33	0.85	-0.2	41.32	13.26	0.26
BLK20	<u> </u>		1.5	0.1	0.80	0.99	9.69	-8.89	42.14	13.59	0.27
BLK21	0.3	0.1	1.6	0.5	0.63	0.67	1.69	-0.44	43.55	14.17	0.28

Aug Survey 1991

	Aug S	urvey 1991									
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	2.5	4.5	4.5	4.2	3.93	0.96	5.45	2.4	65.41	23.78	0.46
BLK02	3.1	2.4		2.5	2.67	0.38	3.61	1.73	55.15	19.14	0.37
BLK03	1.2	3.2		1.2	1.87	1.15	4.74	-1	55.2	19.16	0.37
BLK04	4	4	6.6	1.5	4.03	2.08	7.34	0.71	54.34	18.78	0.37
BLK05		3.3	2.1	0.1	1.83	1.62	5.85	-2.18	44.17	14.43	0.28
BLK06	7.2	11.9	12.8	3.9	8.95	4.17	15.58	2.32	51.31	17.46	0.34
BLK07	5.7	11.5	21	4.6	10.70	7.5	22.64	-1.24	47.96	16.02	0.31
BLK08	13	9.4	24.5	11	14.48	6.48	25.36	3.59	43.83	14.29	0.28
BLK09 BLK10	0.4	4.9	3.2	0.1	2.15	2.3	5.82	-1.52	16.84	4.23	0.08
		2.8	4.6	1.3	2.90	1.65	7	-1.2	18.44	4.75	0.09
BLK11	4.2	9.2		4.3	5.90	2.86	13	-1.2	35.61	10.97	0.21
BLK12	2.2	15.7	6	3	6.73	6.2	16.59	-3.14	34.53	10.55	0.21
BLK13	5.5			0.8	3.15	3.32	33.01	-29.86	30.22	8.9	0.17
BLK14	1.2	1.3	0.9	1.1	1.13	0.17	1.4	0.85	16.85	4.23	0.08
BLK15	1.1		0.2	0.2	0.50	0.52	1.79	-0.79	21.18	5.66	0.11
BLK16	1.7	0.8	1.7	4.3	2.13	1.51	4.53	-0.28	28.41	8.23	0.16
BLK17	1.5	1.3	1.5		1.43	0.12	1.72	1.15	29.56	8.66	0.17
BLK18	5.5	2.6	3.5	1.3	3.23	1.77	6.03	0.42	32.66	9.83	0.19
BLK19	2.5	5	5.1	0.1	3.18	2.38	6.96	-0.61	35.39	10.88	0.21
BLK20	2.3	0.4	2.1	0.1	1.23	1.14	3.03	-0.58	38.72	12.2	0.24
BLK21	2.9	2.2	0.7	0.1	1.48	1.3	3.54	-0.59	37.59	11.75	0.23

Oct Survey 1991

	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	0.4	0.9	2.9	1.4	1.40	1.08	3.12	-0.32	47.98	16.02	0.31
BLK02	0.9	1.3	2	2.7	1.73	0.79	2.99	0.46	53.94	18.6	
BLK03	0.3	0.6	1.4	1.4	0.93	0.56	1.82	0.03	52.91	18.15	0.35
BLK04	2.4	1.6	1.9	2.3	2.05	0.41	2.68	1.37	49.39	16.59	0.32
BLK05	0.7	0.7	0.4	1	0.70	0.24	1.09	0.31	39.59	12.55	0.24
BLK06	2.3	2.3		1.7	2.10	0.35	2.96	1.24	46.9	15.56	0.3
BLK07	6.1	2.9	2.7	3.3	3.75	1.58	6.26	1.23	44.77	14.67	0.29
BLK08	3.7	2.8	2.5	5.8	3.70	1.49	6.07	1.33	44.96	14.75	0.29
BLK09	2.4	1.1	1	0.6	1.28	0.78	2.52	0.03	13.63	3.23	0.06
BLK10	2.4	0.9	1.7	0.9	1.48	0.72	2.63	0.32	17.57	4.46	0.09
BLK11	5.2	1.8	3.4	1.8	3.05	1.62	5.63	0.47	33.24	10.04	0.2
BLK12	6.7	1.5	6.2	1.7	4.03	2.81	8.49	-0.44	33.16	10.01	0.2
BLK13	3	1.8	3.8	1.4	2.50	1.1	4.25	0.75	31.65	9.44	0.18
BLK14		1.2	0.7	10.3	0.73	0.45	1.85	-0.39	11.54	2.61	0.05
BLK15	2.5	0.8	0.4	0.5	1.05	0.98	2.61	0.51	18.83	4.87	0.09
BLK16	. 2.1	1.9	1.2	0.4	1.40	0.77	2.63	0.17	29.14	8.49	0.17
BLK17	9.4	1	1.4	2.3	3.53	3.98	9.85	-2.81	27.98	8.07	0.16
BLK18	3.1	1.7	1.1		1.97	1.03	4.52	-0.58	28.22	8.15	0.17
BLK19	2.2	1.5	1.1	1.4	1.55	0.47	2.29	0.81	29.32	8.56	0.17
BLK20	0.9	1	2.3	1.7	1.48	0.66	2.52	0.43	29.49	8.62	0.17
BLK21	2.1	1.2	1.1	1.9	1.58	0.5	2.37	0.78	30.35	8.94	0.17

Blanks represent the statistical outlier (Grubbs & Beck) of total Pb; NS = Not Sampled;

Dissolved Ni Conc.(ppb), Avg.Hardness(ppm), Fresh Water Aquatic Life Criteria(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	2.8	3.1	3.4	4.6	3.48	0.79	4.73	2.22	73.94	934	104
BLK02	27.8	25.6		24.4	25.93	1.72	30.22	21.65	66.35	852	95
BLK03	20.9	20.6	21.3	17.8	20.15	1.59	22.68	17.62	59.61	781	87
BLK04		18.2	16.6	15.8	16.87	1.22	19.9	13.83	66.81	857	95
BLK05	0.1		0.1		0.10	0	0.1	0	52.23	696	77
BLK06	6.9	7.3	10.8	10.6	8.90	2.09	12.22	5.58	60.27	785	87
BLK07	5.4	7.5	8	7.3	7.05	1.14	8.86	5.24	55.95	738	82
BLK08	6.5	6.7	6.1	5.4	6.17	0.57	7.09	5.26	54	716	80
BLK09	0.1	0.1	0.1	0.1	0.10	0	0.1	0.1	19.16	298	33
BLK10	0.1	0.1	0.1	0.1	0.10	0	0.1	0.1	21.89	333	37
BLK11		5.4	5.1	6.1	5.53	0.51	6.81	4.26	45.74	622	69
BLK12	2.7	5.5	5.8	4.1	4.53	1.42	6.79	2.26	45.04	614	68
BLK13		4.9	5.1	4.5	4.83	0.31	5.59	4.07	40.42	560	62
BLK14	0.1	1.3	1.3	0.1	0.70	0.69	1.8	-0.4	14.88	241	27
BLK15	0.1	0.1		0.1	0.10	0	0.1	0.1	24.54	367	41
BLK16	1.7	1.3	2.7	0.1	1.45	1.08	3.16	-0.26	35.74	505	56
BLK17	4.3		4.5	3.9	4.23	0.31	4.99	3.47	40.34	559	62
BLK18	0.5	3.7		5.5	3.23	2.53	9.52	-3.06	41.27	570	63
BLK19	*****	4.4	5	5.2	4.87	0.42	5.9	3.83	41.32	571	63
BLK20	1.9	3.9	4.1	3.9	3.45	1.04	5.1	1.8	42.14	580	65
BLK21	1.9	2.2	3.4	4.2	2.92	1.07	4.63	1.22	43.55	597	66

Aug Survey 1991

	Aug Si	urvey 1991									
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	8.3	5.7	5.8	8.4	7.05	1.5	9.44	4.66	65.41	842	94
BLK02	38.5	32.8	38.3	50.3	39.98	7.37	51.7	28.25	55.15	728	81
BLK03	34.5	28.5	33.1	35.8	32.97	3.18	38.04	27.91	55.2	728	81
BLK04		28.7	30.3	30.2	29.73	0.9	31.96	27.51	54.34	719	80
BLK05	1.2	0.2	0.9	0.4	0.68	0.46	1.4	-0.05	44.17	604	66
BLK06	24.8		25	25.1	24.97	0.15	25.35	24.59	51.31	685	76
BLK07	18	16.7	19.1	20	18.45	1.42	20.72	16.18	47.96	647	72
BLK08	17.1	14.3	16.4		15.93	1.45	19.5	12.33	43.83	599	66
BLK09	0.1	0.1	0.3	0.6	0.28	0.24	0.66	-0.11	16.84	267	30
BLK10	0.1		0.7		0.40	0.42	4.21	-3.81	18.44	288	32
BLK11	8.6	9.5	10.9	10.5	9.88	1.03	11.52	8.23	35.61	503	56
BLK12	8.6	9.5	9.1		9.07	0.45	10.19	7.95	34.53	490	54
BLK13	8.4	6.4	6.6	7.2	7.15	0.9	8.58	5.72	30.22	438	48
BLK14	0.4		0.5	0.7	0.53	0.15	0.91	0.15	16.85	267	29
BLK15	******************************	0.6	0.1	0.1	0.27	0.29	0.98	-0.45	21.18	324	36
BLK16	0.1	0.1	0.1		0.10	0	0.1	0.1	28.41	416	46
BLK17	5.9		5.2	1.4	4.17	2.42	10.18	-1.88	29.56	429	48
BLK18	7.9	8.1	7	6.7	7.43	0.68	8.51	6.34	32.66	468	52
BLK19	9.3	8.5	***************************************	8.6	8.55	0.07	9.19	-0.64	35.39	500	55
BLK20	9.3	8.9	8.3	9.2	8.93	0.45	9.64	8.21	38.72	540	60
BLK21	6.7	7.8	7.7	8.9	7.78	0.9	9.21	6.34	37.59	526	58

Oct	Survey	1991
-	Out tey	1331

STN.	RUN #1	RÚN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	4.6	2	4.3	3.2	3.53	1.18	5.4	1.65	47.98	647	72
BLK02	11.3	5.7	11.2	13.4	10.40	3.29	15.64	5.16	53.94	714	79
BLK03	11.3		11.2	11.5	11.33	0.15	11.71	10.95	52.91	703	77
BLK04	10.5		10.7	10.7	10.63	0.12	10.92	10.35	49.31	662	74
BLK05	0.5	0.6			0.55	0.07	1.19	-0.64	39.59	550	60
BLK06	6.2	6.6	7.9	6.8	6.88	0.73	8.03	5.72	46.9	634	71
BLK07	7.1	6.9	7.5		7.17	0.31	7.93	6.41	44.77	610	67
BLK08	7.6		8.2	8.3	8.03	0.38	8.97	7.09	44.96	612	68
BLK09	0.1	0.1	0.7		0.30	0.3	1.16	-0.56	13.63	223	25
BLK10	0.1	0.1	0.5	0.7	0.35	0.3	0.83	-0.13	17.57	276	31
BLK11	5.5	0.9	8.8	6.5	5.43	3.32	10.7	0.15	33.24	474	53
BLK12	4.8	0.1	9	6.8	5.18	3.79	11.21	-0.86	33.16	473	53
BLK13	4.9	0.5	8.6	5.5	4.88	3.34	10.18	-0.43	31.65	455	50
BLK14		1.5	3.5	1.2	2.07	1.25	5.17	-1.04	11.54	194	22
BLK15	0.7	0.5		1.4	0.87	0.47	2.04	-0.31	18.83	293	3
BLK16		0.7	3.8	1.1	1.87	1.69	6.06	-2.32	29.14	424	47
BLK17	4	8.3	7.4	4.4	6.03	2.15	9.44	2.61	27.98	410	46
BLK18	3.7	4.9	7.8	4.2	5.15	1.83	8.07	2.23	28.22	413	46
BLK19	4.8	2.3	9.6	4.2	5.23	3.11	10.17	0.28	29.32	426	47
BLK20	4.8	2.4			3.60	1.7	18.85	-15.25	29.49	428	48
BLK21	4.7	2.1	10.2	4.4	5.35	3.44	10.82	-0.12	30.35	439	48

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled;

Avg = Average value of all runs considered;

SD = Standard deviation; + Range & -Range = 95% Confidence interval;
* Indicates violations according to the Fresh Water Aquatic Life Criteria.

BLACKSTONE RIVER WATER SAMPLES ANALYSIS RESULTS Particulate Cd Conc.(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	0.31	0.27	0.38	0.3	0.32	0.05	0.39	0.24
BLK02	0.6	1.31	0.07	0.24	0.56	0.55	1.43	-0.32
BLK03	0.43	0.66	0.35	0.85	0.57	0.23	0.93	0.21
BLK04	0.62	0.58	1.3	0.57	0.77	0.36	1.33	0.2
BLK05	0.08	0.03	0.08		0.06	0.03	0.13	- 0.01
BLK06	0.72	0.39	0.3	0.29	0.43	0.2	0.75	0.1
BLK07	0.65	0.62	0.12	0.17	0.39	0.28	0.84	-0.06
BLK08	1.69	0.89	0.82	1.57	1.24	0.45	1.96	0.52
BLK09	0.03	0.14	0.18	0.1	0.11	0.06	0.21	0.01
BLK10	0.04	0	0.31		0.12	0.17	0.54	-0.3
BLK11	0.54	0.97	1.04	0.91	0.87	0.22	1.22	0.51
BLK12	0.28	0.4	0.22	0.37	0.32	0.08	0.45	0.19
BLK13	0.8	0.46	0.48	0.37	0.53	0.18	0.83	0.22
BLK14	0.16	0.05	0	0.09	0.08	0.07	0.18	-0.03
BLK15	0.03	0.04	0.04	0.07	0.05	0.02	0.07	0.02
BLK16	0.29	0.07	0.65	0.11	0.28	0.26	0.7	-0.14
BLK17	0.24	0.35	0.33	0.4	0.33	0.07	0.44	0.22
BLK18	0.42	0.33	0.1	0.34	0.30	0.14	0.52	0.08
BLK19	0.23	0.25	0.2	0.29	0.24	0.04	0.3	0.18
BLK20	0.2	0.18	0.09	0.24	0.18	0.06	0.28	0.08
BLK21	0.21	0.27	0.27	0.21	0.24	0.03	0.3	0.18

Aug Survey 1991

Aug Guivey 1991										
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"		
BLK01	0.06	0.08	0.18		0.11	0.06	0.27	-0.05		
BLK02	0.88	0.29	0.04	0.34	0.39	0.35	0.95	-0.18		
BLK03	0.57	0.67	0.17	0.2	0.40	0.25	0.81	0		
BLK04	0.73	0.07	0.68	0.39	0.47	0.3	0.95	-0.02		
BLK05		0.01	0.04	0.09	0.05	0.04	0.15	-0.05		
BLK06	0.17	0.07	0.16	0.29	0.17	0.09	0.32	0.03		
BLK07	0.3	0.08	0.21	0.12	0.18	0.1	0.33	0.02		
BLK08	0.79	0.35	0.4	0.66	0.55	0.21	0.88	0.22		
BLK09	0	0.04	0.02	0.11	0.04	0.05	0.12	-0.03		
BLK10	0	0	0.21		0.11	0.15	1.44	-1.33		
BLK11	0.53	0.18	0.37	0.26	0.34	0.15	0.57	0.09		
BLK12	0.28			0.33	0.31	0.04	0.31	0.31		
BLK13	0.13	0.08	0.15	0.28	0.16	0.09	0.3	0.02		
BLK14	0.02	0.01	0.09	0.35	0.12	0.16	0.37	-0.14		
BLK15	0.08	0.1	0.06	0.33	0.14	0.02	0.13	0.03		
BLK16	0	0.01	0.11		0.04	0.06	0.19	-0.11		
BLK17	0.2	0.15	0.3	0.22	0.22	0.06	0.32	0.12		
BLK18	0.13	0.27	0.09	0.54	0.26	0.2	0.58	-0.07		
BLK19	0	0.16	0.01		0.06	0.09	0.28	-0.17		
BLK20	0.11	0.09	0.19	0.22	0.15	0.06	0.25	0.05		
BLK21	0.03	0.05	0.23		0.10	0.11	0.38	-0.17		

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	0.14	0.04	0.08	0.24	0.13	0.09	0.26	-0.01
BLK02	0	0.18	0.55	0.54	0.32	0.27	0.75	-0.12
BLK03	0.2	0.34	1.04	0.62	0.55	0.37	1.14	-0.04
BLK04	0.84	0.71	0.64	0.63	0.71	0.1	0.86	0.55
BLK05	0.04	0.03	0.03	0.03	0.03	0	0.03	0.03
BLK06	2.48	0.48	0.45	0.53	0.99	1	2.57	-0.6
BLK07	0.07	0.39	0.34	0.51	0.33	0.19	0.62	0.03
BLK08	0.6	0.52	0.4	0.46	0.50	0.09	0.63	0.36
BLK09	0.1	0.07	0.06	0.11	0.09	0.02	0.12	0.05
BLK10	0.07	0.04	0.02	0	0.03	0.03	0.08	-0.02
BLK11	0.42	0.78	0.51	0.59	0.57	0.15	0.82	0.33
BLK12	0.5	0.91	0.27	0.48	0.54	0.27	0.97	0.11
BLK13	0.65	0.47	0.55	0.51	0.55	0.08	0.67	0.42
BLK14	0		0.04	0.08	0.04	0.04	0.14	-0.06
BLK15	0.03	0	0.1	Ó	0.03	0.05	0.11	-0.04
BLK16	0.03		0.09	0	0.04	0.05	0.15	-0.07
BLK17	0.04		0.3	0.27	0.31	0.04	0.41	0.21
BLK18	0.41	0.23	0.29	0.62	0.39	0.17	0.66	0.11
BLK19	0.07	0.23	0.26	0.28	0.21	0.1	0.36	0.06
BLK20	0.17	0.14	0.08	0.22	0.15	0.06	0.25	0.06
BLK21	0.48	0.1	0.16	0.19	0.23	0.17	0.5	-0.04

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled; Avg = Average value of all runs considered;

SD = Standard deviation; + Range & -Range = 95% Confidence interval.

Particulate Cr Conc.(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	4.1	2.8	3.6	3.6	3.50	0.54	4.38	2.66
BLK02	2.6	1.6	0.9	2.8	1.98	0.89	3.39	0.56
BLK03	0.4	1.7	0.2	1.6	0.98	0.78	2.22	-0.27
BLK04	1.7	0.9	1.1	1.6	1.33	0.39	1.94	0.71
BLK05	0	0.1	0		0.03	0.05	0.15	-0.09
BLK06	4.2	1.7	0.2	2.6	2.17	1.67	4.84	-0.49
BLK07	5.3	3	2.8	2.8	3.48	1.22	5.42	1.53
BLK08	23.2	6.1		24.9	18.07	10.4	43.9	-7.77
BLK09	0.3	0.4	0.6	1.1	0.60	0.36	1.17	0.03
BLK10	0.3	2.7	0.6	0.8	1.10	1.09	2.83	-0.63
BLK11	4.5	6.5	7.8	9	6.95	1.93	10.01	3.89
BLK12	0.8	1.6	8.0	1.8	1.25	0.53	2.09	0.41
BLK13	1.3	3.8	1.9	1.9	2.22	1.09	3.96	0.49
BLK14	0	0.4	. 0	0.4	0.20	0.23	0.57	-0.17
BLK15	0.3	0	0	0.2	0.13	0.15	0.36	-0.11
BLK16	0.5		1.9	0.6	1.00	0.78	2.94	-0.94
BLK17	0.9	0.2	0.5	1.2	0.70	0.44	1.4	Ö
BLK18	1.5	1.4	0.6		1.17	0.49	2.39	-0.06
BLK19	0.4	0.6	0.7		0.57	0.15	0.95	0.19
BLK20	0.8	0.7	0.4	0.7	0.65	0.17	0.93	0.37
BLK21	0.5	0.8	0.2	0.7	0.55	0.26	0.97	0.13

Aug Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	1.5	3.7	13.3	1.6	5.03	5.61	13.95	-3.9
BLK02	1.4	1.6		1.4	1.47	0.12	1.75	1.18
BLK03	1.6	1.5	1.4	1.2	1.43	0.17	1.7	1.15
BLK04	2.2	1.2	1	0.7	1.27	0.65	2.31	0.24
BLK05	0.6	1.2	0.7	0.3	0.70	0.37	1.3	0.1
BLK06	2.5		2	2.1	2.20	0.26	2.86	1.54
BLK07	3.9	2.4	1.4	1.8	2.38	1.1	4.12	0.63
BLK08	10.8	1.5	9	10.3	7.90	4.33	14.79	1.01
BLK09	0.8	1	1.2	0.5	0.88	0.3	1.35	0.4
BLK10	0.6	0.4	1.		0.66	0.31	1.43	-0.1
BLK11	4.9	2	5	3.7	3.90	1.4	6.12	1.68
BLK12	2.1	2	2.1	1.7	1.98	0.19	2.28	1.67
BLK13	1.7	1.2	1.9	1.7	1.63	0.3	2.1	1,15
BLK14	0.6		0.5	0.6	0.57	0	0.6	0.6
BLK15	0.3	0.4	0.2	0.4	0.33	0.1	0.48	0.17
BLK16	0.4	0.2	0.3	0.4	0.33	0.1	0.48	0.17
BLK17	1.1	0.9	1.1	1.5	1.15	0.25	1.55	0.75
BLK18	1.8	0.7	0.8		1.10	0.61	2.61	-0.41
BLK19	1.2	1.4	1.2	0.6	1.10	0.35	1.65	0.55
BLK20	0.9	1.6	1.1	1.9	1.38	0.46	2.1	0.65
BLK21	0.8	1		0.9	0.90	0.1	1.15	0.65

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGÉ"	"- RANGE"
BLK01	1.2	1.7	2.1	4.1	2.28	1.27	4.3	0.25
BLK02	1.4	1.3	1.4	2.4	1.63	0.52	2.45	0.8.
BLK03	1.3	1.7	2.1	2.2	1.83	0.41	2.48	1,17
BLK04	1.5	1.9	1.3	1.7	1.60	0.26	2.01	1.19
BLK05	0.1	0.1	0.1		0.10	0	0.1	0.1
BLK06	2	1.5	1.5	1.8	1.70	0.24	2.09	1.31
BLK07	1.4	2.2	1.6	2.6	1.95	0.55	2.83	1.07
BLK08	3.9	2.7	2.4	2.7	2.93	0.67	3.98	1.87
BLK09	0.5	0.7	0.7	0.5	0.60	0.12	0.78	0.42
BLK10	0.3	0.2	0.2		0.23	0.05	0.35	0.11
BLK11	1.8	4.5	3.5	3.8	3.40	1.15	5.22	1.58
BLK12	3	5.1	2.6	3.7	3.60	1.1	5.35	1.85
BLK13	3.7	3.1	3.6		3.47	0.32	4.27	2.67
BLK14	0.5	0.4	0.2	0.4	0.38	0.13	0.58	0.17
BLK15	0.3	0.2	0.1	0.1	0.18	0.09	0.31	0.03
BLK16	0.2	0.3	0.1	0	0.18	0.09	0.31	3
BLK17	1.9	2.4	1.9	2.7	2.23	0.39	2.85	1.6
BLK18	2.7	2.5	2	2.3	2.38	0.3	2.85	1.9
BLK19	2.7	1.6	1.7	1.6	1.90	0.53	2.74	1.05
BLK20	2.3	1.6	1.6	1.6	1.78	0.35	2.33	1.22
BLK21	2.5	0.1	1.4	1.6	1.40	0.99	2.98	-0.18

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled; Avg = Average value of all runs considered; SD = Standard deviation; + Range & -Range = 95% Confidence interval.

Particulate Cu Conc.(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	8.9	4.8	3.9	7.3	6.23	2.29	9.87	2.58
BLK02	11.7	11.5	3.4	1.9	7.13	5.2	15.4	-1.15
BLK03		6.9	0.4	5.4	4.23	3.4	12.69	-4.22
BLK04	8.4	5.5	7	8.1	7.25	1.31	9.34	5.16
BLK05	1.2	1.5	1.1		1.27	0.21	1.78	0.75
BLK06	14.5	7.2	0.3	5.8	6.95	5.85	16.25	-2.35
BLK07	14.9	14.2			14.55	0.49	19	-4.45
BLK08	37.5	15.8	4.1	46.8	26.05	19.57	57.18	-5.08
BLK09	10.9	9.1	6.5	2.4	7.22	3.69	13.09	1.36
BLK10	39.7	1.3	10.6	23.3	18.73	16.64	45.2	-7.75
BLK11	10.6	16.6	17	18.1	15.58	3.39	20.95	10.2
BLK12	4.6	6.4	0.7	6.8	4.63	2.8	9.1	0.17
BLK13	3.6	5.8	7	5.7	5.53	1.41	7.77	3.28
BLK14	6.2	4.2		6.7	5.70	1.32	8.99	l 2.41 Ⅰ
BLK15	1.7	3.6	2.1	2.3	2.42	0.82	3.73	1.12
BLK16	10.2	0.3	32.8	1.9	11.30	14.98	35.13	-12.53
BLK17	4.5	7.5	5.8	5.5	5.83	1.25	7.81	3.84
BLK18	***************************************	7.5	0.4		3.95	5.02	49.06	-45.11
BLK19	3.7	3.6	2.5	1.7	2.88	0.95	4.39	1.36
BLK20	3.2	5	2.5	3	3.42	1.09	5.16	1.69
BLK21	3.3	4.9	3.4	2.9	3.63	0.88	5.02	2.23

Aug Survey 1991

		ivey 1331						
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	3.6	2.3	5.5	1.1	3.13	1.88	6.12	0.13
BLK02	3.6	3.4	4.1	1.7	3.20	1.04	4.86	1.54
BLK03	5.9	4.4	4.2	3.6	4.53	0.98	6.08	2.97
BLK04	4.1	3	4.2	3.6	3.73	0.55	4.6	2.85
BLK05	2	3.1	0.7	0.9	1.67	1.11	3.44	-0.09
BLK06	7	1.7	6	6.5	5.30	2.43	9.17	1.43
BLK07	9.3	3.1	9.4	4	6.45	3.37	11.81	1.09
BLK08	21.8	5.7	12.2	8.8	12.13	6.97	23.22	1.03
BLK09	1.2	2.4	1.2	1.2	1.50	0.6	2.45	0.55
BLK10	0.9	1.2	1.3	0.7	1.02	0.28	1.46	0.59
BLK11	10.3	7.1	8.8	7.8	8.50	1.39	10.71	6.29
BLK12	4.6	0.9	6	5	4.13	2.23	7.67	0.58
BLK13	4.8	3.5	5.4	4.	4.43	0.84	5.76	3.09
BLK14	1.9	0.2	0.3	3.7	1.52	1.65	4.14	-1.09
BLK15	3	3.2	0	6.5	3.18	2.66	7.4	-1.05
BLK16	2.6			0.3	1.45	1.63	16.06	-14.61
BLK17	1.9	2.8	3.1	4.4	3.05	1.03	4.7	1.4
BLK18	0.9	4	2.3	7.1	3.58	2.67	7.82	-0.67
BLK19	2.6	1.8	2.5		2.30	0.44	3.38	1,22
BLK20	1	3.8	5.1	3.4	3.33	1.71	6.05	0.6
BLK21	2.4	. 5	6	2.8	4.05	1.73	6.8	1.3

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	5.8	1.6	0.3	6.8	3.63	3.16	8.65	-1.4
BLK02	1.8	3.7	1.8	3	2.58	0.94	4.07	1.08
BLK03	4.3	2.3	5.2	4.9	4.18	1.3	6.25	2.1
BLK04	2.2	5.4	2.8	1.1	2.88	1.82	5.78	-0.03
BLK05	0.6	0	0.1		0.23	0.32	1.03	-0.57
BLK06	8.7	0.4	4.4	4.6	4.53	3.39	9.92	-0.87
BLK07	4.2	5.9	3.8	3.6	4.38	1.05	6.04	2.71
BLK08	8.9	5.1	4.2	7.6	6.45	2.18	9.91	2.99
BLK09	3.2	1.3	1.8	2.2	2.13	0.81	3.41	0.84
BLK10	0.1	0.7	1.3		0.70	0.6	2.19	-0.79
BLK11	5.7	14.9	6.3	12.3	9.80	4.52	16.99	2.61
BLK12	. 6	10.5	3.1	6.3	6.48	3.05	11.32	1.63
BLK13	5.7	6.4	_	6.6	6.23	0.47	7.41	5.06
BLK14	0.6	0.1		2.3	1.00	1.15	3.87	-1.87
BLK15	0.7	1		0.4	0.70	0.3	1.45	-0.05
BLK16	0.4	0.2			0.30	0.14	1.57	-1.27
BLK17	4.7	"	3.6	3.1	3.80	0.82	5.83	1.77
BLK18	7.3	0.6	1.8	5	3.67	3.05	8.52	-1.17
BLK19	2.8	2.1	4.2	2.9	3.00	0.88	4.39	1.61
BLK20		1.4		1.3	1.97	0.07	1.35	1.35
BLK21	0.3	1.5	4.3	2.7	2.20	1.71	4.92	-0.52

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled; Avg = Average value of all runs considered; SD = Standard deviation; + Range & -Range = 95% Confidence interval.

Particulate Pb Conc.(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	3.1	3.4	0.7	6.1	3.33	2.21	6.84	-0.19
BLK02	2.9	3.1	0.2	1	1.80	1.43	4.07	-0.47
BLK03	3.1	2.4		0.9	2.13	1.12	4.93	-0.66
BLK04	2.9	3.7	6.7	4.8	4.53	1.65	7.14	1.91
BLK05	0.8	1.8	1.8	0.5	1.23	0.68	2.3	0.15
BLK06	53.1	23.2	0.2	11	21.88	22.84	58.21	-14.46
BLK07	15.1	268.2	93.7	7.7	96.18	121.11	288.85	-96.5
BLK08	21.8	13.9	0.6	31.6	16.98	13.1	37.82	-3.87
BLK09	0.2	3.1	7	2.1	3.10	2.86	7.66	-1.46
BLK10	2.6	1	2		1.87	0.81	3.87	-0.14
BLK11	8	12.1	49.9	28.4	24.60	19.03	54.88	-5.68
BLK12	2.3		0.3	0.4	1.00	1.13	3.8	-1.8
BLK13	10.9	9	16.1	14.9	12.73	3.33	18.03	7.42
BLK14	2.3	0.1	0.2	1.8	1.10	1.12	2.88	-0.68
BLK15	0.9			1.3	1.10	0.28	3.64	-2.54
BLK16	3.7	2.2	8.9	7.5	5.58	3.14	10.58	0.57
BLK17	3.2	3.9	2.2	4.3	3.40	0.92	4.86	1.94
BLK18	4.1	3.1	1.4	4.1	3.17	1.27	5.2	1.15
BLK19	2.1	1.9	1.7	2.2	1.98	0.22	2.33	1.62
BLK20			0.1	1.5	0.80	0.99	9.69	-8.89
BLK21	2.4	3.2	3.3	2.9	2.95	0.4	3.59	2.31

Aug Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	2.1	49.8	15.2	1.5	17.15	22.67	53.21	-18.91
BLK02	1.7	4.3		1.2	2.40	1.66	6.53	-1.73
BLK03	2.3	5.1		2	3.13	1.71	7.38	-1.11
BLK04	9.4	0.7	0.3	1	2.85	4.38	9.81	-4.11
BLK05		5	4.1	0.4	3.17	2.44	9.22	-2.89
BLK06	2	5.1	8.5	2.8	4.60	2.91	9.23	-0.03
BLK07	6	1.5	11	1.8	5.07	4.45	12.16	-2.01
BLK08	12.6	11	12.7	7.8	11.02	2.29	14.66	7.39
BLK09	0.7	1.2	1.9	0.9	1.18	0.53	2.01	0.34
BLK10		1	1.7		1.35	0.49	5.8	-4.45
BLK11	7.2	1.8		3.5	4.17	2.76	11.03	-2.69
BLK12	4.3	3.5	7.4	2.7	4.48	2.06	7.75	1.2
BLK13	2.7			5.4	4.05	1.91	21.2	-17.15
BLK14	1.6	1.2	1	2	1.45	0.44	2.16	0.74
BLK15	1		0.9	3.9	1.93	1.7	6.17	-2.3
BLK16	1.2	1.2	2.2	3.7	2.08	1.18	3.95	0.2
BLK17	3.5	3.2	4.3		3.67	0.57	5.08	2.25
BLK18	1.1	1.9	1.1	5.6	2.43	2.15	5.85	-1
BLK19	1.4	2.2	0.7	6.5	2.70	2.61	6.85	-1.45
BLK20	1.2	3	2.9	0	1.78	1.44	4.07	-0.52
BLK21	0.9	2.7	4.3	0	1.98	1.91	5.02	-1.07

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	2.2	3.4	3.1	6.2	3.73	1.73	6.47	0.98
BLK02	1.7	2	2.8	1.2	1.93	0.67	2.99	0.86
BLK03	2.4	2.3	8.3	3.3	4.07	2.85	8.6	-0.45
BLK04	1.5	2	3	2	2.13	0.63	3.13	1.12
BLK05	1.4	0.7	0.4	0.1	0.65	0.56	1.54	-0.24
BLK06	6	5.4		4.6	5.33	0.7	7.08	3.59
BLK07	3.7	3.8	6.1	3.7	3.73	0.06	3.88	3.59
BLK08	6.5	4.8	6.1	7.3	6.18	1.04	7.84	4.51
BLK09	0	4	3.9	3.7	2.90	1.94	5.98	-0.18
BLK10	2.2	2	1.5	1.5	1.80	0.36	2.37	1.23
BLK11	3.3	11.3	6	6.2	6.70	3.34	12.01	1.39
BLK12	0.7	9.4	4.6	5.9	5.15	3.59	10.87	-0.57
BLK13	5.2	7.9	10.6	5.5	7.30	2.51	11.29	3.31
BLK14		0.1	0.8	1.5	0.80	0.7	2.53	-0.94
BLK15	0.8	0.4	1.9	0.7	0.95	0.66	1.99	-0.09
BLK16	0.4	1.5	0	4.6	1.63	2.08	4.94	-1.69
BLK17	1.9	5.6	3	12.5	5.75	4.76	13.32	-1.82
BLK18	6.5	4.8	3.6		4.96	1.45	8.56	1.36
BLK19	1.5	2.9	2.5	4.3	2.80	1.16	4.65	0.95
BLK20	2.9	2.9	3.2	2.7	2.92	0.21	3.25	2.6
BLK21	2.9	2.9	3.2	2.7	2.92	0.21	3.25	2.6

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled; Avg = Average value of all runs considered;

Particulate Ni Conc.(ppb)

July Survey 1991

O.T.		lavey 1991						
\$TN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	2.1	1.5	0.7	2.4	1.67	0.75	2.87	0.48
BLK02	5.1	4.5		2.7	4.10	1.25	7.2	1
BLK03	6.2	2.2	1.2	2.8	3.10	2.17	6.55	-0.35
BLK04	3.6	1	1.2	3	2.20	1.3	4.26	0.14
BLK05	0.1	1.3	0.1	0.3	0.50			
BLK06	2.8	4	0.2	1	2.00			***************************************
BLK07	2.2	1.8	0.1	2.8	1.72	1.16	3.57	-0.12
BLK08	5.8	2.6	0.6	7.9	4.22	3.25	9.4	-0.95
BLK09	0.1	1.8	1.1	1	1.00	0.7	2.11	-0.11
BLK10	0.1	1.4	7.5	3.4	3.10	3.23	8.24	-2.04
BLK11		3.1	2.7	0.5	2.10	1.4	5.58	-1.38
BLK12	1.2	2.4	1.4	2	1.75	0.55	2.63	0.87
BLK13	0.4	2.1	1.9	2.7	1.78	0.98	3.33	0.22
BLK14	0.1	0	0	1.8	0.47			
BLK15	0.1	0.8	0	1	0.63	0.47	1.81	-0.54
BLK16	3	0.2	6.5	0.7	2.60	2.87	7.17	-1.97
BLK17		2.5	5.7	2	2.43		***************************************	***************************************
BLK18	2.4	1.2		0.5	1.37	0.96	3.75	-1.02
BLK19		0.7	0.6	0.3	0.53	0.21	1.05	0.02
BLK20	1.2	1.2	0	1.2	0.90	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		***************************************
BLK21	1.1	2.1	1.5	1.6	1.57	0.41	2.23	0.92

Aug Survey 1991

	Aug ou	ivey 1991						
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	1.3	0.9	0.4	0.1	0.68	0.53	1.52	-0.17
BLK02	2.5	1.7	1.8	1.5	1.88	0.43	2.57	1.18
BLK03	6.9	2.8	1.1	5.3	4.03	2.58	8.13	-0.08
BLK04		2	2.3	1.5	1.93	0.4	2.94	0.93
BLK05	0.8	1	1	0.3	0.78	0.33	1.3	0.25
BLK06	1.8		1.1	0.7	1.20	0.56	2.58	-0.18
BLK07	1	0.4	2.6	1	1.25	0.94	2.75	-0.25
BLK08	2.2	1.7	1.7		1.86	0.28	2.56	1.17
BLK09	0.1	1	0.7	0.4	0.55	0.38	1.15	-0.05
BLK10	0.1		1.1		0.60	0.71	7.54	- 6.99
BLK11	2.6	0.7	1.9	1.4	1.65	0.8	2.93	0.37
BLK12	1.9	0.5	1.3		1.23	0.7	2.98	-0.57
BLK13	0.7	1.2	1.1	1.4	1.10	0.29	1.57	0.63
BLK14	0		0	0.7	0.23	0	0	0
BLK15		0.2	0	1.5	0.57	0.81	2.59	-1.46
BLK16	0	0.1	0		0.03	0.06	0.18	-0.4
BLK17	1.3		2	6.1	3.13	2.59	9.58	-3.31
BLK18	1.5	1.2	0.3	3.3	1.58	1.26	3.58	-0.43
BLK19	0.9	0.6	*********	0.7	0.73	0.15	1.11	0.35
BLK20	0.3	1	1.7	1.1	1.03	0.57	1.94	0.11
BLK21	1.2	5.2	3.8	1.2	2.85	1.99	6.01	-0.31

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"- RANGE"
BLK01	0.8	0.8	0.5	1.5	0.90	0.42	1.58	0.22
BLK02	0.8	2.8	1.5	0.4	1.38	1.05	3.05	-0.3
BLK03	1.8		1.7	1.7	1.70	0	1.7	1.7
BLK04	0.7		0.9	0.4	0.67	0.25	1.29	0.04
BLK05	0	0.1			0.05	0.07	0.69	-0.64
BLK06	2.2	1.8	1.3	2	1.83	0.39	2.44	1,21
BLK07	1.5	1.6	0.7		1.27	0.49	2.49	0.04
BLK08	1		0.9	1.3	1.07	0.21	1.58	0.55
BLK09	0	0	0		0.00	0	0	0
BLK10	0.1	0.1	0.3	1.2	0.43	0.53	1.26	-0.41
BLK11	1.1	5.3	1	1.8	2.30	2.03	5.53	-0.93
BLK12	1.1	3.6	0.7	0.6	1.50	1.42	3.75	-0.75
BLK13	1.2	2.2	2	1.9	1.83	0.43	2.52	1.13
BLK14		0.3	1.1	0.8	0.73	0.4	1.74	-0.27
BLK15	0.9	0.9		0.2	0.67	0.4	1.67	-0.34
BLK16		1.5	1.3	0.1	0.97	0.76	2.85	-0.91
BLK17	0.7	1.3	0.4	1	0.85	0.39	1.47	0.23
BLK18	2.3	1.5	0	0.9	1.17	0.97	2.72	-0.37
BLK19	0.7	0.3	0.1	0.9	0.50	0.37	1.08	-0.08
BLK20	0.7	0.4			0.55	0.21	2.46	-1.91
BLK21	0.5	0.4	2.5	0.2	0.90	1.07	2.61	-0.81

Blanks represent the statistical outlier (Grubbs & Beck) of total Cd; NS = Not Sampled; Avg = Average value of all runs considered; SD = Standard deviation; + Range & -Range = 95% Confidence interval.

Total Cd Conc.(ppb), Avg. Hardness(ppm), Fresh Water Aquatic Life Criteria(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	0.33	0.32	0.4	0.38	0.36		0.04	0.42	0.3	73.94	2.79	0.89
BLK02	3.09*	4.34*	3.52*	3.54*	3.62*		0.52	4.45	2.79	66,35	2.47	0.82
BLK03	2.57*	2.54*	2.87*	2.39*	2.59*		0.2	2.91	2.27	59.61	2.2	0.76
BLK04	1.97*	2.17*	2.34*	1.64*	2.03*		0.3	2.51	1.54	66.81	2.49	0.83
BLK05	0.1	0.05	0.09	0.42	0.17	0.08	0.03	0.15	0.01	52.23	1.89	0.68
BLK06	1.19+	0.93+	1.21+	1.06+	1.10+		0.13	1.3	0.89	60.27	2.22	0.76
BLK07	0.77+	0.87+	0.76+	1.09+	0.87+		0.15	1.12	0.63	55.95	2.04	0.72
BLK08	1.80+	1.05+	1.10+	1.74+	1.42+		0.4	2.06	0.78	54	1.96	0.7
BLK09	0.05	0.16	0.2	0.12	0.13		0.06	0.23	0.03	19.16	0.61	0.31
BLK10	0.06	0.02	0.33	2.34	0.69	0.14	0.17	0.56	-0.28	21.89	0.71	0.34
BLK11	0.77+	1.20+	1.32+	1.34+	1.16+		0.27	1.58	0.73	45.74	1.62	0.61
BLK12	0.64+	0.62	0.39	0.45	0.37		0.12	0.72	0.33	45.04	1.6	0.61
BLK13	0.92+	0.59+	0.63+	0.56+	0.68+		0.17	0.93	0.41	40.42	1.41	0.56
BLK14	0.18	0.07	0.02	0.11	0.10		0.07	0.2	-0.01	14.88	0.46	0.25
BLK15	0.05	0.06	0.13	0.09	0.08		0.04	0.14	0.03	24.54	0.8	0.38
BLK16	0.54+	0.09	0.88+	0.29	0.45		0.34	0.99	-0.09	35.74	1.23	0.51
BLK17	0.57+	0.4	0.59+	0.5	0.52		0.09	0.65	0.38	40.34	1.41	0.56
BLK18	0.58+	0.55	0.55	0.57	0.42		0.01	0.59	0.54	41.27	1.45	0.57
BLK19	0.35	0.38	0.42	0.47	0.41		0.05	0.49	0.32	41.32	1.45	0.57
BLK20	0.35	0.24	0.3	0.36	0.31		0.06	0.4	0.22	42.14	1.48	0.58
BLK21	0.23	0.29	0.4	0.38	0.33		0.08	0.45	0.2	43.55	1.54	0.59

Aug Survey 1991

Add Survey 1991												
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	0.28	0.31	0.38		0.32		0.05	0.45	0.2	65.41	2.43	0.81
BLK02	4.15*	4.40*	3.91*	4.16*	4,16*		0.2	4.47	3.84	55.15	2	0.71
BLK03	3.50*	3.61*	3.42*	3.52*	3.51*		0.08	3.64	3.39	55.2	2.01	0.71
BLK04	2.83*	2.75*	3.46*	2.54*	2.90*		0.4	3.53	2.26	54.34	1.97	0.7
BLK05		0.13	0.09	0.11	0.11		0.03	0.16	0.08	44.17	1.56	0.6
BLK06	1.73+	1.50+	1.82+	2.38*	1.86*		0.37	2.45	1.26	51.31	1.86	0.67
BLK07	1.02+	0.78+	0.95+	1.15+	0.98+		0.15	1.22	0.73	47.96	1.71	0.64
BLK08	0.28	1.43+	1.70*	2.03*	1.36+		0.76	2.57	0.15	43.83	1.55	0.59
BLK09	0.02	0.35	0.09	0.13	0.15		0.14	0.37	-0.08	16.84	0.53	0.28
BLK10	0.08		0.38		0.02		0.21	2.14	-1.91	18.44	0.58	0.3
BLK11	0.95+	0.92+	1.18+	0.93+	0.99+		0.12	1.19	0.79	35.61	1.22	0.5
BLK12	0.78+		3.53	0.86+	1.18	0.82+	0.03	1.33	-0.51	34.53	1.18	0.49
BLK13	0.67+	0.48+	1.14*	0.53+	0.71+		0.3	1.18	0.23	30.22	1.02	0.44
BLK14	0.23	0.11	0.34+	0.37+	0.26		12	0.45	0.07	16.85	0.53	0.28
BLK15	0.16	0.12	0.08	0.35+	0.18		0.12	0.37	-0.01	21.18	0.68	0.34
BLK16	0.16	0.06	0.23	0.14	0.15		0.07	0.26	0.04	28.41	0.95	0.42
BLK17	0.50+	0.38	0.51+	0.52+	0.48+		0.07	0.59	0.37	29.56	0.99	0.44
BLK18	0.89+	1.08+	0.82+	1.24*	1.01+		0.19	1.31	0.71	32.66	1.11	0.47
BLK19	0.57+	0.73+	0.93+		0.74+		0.18	1.19	0.3	35.39	1.22	0.5
BLK20	0.56+	0.49	*****************	0.26	0.45		0.13	0.66	0.24	38.72	1.34	0.54
BLK21	0.45	0.38	0.47		0.43		0.05	0.55	0.32	37.59	1.3	0.53

Oct Survey 1991

		vey laal										
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Ävg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	0.42	0.14	0.23	0.35	0.28		0.12	0.48	0.09	47.98	1.71	0.64
BLK02	0.52	1.35+	2.85*	3.14*	1.97*		1.24	3.94	-0.01	53,94	1.95	0.7
BLK03	3.82*	1.21+	2.68*	2.72*	2.61*	[1.07	4.31	0.9	52.91	1.91	0.69
BLK04	1.85*	1.13+	2.11*	2.00*	1.77*		0.44	2.47	1.07	49.31	1,77	0.65
BLK05	0.09	0.02	0.02	0.02	0.04	0.02	0	0.02	0.02	39.59	1.38	0.55
BLK06	2.79*	1.06+	1.48+	1.43+	1.69*		0.76	2.89	0.49	46.9	1.67	0.63
BLK07	1.08+	1.18+	1.14+	1.28+	1.17+		0.08	1.3	1.04	44.77	1.58	0.6
BLK08	1.64*	1.44+	1.30+	1.42+	1.45+		0.14	1.67	1.23	44.96	1.59	0.61
BLK09	0.12	0.09	0.08	0.13	0.11		0.02	0.14	0.07	13.63	0.41	0.24
BLK10	0.2	0.06	0.07	0.02	0.09		0.08	0.21	-0.04	17.57	0.55	0.29
BLK11	1.38*	1.39*	1.22*	1.16*	1.29*		0.12	1.47	1.1	33,24	1.13	0.48
BLK12	1.18*	1.29*	1.16*	1.05+	1.17*		0.1	1.33	1.01	33.16	1.13	0.48
BLK13	1.28*	1.02+	1.22*	0.96+	1.12*		0.15	1.37	0.87	31.65	1.07	0.46
BLK14	0.09		0.06	0.1	0.08		0.02	0.14	0.03	11.54	0.34	0.21
BLK15	0.05	0.02	0.12	0.02	0.05		0.05	0.13	-0.02	18.83	0.6	0.31
BLK16	0.05		0.11	0.02	0.06		0.05	0.17	-0.05	29.14	0.98	0.43
BLK17	0.82+		0.71+	0.68+	0.74+		0.07	0.92	0.55	27.98	0.93	0.42
BLK18	0.90+	0.49+	0.68+	0.77+	0.71+		0.17	0,98	0.44	28.22	0.94	0.42
BLK19	0.56+	0.42	0.56+	0.64+	0.55+		0.09	0.69	0.4	29.32	0.98	0.43
BLK20	0.56+	0.37	0.43+	0.65+	0.50+	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.13	0.7	0.3	29.49	0.99	0.43
BLK21	0.55+	0.36	0.43	0.60+	0.49+		0.11	0.66	0.31	30.35	1.02	0.44

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled; Detection Limit = 0.05ug/L; Avg = Average value of 4 runs; M Avg = Modified average without outliers;

SD = Standard deviation; + Range & -Range = 95% Confidence interval;
* Indicates violations according to the Fresh Water Aquatic Life Criteria;
"+" Indicates violations according to the Chronic Criterion.

BLACKSTONE RIVER WATER SAMPLES ANALYSIS RESULTS Total Cr Conc.(ppb), Avg. Hardness(ppm), Fresh Water Aquatic Life Criteria(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	4.5	4.8		5	4.77		0.25	5.39	4.14	73.94	1372	173
BLK02	4.7	5.1	3.3	6.3	4.85	•••••	1.24	6.82	2.88	66.35	1257	159
BLK03	3.4	3.7	1.8	4.3	3.30		1.07	5	1.6	59.61	1157	147
BLK04	3.8	2.4	3.2	4.3	3.43		0.82	4.73	2.12	66.81	1264	160
BLK05	0.2	0.2	0.2		0.20		0	0.1	0.1	52.23	1036	133
BLK06	5.8	2.6	1.4	4.5	3.58		1.96	6.69	0.46	60.27	1163	148
BLK07	6.4	3.4	3.9	5.7	4.85		1.43	7.12	2.58	55.95	1095	140
BLK08	24.5	6.9	·	26.3	19.23		10.72	45.86	-7.4	54	1064	136
BLK09	0.9	0.5	0.9	1.4	0.93		0.37	1.51	0.34	19.16	465	64
BLK10	0.4	2.8	0.7	0.9	1.20		0.25	1.29	0.04	21.89	516	71
BLK11	6.1	7.4	8.6	10.2	8.07		1.75	10.85	5.3	45.74	931	120
BLK12	2.8	2.2	1.7	2.5	2.30		0.47	3.05	1.55	45.04	920	119
BLK13	2.2	4.4	2.5	2.7	2.95		0.25	3.09	1.84	40.42	843	110
BLK14	0.1	0.9	0.1	0.8	0.48		0.43	1.17	-0.22	14.88	381	54
BLK15	0.5	0.1	0.1	0.3	0.25		0.19	0.55	-0.05	24.54	565	76
BLK16	0.6	·····	2.1	0.7	1.13		0.84	3.22	- 0.95	35.74	764	100
BLK17	1.5	1	1.2	1.6	1.33		0.28	1.76	0.89	40.34	842	109
BLK18	1.9	2.4	1.7		2.00		0.36	2.9	1.1	41.27	857	111
BLK19	0.7	1.5	1.2		1.13		0.4	2.14	0.13	41.32	858	111
BLK20	1.1	1	1	1,1	1.05		0.06	1.14	0.96	42.14	872	113
BLK21	0.9	1.1	1.5	1.4	1.23		0.28	1.66	0.79	43.55	895	116

Aug Survey 1991

Aug Surve												
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	4.9	9.6	24.5	5.9	11.23		9.08	25.67	-3.22	65.41	1242	
BLK02	5.7	4.9	***************************************	8.3	6.30		1.78	10.72	1.88	55.15	1083	138
BLK03	4.9	4.5	4.2	6	4.90		0.79	6.15	3.65	55.2	1083	138
BLK04	4.3	4.1	3.9	3.6	3.98		0.3	4.45	3.5	54.34	1070	137
BLK05	0.7	1.6	1	0.4	0.93		0.51	1.74	0.11	44.17	905	117
BLK06	4.2	3.1	4.2	4.2	3.93		0.55	4.8	3.04	51.31	1021	131
BLK07	5.3	4.6	3.1	3.2	4.05		1.08	5.77	2.33	47.96	967	124
BLK08	14.9	3.3	11.4	12.9	10.63		5.09	18.72	2.53	43.83	900	116
BLK09	1.4	1.7	1.6	1.2	1.48		0.22	1.83	1.12	16.84	420	59
BLK10	0.7	0.5	2		1.07		0.81	3.09	-1.27	18.44	451	63
BLK11	6	4.3	6.7	5.1	5.53		1.05	7.19	3.86	35.61	761	100
BLK12	3.2	3.3	3.1	3.1	3.18		0.1	3.33	3.02	34.43	743	98
BLK13	3.2	2.4	3.1	2.4	2.78		0.43	3.47	2.08	30.22	668	89
BLK14	1.1		0.8	1.2	1.03		0.21	1.55	0.52	16.85	420	59
BLK15	0.5	0.5	0.3	0.7	0.50		0.16	0.76	0.24	21.18	503	69
BLK16	0.6	0.3	0.4	0.9	0.55		0.26	0.97	0.13	28.41	636	85
BLK17	1.9	1.5	1.9	2.3	1.90		0.33	2.42	1.38	29.56	656	87
BLK18	3.2	2	1.8	10.5	4.38	2.33	0.76	4.21	0.45	32.66	710	94
BLK19	1.8	2.5	2.2	1.7	2.05		0.37	2.64	1.46	35.39	758	99
BLK20	1.8	2.3	1.8	2.8	2.17		0.48	2.94	1.41	38.72	814	106
BLK21	1.7	1.7	0.7	1.7	1.45		0.5	2.25	0.65	37.59	795	104

Oct Survey 1991

		RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	2.8	2.8	4.2	5.7	3.88		1.38	6.08	1.67	47.98	966	124
BLK02	3	2.3	2.9	4.6	3.20		0.98	4.76	1.64	53.94	1062	136
BLK03	3	2.5	3.2	4.2	3.22		0.71	4.36	2.09	52.91	1046	134
BLK04	2.9	2.5	2	3	2.60		0.45	3.32	1.88	49.31	988	127
BLK05	0.2	0.2	0.2	0.1	0.18	0.2	0	0.2	0.2	39.59	828	108
BLK06	2.4	2.5	2.1	2.3	2.33	<u> </u>	0.17	2.6	2.05	46.9	949	122
BLK07	3.5	3.1	2.4	3.5	3.13	<u> </u>	0.52	3.95	2.3	44.77	914	118
BLK08	5.2	3.7	3.2	4.1	4.05	<u> </u>	0.85	5.4	2.7	44.96	917	118
BLK09	0.9	1.1	1	0.9	0.98		0.1	1.13	0.82	13.63	355	51
BLK10	0.5		0.3	0.3	0.37		0.11	0.63	0.09	17.57	433	61
BLK11	5.2	5.4	4.6	4.4	4.90		0.48	5.66	4.14	33.24	720	95
BLK12	4.6	5.9	4.4	3.9	4.70		0.85	6.06	3.34	33.16	718	95
BLK13	4.7	3.8	4.2	13	6.43	4.23	0.45	5.35	3.11	31.65	692	92
BLK14	0.8	0.8	0.3	0.5	0.60		0.24	0.99	0.21	11.54	312	46
BLK15	0.4	0.3	0.2	0.2	0.28		0.09	0.41	0.13	18.83	458	64
BLK16	0.3	0.4	0.2	0.2	0.28		0.09	0.41	0.13	29.14	648	86
BLK17	3.4	3.2	2.7	3.4	3.18		0.33	3.7	2.65	27.98	627	84
BLK18	3.6	3.3	2.5	2	2.85		0.73	4.02	1.68	28.22	631	84
BLK19	3.5	2.3	2.4	2.2	2.60		0.61	3.57	1.63	29.32	651	87
BLK20	2.9	2.3	2.9	2.1	2.55		0.41	3.21	1.89	29.49	654	87
BLK21	3.7	1.2	2.5	2.2	2.40		1.03	4.04	0.76	30.35	669	89

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled; Detection Limit = 0.2ug/L;

Avg = Average value of 4 runs; M Avg = Modified average without outliers;

SD = Standard deviation; + Range & -Range = 95% Confidence interval;
* Indicates Stations Exceeding The Fresh Water Aquatic Life Criteria.

Total Cu Conc.(ppb), Avg. Hardness(ppm), Fresh Water Aquatic Life Criteria(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	15.00*	6.7	6.9	8.7	9.32+		3.89	15.51	3.14	73.94	13.34	9.14
BLK02	49.80*	38.70*	29.80*	28.80*	36.78*		9.76	52.3	21.25	66.35	12.04	8.33
BLK03	45.8	29.00*	25.60*	26.80*	31.80*	27.13*	1.72	31.42	22.85	59.91	10.94	7.63
BLK04	28.30*	25.90*	26.90*	27.60*	27.17*		1.02	28.8	25.55	66.81	12.12	8.38
BLK05	1.3	1.6	1.2	5.4	2.38	1.37	0.21	1.88	0.85	52.23	9.61	6.79
BLK06	29.60*	21.70*	17.20*	20.20*	22.18*		5.29	30.59	13.76	60.27	11	7.67
BLK07	22.80*	22.80*		21	22.20*	22.80*	0	22.8	22.8	55.95	10.26	7.2
BLK08	45.50*	24.10*	14.30*	53.80*	34.42*		18.35	63.61	5.24	54	9.92	6.98
BLK09	11.00*	9.20*	6.60*	2.5	7.33*		3.69	13.19	1.46	19.16	3.74	2.88
BLK10	41.00*	1.4	10.70*	23.40*	19.13*		17.15	46.4	-8.15	21.89	4.24	3.23
BLK11	15.70*	23.00*	25.50*	25.70*	22.48*		4.68	29.92	15.03	45.74	8.48	
BLK12	11.90*	11.60*	8.80*	11.40*	10.93*		1.43	13.24	8.6	45.04	8.36	5.98
BLK13	8.80*	9.9	14.10*	8.50*	10.33*		2.59	14.44	6.21	40.42	7.55	5.45
BLK14	7.40*	7.10*	1.8	6.80*	5.78*	7.10*	0.3	7.85	6.35	14.88	2.94	2.32
BLK15	4.80*	3.70+	4.30+	2.4	3.80+		1.04	5.45	2.15	24.54	4.72	3.56
BLK16	24.90*	2.9	37.40*	2	16.80*		17.34	44.39	-10.79	35.74	6.72	4.91
BLK17	9.00*	10.40*	13.00*	7.30+	9.93*		2.41	13.76	6.09	40.34	7.53	5.44
BLK18	6.5	10.90*	10.70*		9.37*	10.80*	0.14	10.8	10.8	41.27	7.7	5.55
BLK19	7.50+	6.80+	9.10*	7.10+	7.63+		1.02	9.25	6	41.32	7.71	5.56
BLK20	6.90+	8.70*	7.70+	5.90+	7.30+		1.19	9.19	5.41	42.14	7.85	
BLK21	6.70+	8.60*	8.50*	6.70+	7.63+		1.07	9.33	5.92	43.55	8.1	5.81

Aug Survey 1991

STN.		RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	9.90+	7.6	11.50+	10.10+	9.78+		1.62	12.34	7.21	65.41	11.88	
BLK02	26.80*	23.90*	27.70*	22.00*	25.10*		2.63	29.28	20.92	55.15	10.12	7.11
BLK03	28.30*	22.40*	30.80*	22.70*	26.05*		2.03	*************************			*****************	*
BLK03	29.00*			***************************************			4.17	32.68	19.42	55.2	10.13	7.12
	• • • • • • • • • • • • • • • • • • • •	21.20*	26.30*	22.80*	24.83*		3.5	30.4	19.25	54.34	9.98	7.02
BLK05	2.1	3.4	3.2	1	2.43		1.11	4.19	0.66	44.17	8.21	5.88
BLK06	25.50*	22.30*	26.00*	24.50*	24.58*		1.64	27.18	21.97	51.31	9.45	6.69
BLK07	20.10*	13.30*	21.90*	16.40*	17.93*		3.84	24.04	11.81	47.96	8.87	6.31
BLK08	36.80*	16.00*	29.90*	25.20*	26.98*		8.73	40.87	13.08	43.83	8.15	
BLK09	1.3	2.90+	2.1	1.3	1.9		0.77	3.12	0.63	16.84	3.31	2.58
BLK10	1	1.5	4.80*	3.40+	2.68		1.75	5.47	-0.12	18.44	3.6	2.79
BLK11	16.30*	14.30*	20.40*	14.20*	16.30*		2.9	20.91	11.69	35.61	6.7	4.89
BLK12	11.80*	12.20*	14.80*	10.80*	12.40*		1.7	15.11	9.69	34.53	6.51	4.77
BLK13	10.80*	8.60*	13.50*	8.10*	10.25*		2.46	14.17	6.33	30.22	5.74	4.25
BLK14	3.40*	2.5	2.1	5.20*	3.30+		1.38	5.49	1.11	16.85	3.31	2.58
BLK15	4.60*	3.30+	0.2	6.60*	3.68+		2.73	7.99	-0.69	21.18	4.11	3.14
BLK16	3.1			2.6	2.85		0.35	6.03	-3.18	28.41	5.42	4.03
BLK17	7.30*	6.00*	7.40*	8.30*	7.25*		0.95	8.76	5.74	29.56	5.62	4.17
BLK18	10.40*	10.70*	7.80*	13.10*	10.50*		2.17	13.95	7.05	32.66	6.18	4.54
BLK19	9.10*	8.70*	9.40*	12.4	9.90*	9.07*	0.35	9.94	8.19	35.39	6.66	4.87
BLK20	8.80*	9.30*	10.60*	9.00*	9.43*		0.81	10.71	8.14	38.72	7.25	5.26
BLK21	7.70*	11.70*	12.40*	8.10*	9.98*		2.42	13.82	6.13	37.59	7.05	[

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	11.20*	4.30*	8.90*	11.60*	9.00*		3.35	14.33	3.67	47.98	3.76	2.9
BLK02	14.10*	12.50*	17.20*	17.50*	15.33*		2.43	19.19	11.46	53.94	4.41	3.35
BLK03	16.80*	9.10*	18.80*	19.50*	16.05*		4.77	23.64	8.46	52.91	4.45	3.38
BLK04	14.50*	11.00*	16.30*	16.90*	14.68*		2.65	18.9	10.45	49.39	4.05	3.1
BLK05	1.4	1.2	1.3	2.90*	1.7		0.8	2.97	0.43	39.59	3.42	2.66
BLK06	16.90*	8.40*	15.20*	14.60*	13.78*		3.71	19.68	7.87	46.9	3.86	2.96
BLK07	17.30*	13.50*	12.40*	15.70*	14.73*		2.2	18.22	11.23	44.77	3.79	2.92
BLK08	19.90*	16.40*	14.40*	17.80*	17.13*		2.32	20.81	13.44	44.96	4.07	3.11
BLK09	5.20*	2.10*	2.80*	5.30*	3.85*		1.64	6.46	1.24	13.63	1.7	1.41
BLK10	1.6	1,7	2.30*	9.3	3.73*	1.87*	0.38	2.81	0.93	17.57	2.19	1.78
BLK11	16.30*	21.00*	14.30*	18.90*	17.63*		2.93	22.29	12.96	33.24	3.32	2.59
BLK12	13.00*	15.50*	14.00*	13.10*	13.90*		1.16	15.74	12.06	33.16	3.15	2.46
BLK13	12.90*	12.30*	20.3	12.50*	14.50*	12.57*	0.31	13.33	11.81	31.65	2.83	2.24
BLK14	4.20*	3.90*		4.10*	4.07*		0.15	4.45	3.69	11.54	2.32	1.14
BLK15	2.70*	2.80*	6.8	1.8	3.53*	2.43*	0.55	3.8	1.07	18.83	2.32*	1.87
BLK16	2.90+	3.30*		1.6	2.60+	3.10+	0.89	4.81	0.39	29.14	3.18	2.49
BLK17	9.80*	19.8	9.20*	9.20*	12.00*	9.40*	0.35	10.26	8.54	27.98	2.65	2.11
BLK18	13.30*	8.80*	7.40*	10.90*	10.10*		2.57	14.19	6.01	28.22	3.09	2.43
BLK19	7.20*	7.40*	10.00*	8.90*	8.38*		1.32	10.48	6.27	29.32	2.9	2.29
BLK20	4.80*	7.50*		8.90*	7.07*		2.08	12.24	1.89	29.49	2.8	2.22
BLK21	6.40*	6.80*	9.90*	8.50*	7.90*		1.61	10.47	5.33	30.35	3.25	2.54

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled; Detection Limit = 0.2ug/L; Avg = Average value of 4 runs; M Avg = Modified average without outliers;

SD = Standard deviation; + Range & -Range = 95% Confidence interval;
* Indicates violations according to the Fresh Water Aquatic Life Criteria;
"+" Indicates violations according to the Chronic Criterion.

Total Pb Conc. (ppb), Avg. Hardness(ppm), Fresh Water Aquatic Life Criteria(ppb)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg.Hardness	Acute	Chronic
BLK01	5.0	3.9	1.4	7.2	4.38		2.41	8.21	0.54	73.94	55.59	2.17
BLK02	3.5	3.2	1.3	4.0	3.00		1.18	4.88	1.12	66.35	48.43	1.89
BLK03	3.5	2.9	1.0	3.3	2.68	3.23+	0.31	3.99	2.47	59.91	42.53	1.66
BLK04	3.0	4.1	8.8	5.0	5.23		2.52	9.23	1.22	66.81	48.86	1.9
BLK05	0.9	1.9	1.9	2.8	1.88		0.78	3.11	0.64	52.23	35.72	1.39
BLK06	58.7	118.0	2.8	13.0	48.13		52.54	131.72	-35.47	60.27	42.85	1.67
BLK07	16.7	274.0	98.4	12.9	100.50		122.21	294.93	-93.93	55.95	38.98	1.52
BLK08	23.6	16.9	4.8	32.5	19.45		11.67	38.02	0.88	54	37.26	1.45
BLK09	1.1	3.3	7.9	2.8	3.78		2.91	8.4	-0.85	19.16	9.96	0.39
BLK10	3.4	2.2	3.6	29.6	9.70	3.07+	0.76	4.95	1.19	21.89	11.81	0.46
BLK11	9.2	15.8	53.3	32.0	27.58		19.64	58.83	-3.68	45.74	30.16	1.18
BLK12	5.1	19.8	2.9	6.1	8.48	4.70+	1.64	8.77	0.63	45.04	29.58	1.15
BLK13	12.4	10.3	18.2	15.7	14.15		3.5	19.71	8.59	40.42	25.77	1
BLK14	23.5	1.6	1.0	2.0	7.03	1.53+	0.5	2.78	0.28	14.88	7.22	0.28
BLK15	1.7	1.0		1.7	1.47		0.4	2.46	0.47	24.54	13.65	0.53
BLK16	9.4	3.5	12.3	8.9	8.53		3.67	14.36	2.69	35.74	22.03	0.86
BLK17	3.7	. 4.0	4.5	4.7	4.23		0.46	4.95	3.5	40.34	25.7	1
BLK18	4.3	3.2	3.4	4.2	3.78		0.56	4.66	2.89	41.27	26.46	1.03
BLK19	2.2	2.0	2.5	2.5	2.30		0.24	2.69	1.91	41.32	26.51	1.03
BLK20	I	1.7	1.6	1.6	1.63		0.05	1.75	1.51	42.14	27.18	1.06
BLK21	2.7	3.3	4.9	3.4	3.58		0.94	5.06	2.09	43.55	28.34	1.1

Aug Survey 1991

	Aug 3	urvey 1991										
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	4.6	54.3	19.7	5.7	21.08		23.19	57.97	-15.82	65.41	47.56	1.85
BLK02	4.8	6.7	18.7	3.7	8.48	5.07+	1.52	8.84	1.3	55.15	38.28	1.49
BLK03	3.5	8.3	25.7	3.2	10.18	5.00+	2.86	12.11	-2.11	55.2	38.32	1.49
BLK04	13.4	4.7	6.9	2.5	6.88		4.71	14.36	-0.61	54.34	37.56	1.46
BLK05		8.3	6.2	0.5	5.00		4.04	15.03	-5.03	44.17	28.85	1.12
BLK06	9.2	17.0		6.7	10.97		6.78	24.33	2.77	51.31	34.91	1.36
BLK07	11.7	13.0	32.0	6.4	15.78		11.19	33.57	-2.02	47.96	32.04	1.25
BLK08	25.6	20.4	37.2	18.8	25.50		8.32	38.74	12.26	43.83	28.57	1.11
BLK09	1.1	6.1	5.1	1.0	3.33		2.66	7.56	-0.91	16.84	8.45	0.33
BLK10		4.8	6.3		5.55		2.68	10.72	-2.58	18.44	9.49	0.37
BLK11	11.4	11.0	26.9	7.8	14.28	10.07+	1.97	14.97	5.16	35.61	21.93	0.85
BLK12	6.5	19.2	13.4	5.7	11.20		6.36	21.31	1.09	34.53	21.09	0.82
BLK13	8.2		41.2	6.2	18.53	7.20+	1.41	7.2	7.2	30.22	17.8	0.69
BLK14	2.8	2.5	1.9	3.1	2.58		0.51	3.39	1.76	16.85	8.46	0.33
BLK15	2.1	48.8	1.1	4.1	14.03	2.43+	1.53	6.23	-1.36	21.18	11.32	0.44
BLK16	2.9	2.0	3.9	8.0	4.20		2.65	8.42	-0.02	28.41	16.45	0.65
BLK17	5.0	4.5	5.8	10.2	6.38	5.10+	0.66	6.73	3.47	29.56	17.31	0.67
BLK18	6.6	4.5	4.6	6.9	5.65	***************************************	1.28	7.68	3.62	32.66	19.65	0.77
BLK19	3.9	7.2	5.8	6.6	5.88	***************************************	1.44	8.16	3.59	35.39	21.76	0.85
BLK20	3.5	3.4	5.0	0.1	3.00	***************************************	2.07	6.29	-0.29	38.72	24.4	0.95
BLK21	3.8	4.9	5.0	0.1	3.45	***************************************	2.3	7.11	-0.21	37.59	23.5	

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	2.6	4.3	6.0	7.6	5.13		2.16	8.56	1.69	47.98	32.05	1.25
BLK02	2.6	3.3	4.8	3.9	3.65		0.93	5.13	2.17	53.94	37.2	1.45
BLK03	2.7	2.9	9.7	4.7	5.00		3.26	10.19	-0.19	52.91	36.29	1.41
BLK04	3.9	3.5	4.9	4.3	4.15		0.6	5.1	3.2	49.39	33.18	1.29
BLK05	2.1	1.4	0.8	1.1	1.35		0.56	2.24	0.46	39.59	25.09	0.98
BLK06	8.3	7.7	33.6	6.3	13.98	7.43+	1.03	9.98	4.88	46.9	31.13	1.21
BLK07	9.8	6.7	8.8	7.0	8.08		1.48	10.43	5.72	44.77	29.34	1.14
BLK08	10.2	7.7	8.6	13.1	9.90		2.37	13.67	6.13	44.96	29.5	1.15
BLK09	2.4	5.1	4.9	4.3	4.18		1.23	6.13	2.22	13.63	6.46	0.25
BLK10	4.6	2.9	3.2	2.4	3.28		0.94	4.78	1.77	17.57	8.92	0.35
BLK11	8.5	13.1	9.4	8.0	9.75		2.31	13.42	6.08	33.24	20.08	0.78
BLK12	7.4	10.9	10.8	7.6	9.18		1.94	12.26	6.09	33.16	20.02	0.78
BLK13	8.2	9.7	14.4	6.9	9.80		3.27	15.01	4.59	31.65	18.87	0.74
BLK14	6.8	1.3	1.5	1.8	2.85	1.53+	0.25	2.16	0.91	11.54	5.22	0.2
BLK15	3.3	1.2	2.3	1.2	2.00		1.01	3.61	0.39	18.83	9.74	0.38
BLK16	2.5	3.4	1.2	5.0	3.03		1.6	5.57	0.48	29.14	16.99	0.66
BLK17	11.3	6.6	4.4	14.8	9.28		4.67	16.71	1.84	27.98	16.13	0.63
BLK18	9.6	6.5	4.7	29.8	12.65	6.90+	2.48	13.09	0.78	28.22	16.31	0.64
BLK19	3.7	4.4	3.6	5.7	4.35		0.97	5.89	2.81	29.32	17.12	0.67
BLK20	3.8	3.9	5.5	4.4	4.40		0.78	5.64	3.16	29.49	17.25	0.67
BLK21	5.1	3.0	3.0	4.6	3.93		1.09	5.66	2.19	30.35	17.89	0.7

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled; Detection Limit = 0.2mg/L;

Avg = Average value of 4 runs; M Avg = Modified average without outliers;

SD = Standard deviation; + Range & -Range = 95% Confidence interval;

BLACKSTONE RIVER WATER SAMPLES ANALYSIS RESULTS Total Ni Conc.(ppb), Avg. Hardness(ppm), Fresh Water Aquatic Life Criteria(ppb)

Survey I, July 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Āvg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	4.9	4.6	4.1	7	5.15		1.28	7.18	3.12	73.94	1099	122
BLK02	32.9	30.1		27.1	30.03		2.9	37.24	22.83	66.35	1002	111
BLK03	27.1	22.8	22.5	20.6	23.25		2.75	27.62	18.88	59.61	919	102
BLK04	11.2	19.2	18.8	18.8	17.00	18.93	0.23	19.51	18.36	66.81	1008	112
BLK05	0.2	1.5	0.2		0.63		0.75	2.49	-1.22	52.23	819	91
BLK06	9.7	11.3	11	11.6	10.90		0.84	12.23	9.57	60.27	924	103
BLK07	7.6	9.3	8.1	10.1	8.78		1.14	10.58	6.97	55.95	868	96
BLK08	11.3	9.3	7.5	13.3	10.35		2.51	14.34	6.36	54	842	94
BLK09	0.1	1.9	1.3	1.1	1.10		0.75	2.29	-0.09	19.16	350	39
BLK10	0.1	1.5	7.6	3.5	3.17		3.26	8.37	-2.02	21.89	392	44
BLK11		8.5	7.8	6.8	7.70		0.85	9.82	5.58	45.74	732	81
BLK12	3.9	7.9	6.2	6.1	6.03		1.64	8.63	3.42	45.04	722	80
BLK13	3.5	7	7	7.2	6.18	7.07	0.12	7.35	6.78	40.42	659	73
BLK14	0.2	1.3	1.3	1.9	1.17		0.71	2.3	0.04	14.88	283	31
BLK15	0.2	0.9		1.1	0.73		0.47	1.9	-0.43	24.54	432	48
BLK16	4.7	1.5	9.2	0.8	4.05		3.83	10.14	-2.04	35.74	594	66
BLK17	6.5	8.7	6.5	6.5	7.05	6.5	0	6.5	6.5	40.34	658	73
BLK18	2.9	4.9		6	4.60		1.57	8.5	0.7	41.27	671	75
BLK19		5.9	5.6	5.8	5.77	5.77	0.15	6.15	5.39	41.32	672	75
BLK20	3.1	5.1	4.5	5.1	4.45		0.94	5.95	2.95	42.14	683	76
BLK21	3	4.3	4.9	5.8	4.50		1.17	6.37	1.17	43.55	702	78

Aug Survey 1991

		survey 199	1									
				RUÑ #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg. Hardness	Acute	Chronic
BLK01	9.6	6.6	6.2	8.5	7.73		1.6	10.28	5.17	65.41	990	110
BLK02	41	34.5	40.1	51.8	41.85		7.23	53.35	30.35	55.15	857	95
BLK03	41.4	31.3	34.2	41.1	37.00		5.05	45.03	28.97	55.2	857	95
BLK04	40.1	30.7	32.6	31.7	33.78	31.67	0.95	34.03	29.31	54.34	846	94
BLK05	2	1.2	1.9	0.7	1.45		0.61	2.43	0.47	44.17	710	78
BLK06	26.6		26.1	25.8	26.17	********************	0.4	27.17	25.16	51.31	806	89
BLK07	19	17.1	21.7	21	19.70	***************************************	2.08	23	16.4	47.96	761	85
BLK08	19.3	16	17.7		17.70		1.65	21.7	13.56	43.83	705	78
BLK09	0.1	1.1	1	1	0.80	1.03	0.06	1.18	0.89	16.84	314	35
BLK10	0.1		1.8		0.95		1.2	11.75	-10.8	18.44	339	38
BLK11	11.2	10.2	12.8	11.9	11.53		1.1	13.27	9.78	35.61	592	66
BLK12	10.5	10	10.4	13.8	11.18	10.3	0.26	10.96	9.64	34.53	576	64
BLK13	9.1	7.6	7.7	8.6	8.25		0.72	9.4	7.1	30.22	515	
BLK14	0.4		0.5	1.4	0.77		0.55	2.13	-0.6	16.85	314	34
BLK15		0.8	0.2	1.6	0.86		0.7	2.61	-0.85	21.18	381	42
BLK16	0.2	0.2	0.2	0.6	0.30	***************************************	0.2	0.62	-0.02	28.41	489	54
BLK17	7.2		7.2	7.5	7.30	**********	0	7.2	7.2	29.56	505	56
BLK18	9.4	9.3	7.3	10	9.00		1.17	10.87	7.13	32.66	550	61
BLK19	10.2	9.1		9.3	9.53	***************************************	0.59	10.99	8.08	35.39	588	65
BLK20	9.6	9.9	10	10.3	9.95		0.29	10.41	9.49	38.72	635	70
BLK21	7.9	13	11.5	10.1	10.63		2.17	14.08	7.17	37.59	619	68

Oct Survey 1991

STN.			RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"- RANGE"	Avg.Hardness	Acute	Chronic
BLK01	5.4	2.8	4.8	4.7	4.43		1.13	6.22	2.63	47.98	761	85
BLK02	12.1	8.5	12.7	13.8	11.77		2.29	15.42	8.13	53.94	840	93
BLK03	13.1	•••••	12.9	13.2	13.07		0.15	13.45	12.69	52.91	827	91
BLK04	11.2	9.3	11.6	11.1	10.80	11.3	0.26	11.96	10.64	49.31	779	87
BLK05	0.5	0.7	••••••	***************************************	0.60		0.14	1.87	-1.27	39.59	647	71
BLK06	8.4	8.4	9.2	8.8	8.70		0.38	9.31	8.09	46.9	746	83
BLK07	8.6	8.5	8.2	••••••	8.43	·····	0.21	8.95	7,91	44.77	718	79
BLK08	8.6	5.2	9.1	9.6	8.13	9.1	0.5	10.34	7.86	44.96	720	80
BLK09	0.2	0.2	0.7	6.8	1.93	0.3	0.35	1.16	-0.56	13.63	262	29
BLK10	0.2	0.2	0.8	1.9	0.78		0.8	2.04	- 0.49	17.57	325	36
BLK11	6.6	6.2	9.8	8.3	7.73		1.66	10.36	5.09	33.24	558	62
BLK12	5.9	3.7	9.7	7.4	6.68		2.53	10.69	2.66	33.16	557	62
BLK13	6.1	2.7	10.6	7.4	6.70	******	3.27	11.9	1.5	31.65	535	59
BLK14		1.8	4.6	2	2.80		1.56	6.68	-1.08	11.54	228	26
BLK15	1.6	1.4	6.7	1.6	2.83	1.53	0.12	1.82	1.25	18.83	345	3
BLK16		2.2	5.1	1.2	2.83		2.03	7.87	-2.2	29.14	499	55
BLK17	4.7	9.6	7.8	5.4	6.88	***************************************	2.25	10.45	3.3	27.98	482	54
BLK18	6	6.4	7.8	5.1	6.33		1.12	8.11	4.54	28.22	486	54
BLK19	5.5	2.6	9.7	5.1	5.73		2.94	10.41	1.04	29.32	501	55
BLK20	5.5	2.8			4.15		1.91	21.31	-17.15	29.49	504	56
BLK21	5.2	2.5	12.7	4.6	6.25		4.45	13.33	-0.83	30.35	516	57

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled; Detection Limit = 0.2ug/L; Avg = Average value of 4 runs; M Avg = Modified average without outliers; SD = Standard deviation; + Range & -Range = 95% Confidence interval; * Indicates violations according to the Fresh Water Aquatic Life Criteria.

Partition Coefficient Values, Blackstone River Dry Weather Study

Partition Coefficient Values for Cd

		July, 1991-	Survey I			August ,19	91- Survey	/ II	-	October, 1	991- Surve	v III
STN	A	_ в	С	kp = (B/(C*A))	Α	В	С	kp = (B/(C*A))	Α	В	С	kp = (B/(C*A))
BLK01	0.04	0.32	2.2	3.64	0.22	0.11	3.45	0.14	0.16	0.13	3.45	
BLK02	3.07	0.56	3.67	0.05	3.77	0.39	3.05	0.03	1.65	0.32	3.47	0.06
BLK03	2.02	0.57	1.05	0.27	3.11	0.4	1.3	0.1	2.06	0.55	4.5	0.06
BLK04	1.26	0.77	1.45	0.42	2.43	0.47	0.8	0.24	1.12	0.71	3.35	0.19
BLK06	0.67	0.43	3.9	0.16	1.68	0.17	2.35	0.04	0.7	0.99	4.4	0.32
BLK07	0.48	0.39	6.05	0.13	0.8	0.18	6.35	0.04	0.86	0.33	4.55	0.08
BLK08	0.18	1.24	11.6	0.59	1.26	0.55	9.1	0.05	0.96	0.5	6	0.09
BLK11	0.29	0.87	10.45	0.29	0.66	0.34	4.4	0.12	0.71	0.57	5.15	0.16
BLK12	0.21	0.32	6.65	0.23	0.52	0.31	3.8	0.16	0.63	0.54	3.75	0.23
BLK13	0.15	0.53	7.2	0.49	0.55	0.16	4.75	0.06	0.58	0.55	4.15	0.23
BLK17	0.16	0.33	8	0.26	0.27	0.22	4.15	0.2	0.43	0.2	3.8	0.12
BLK18	0.27	0.3	5.75	0.19	0.75	0.26	4	0.09	0.32	0.39	3.7	0.33
BLK19	0.16	0.24	6.9	0.22	0.69	0.06	4.9	0.02	0.34	0.21	3.3	
BLK20	0.14	0.18	3.85	0.33	0.3	0.15	4.85	0.1	0.35	0.15	2.73	0.16
BLK21	0.09	0.24	5.5	0.48	0.33	0.1	6.2	0.05	0.25	0.23	2.8	0.33

Partition Coefficient Values for Cr

		luly, 1991-	Survey I		A	ugust ,199	91- Survey	/		October, 19	91- Surve	v III
<u>ST</u> N	A	В	С	kp = (B/(C*A))	Α	В	C	kp = (B/(C*A))	Α	В	С	kp = (B/(C*A))
BLK01	1.27	3.5	2.2	1.25	6.2	5.03	3.45	0.24	1.6	2.28	3.45	
BLK02	2.88	1.98	3.67	0.19	4.83	1.47	3.05	0.1	1.58	1.63	3.47	
BLK03	2.33	0.98	1.05	0.4	3.48	1.43	1.3	0.32	1.4	1.83	4.5	0.29
BLK04	2.1	1.33	1.45	0.44	2.7	1.27	0.8	0.59	1	1.6	3.35	*****************************
BLK06	1.4	2.17	3.9	0.4	2	2.2	2.35	0.47	0.63	1.7	4.4	0.61
BLK07	1.39	3.48	6.05	0.41	1.68	2.38	6.35	0.22	1.15	1.95	4.55	*******************************
BLK08	1.17	18.07	11.6	1.33	2.73	7.9	9.1	0.32	1.13	2.93	6	0.43
BLK11	1.13	6.95	10.45	0.59	1.63	3.9	4.4	0.54	1.5	3.4	5.15	
BLK12	1.05	1.25	6.65	0.18	1.2	1.98	3.8	0.43	1.1	3.6	3.75	
BLK13	0.73	2.22	7.2	0.42	1.15	1.63	4.75	0.3	0.77	3.47	4.15	
BLK17	0.63	0.7	8	0.14	0.75	1.15	4.15	0.37	0.95	2.23	3.8	0.62
BLK18	0.83	1.17	5.75	0.25	1.23	1.1	4	0.22	0.73	2.38	3.7	0.88
BLK19	0.57	0.57	6.9	0.14	0.95	1.1	4.9	0.24	0.7	1.9	3.3	0.82
BLK20	0.4	0.65	3.85	0.42	0.8	1.38	4.85	0.36	0.78	1.78	2.73	0.84
BLK21	0.68	0.55	5.5	0.15	0.75	0.9	6.2	0.19	1	1.4	2.8	

Partition Coefficient Values for Cu

		July, 1991-	Survey I			19, August	91- Survey	/		October, 19	91- Surve	v III
STN	A	В	C	kp ≃ (B/(C*A))	Α	В	C	kp = (B/(C*A))	Α	В	С	kp = (B/(C*A))
BLK01	3.1	6.23	2.2	0.91	6.65	3.13	3.45	0,14	5.38	3.63	3.45	0.2
BLK02	29.4	7.13	3.67	0.07	21.9	3.2	3.05	0.05	12.75	2.58	3.47	0.06
BLK03	22.9	4.23	1.05	0.18	21.52	4.53	1.3	0.16	11.88	4.18	4.5	0.08
BLK04	19.93	7.25	1.45	0.25	21.1	3.73	0.8	0.22	11.8	2.88	3.35	0.07
BLK06	15.23	6.95	3,9	0.12	19.28	5.3	2.35	0.12	9.25	4.53	4.4	0.11
BLK07	8.25	14.55	6.05	0.29	11.48	6.45	6.35	0.09	10.35	4.38	4.55	0.09
BLK08	8.25	26.05	11.6	0.27	14.85	12.13	9.1	0.09	10.68	6.45	6	0.1
BLK11	6.9	15.58	10.45	0.22	7.8	8.5	4.4	0.25	7.83	9.8	5.15	*********
BLK12	6.3	4.63	6.65	0.11	8.28	4.13	3.8	0.13	7.43	6.48	3.75	
BLK13	4.8	5.53	7.2	0.16	5.83	4.43	4.75	0.16	6.33	6.23	4.15	0.24
BLK17	4.1	5.83	8	0.18	4.2	3.05	4.15	0.17	5.6	3.8	3.8	0.18
BLK18	7	3.95	5.75	0.1	6.93	3.58	4	0.13	6.43	3.67	3.7	0.15
BLK19	4.75	2.88	6.9	0.09	6.5	2.3	4.9	0.07	5.38	3	3.3	0.17
BLK20	3.88	3.42	3.85	0.23	5.53	3.33	4.85	0.12	5.07	1.97	2.73	0.14
BLK21	4	3.63	5.5	0.17	5.93	4.05	6.2		5.7	2.2	2.8	

A = Dissolved Concentration; B = Particulate Concentration; C = TSS Concentration; and kp = Partition Coefficient.

Partition Coefficient Values, Blackstone River Dry Weather Study

Partition Coefficient Values for Ni

		July, 1991-	Survey I			August ,19	91- Survey	(II		October, 1	991- Surve	v III
STN	Α	В	С	kp = (B/(C*A))	Α	В	С	kp = (B/(C*A))	Α	В	С	kp = (B/(C*A))
BLK01	3.48	1.67	2.2	0.22	7.05	0.68	3.45	0.03	3.53	0.9	3.45	0.07
BLK02	25.93	4.1	3.67	0.04	39.98	1.88	3.05	0.02	10.4	1.38	3,47	0.04
BLK03	20.15	3.1	1.05	0.15	32.97	4.03	1.3	0.09	11.33	1.7	4.5	0.03
BLK04	16.87	2.2	1.45	0.09	29.73	1.93	0.8	0.08	10.63	0.67	3.35	0.02
BLK06	8.9	2	3.9	0.06	24.97	1.2	2.35	0.02	6.88	1.83		0.06
BLK07	7.05	1.72	6.05	0.04	18.45	1.25	6.35	0,01	7.17	1.27	4.55	0.04
BLK08	6.17	4.22	11.6	0.06	15.93	1.86	9.1	0.01	8.03	1.07		0.02
BLK11	5.53	2.1	10.45	0.04	9.88	1.65	4.4	0.04	5.43	2.3		
BLK12	4.53	1.75	6.65	0.06	9.07	1.23	3.8	0.04	5.18	1.5	***********	0.08
BLK13	4.83	1.78	7.2	0.05	7.15	1.1	4.75	0.03	4.88	1.83	4.15	0.09
BLK17	4.23	2.43	8	0.07	4.17	3.13	4.15	0.18	6.03	0.85		0.04
BLK18	3.23	1.37	5.75	0.07	7.43	12.57	4	0.42	5.15	1.17		0.06
BLK19	4.87	0.53	6.9	0.02	8.55	0.73	4.9	0.02	5.23	0.5	3.3	0.03
BLK20	3.45	0.9	3.85	0.07	8.93	1.03	4.85	0.02	3.6	0.55		0.06
BLK21	2.92	1.57	5.5	0.1	7.78	2.85	6.2	0.06	5.35	0.9		

Partition Coefficient Values for Pb

	J	uly, 1991	Survey I		Ā	ugust ,199	91- Survey	/ II		October, 1	991- Surve	v III
STN	Α !	В	С	kp = (B/(C*A))	Α	В	С	kp = (B/(C*A))	Α :	В	С	kp = (B/(C*A))
BLK01	1.05	3.33	2.2	1.44	3.93	17.15	3.45		1.4	3.73	3.45	
BLK02	1.2	1.8	3.67	0.41	2.67	2.4	3.05	0.29	1.73	1.93	3.47	
BLK03	0.98	2.13	1.05	2.07	1.87	3.13	1.3	1.29	0.93	4.07	4.5	0.97
BLK04	0.7	4.53	1.45	4.46	4.03	2.85	0.8	0.88	2.03	2.13	3.35	**************************
BLK06	26.25	21.88	3.9	0.21	8.95	4.6	2.35	0.22	2.1	5.33	4.4	0.58
BLK07	4.33	96.18	6.05	3.67	10.7	5.07	6.35	0.07	3.75	3.73	4.55	
BLK08	2.47	24.6	11.6	0.86	14.48	11.02	9.1	0.08	3.7	6.18	6	0.28
BLK11	2.98	1	10.45	0.03	5.9	4.17	4.4	0.16	3.05	6.7	5.15	************************
BLK12	3.7	12.73	6.65	0.52	6.72	4.48	3.8	0.18	4.03	5.15	3.75	
BLK13	1.43	3.4	7.2	0.33	3.15	4.05	4.75	0.27	2.5	7.3	4.15	
BLK17	0.83	3.17	8	0.48	1.43	3.67	4.15	0.62	3.53	5.75	3.8	0.43
BLK18	0.6	1.98	5.75	0.57	3.23	2,43	4	0.19	1.97	4.96	3.7	0.68
BLK19	0.33	0.8	6.9	0.35	3.18	2.7	4.9	0.17	1.55	2.8	3.3	0.55
BLK20	0.8	2.95	3.85	0.96	1.23	1.78	4.85		1.48	2.92	2.73	0.72
BLK21	0.63	3.63	5.5	1.05	1.48	1.98	6.2		1.58	2.92	2,8	**************************

A = Dissolved Concentration; B = Particulate Concentration; C = TSS Concentration; and kp = Partition Coefficient.

Total Metal Concentrations (ppb)

UBWPAD Wastewater Secondary Effluent Post-Chlorination

Parameter	Survey	Day 1	Day 2	Day 3	Day 4	Day 5
Cd	1	4.6	4.4	4	4.1	4.2
	2	2.1	6.8	4.5	4.5	5.2
	3B			3.2		2.5
Cr	1	3.5	6.6	6	7.2	7.5
	2	5.7	5.1	3.6	6.9	4.5
	3B			2.1	1.5	2.7
Cu	1	45.6	43.5	59.4	45	61.1
	2	44.7	33	24.6	27.6	26.4
	3b			21.6	25.5	41.4
Ni	1	27.6	24	21.8	21	23.7
	2	163	94.8	76.8	66	52.2
	3b			17.1	23.2	25.8
Pb	1	5.4	5.9	6.2	6.8	6.9
	2	8.6	3.9	4.6	4.4	3.2
	3B			2.1	1.8	2.4

Woonsocket Wastewater Secondary Effluent Post-Chlorination

Parameter	Survey	Day 1	Day 2	Day 3	Day 4	Day 5
Cd	1	3.2	2.7	2.6	3	2.7
	2	4.8	4.8	3.3	5.2	5.9
	3B			ND	1.1	1.7
Cr	1	4.2	5.4	3.6	3.9	3.9
	2	14.7	9	5.7	0.9	
	3B			ND	2.1	3.3
Cu	1	38.4	46.2	36.9	39	44.4
	2	33	43.5	39	147	39.9
	3b			7.5	9	20
Ni	1	205 (10.5)	223 (10.8)	256(18.0)	263 (9.0)	121 (13.8)
	2	168 (9.3)	196 (98.7)	222 (7.1)	255 (9.9)	210 (11.4)
	3b			16	69	79
Pb	1	3.9	5.1	3.9	6.3	4.2
	2	10.8	8.7	9.6	21	12.3
Valuas in i	3B			3	3.9	6

Values in parenthesis () are Pre-Chlorination values

Section A15-2

Dry Weather Data - Non-Metals

River Stations

- Dissolved Oxygen
- BOD
- Chloride
- TSS
- VSS
- Ammonia
- Nitrate
- TKN
- Phosphate
- Chlorophyll

Treatment Plant

- BOD
- TSS
- VSS
- Ammonia
- Nitrate
- TKN
- Phosphate

BLACKSTONE RIVER WATER SAMPLE DATA ANALYSIS **Dissolved Oxygen Concentrations (mg/L)**

July 1991

	RUN #1	RUN #2	RUN #3	RUN #4	RUN #5	RUN #6	RUN #7	RUN #8	Avg	M Avg	SD	"+ RANGE"	"- RANGE"
BLK01	6.4	7.7	7.8	6.4	6.4	7.1	8.3	6.5	7.1		0.77	7.72	6.43
BLK02	6.3	7.2	7.2	6.4	6.8	7.2	8.2	6.7	7.0		0.6	7.5	6.5
BLK03	7.5	7.9	8.0	7.4	7.3	7.9	7.9	7.5	7.7	·	0.28	7.91	7.44
BLK04	8.1	8.1	8.0	7.9	8.0	8.0	7.8	8.0	8.0		0.1	8.07	7.9
BLK05	6.0	6.8	7.0	5.5	5.7	6.5	6.8		6.3	İ	0.59	6.83	5.83
BLK06	7.1	8.4	8.5	7.3	7.1	8.1	8.7	7.4	7.8	· · · · · · · · · · · · · · · · · · ·	0.67	8.38	7.27
BLK07	7.3	7.6	10.0	9.2	7.9	10.5	12.7	8.8	9.3	***************************************	1.8	10.75	7.75
BLK7.2		***************************************				8.3	8.5		8.4		0.14	8.52	8.28
BLK08	6.1	9.8	13.0	6.9	6.0	10.2	12.9	7.9	9.1		2.83	11.47	6.73
BLK8.2						9.4	10.5		10.0	***************************************	0.78	10.6	9.3
BLK09	5.4	7.1	8.0	8.6	5.5	6.1	10.0	8.8	7.4		1.69	8.85	6.03
BLK9.2	7.6	7.8	10.0	7.8	7.5	7.7	8.0	8.2	8.1		0.81	8.75	7.4
BLK10	6.3	6.9	7.0	6.0	6.3	6,5	7.5	6.2	6.6		0.5	7.01	6.17
BLK11	6.6	9.6	9.5	6.4	6.9	9.6	10.2	7.4	8.3	***************************************	1.59	9.6	6,95
BLK12	6.9	11.2	11.5	8.2	7.0	12.0	11.8	8.4	9.6		2.21	11.47	7.78
BLK13	8.2	10.7	11.0	9.3	9.1	12.0	12.2	9.9	10.3		1.42	11.49	9,11
BLK14	7.2	7.7	7.8	6.9	7.0	8.0	7.9	7.1	7.4		0.44	7.81	7.08
BLK15	6.8	8.1	7.9	6.7	7.8	8.1	7.9	6.6	7.5		0.67	8.01	6.9
BLK16	5.1	4.9	6.2	4.9	5.2	5.3	6.7	5.4	5.4	***************************************	0.65	5.98	4.89
BLK17	7.5	9.5	8.9	7.1	7.3	9.4	8.8	7.0	8.2		1.08	9.08	7.28
BLK18	8.0	8.0	7.9	8.0	8.1	8.0	8.0	7.0	7.9		0.37	8.17	7.55
BLK19	7.6	8.1	8.0	7.3	7.2	7.9	7.8	7.2	7.6	-14	0.38	8.23	7.03
BLK20	5.6	8.1	9.1	6.4	5.3	8.5	10.2	6.4	7.4		1.58	9.95	4.92
BLK21	7.0	8.9	9.0	7.2	7.3	8.7	9.2	6.8	8.0		1.06	9.68	6.31

August 1991

	August 19	7 1											
STN	RUN #1	RUN #2	RUN #3	RUN #4	RUN #5	RUN #6	RUN #7	RUN #8	Avg	M Avg	SD	"+ RANGE"	"- RANGE"
BLK01	6.2	7.2	7.2	5.9	6.0	6.9	7.0	4.9	6.4		0.81	7.09	5.74
BLK02	6.2	10.2	7.5	6.3	6.0	7.2	7.4	6.4	7.2	6.71	0.63	7.3	6.13
BLK03	7.1	10.1	7.7	7.1	7.0	7.8	7.9	7.4	7.8	7.43	0,37	7.77	7.08
BLK04	7.8	10.2	7.8	7.4	7.2	7.7	8.0	7.7	8.0	7.66	0.27	7.91	7.41
BLK05	6.3	10.2	6.9	5.9	5.8	7.1	6.9	5.9	6.9	6.4	0.56	6.91	5.89
BLK06	7.2	10.0	8.1	7.0	6.8	7.9	8.3	7.4	7.8		1.02	8.69	6.98
BLK07	7.4	9.3	12.0	8.8	7.9	7.0	7.9	8.0	8.5		1.58	9.86	7.22
BLK7.2						***************************************		*******	hiii.				
BLK08	6.2	10.0	10.3	6.2	5.6	7.9	9.4	6.3	7.7		1.92	9.34	6.13
BLK8.2				[7.9	8.9	***************************************	8.4		0.71	8.99	7.81
BLK09	4.7	9.6	9.0	5.6	4.4	5.7	8.2	6.8	6.8		1.98	8.41	5.09
BLK9.2	7.3	8.7	7.7	7.2	7.2	7.2	7.5	7.6	7.6		0.5	7.97	7.13
BLK10	6.0	6.2	5.8	5.8	5.6	5.8	5.9	5.9	5.9		0.18	6.02	5.73
BLK11	6.4	8.8	7.7	6.8	6.4	7.8	8.5	6.9	7.4		0.93	8.19	6.64
BLK12	6.3	9.3	9.3	6.9	6.2	7.5	9.7	7.7	7.9		1.4	9.04	6.69
BLK13	7.3	8.9	8.8	8.0	7.4	8.5	9.0	8.1	8.3	-	0.66	8.8	7.7
BLK14	6.9	7.5	7.8	6.6	6.8	7.2	7.7	6.8	7.1		1.75	8.6	5.67
BLK15	6.6	8.3	7.9	6.4	6.4	7.5	7.8	6.8	7.2		1.82	8,73	5.67
BLK16	6.4	6.1	6.4	5.6	5.6	5.8	5.8	5.1	5.8	***************************************	1.44	7.03	4.62
BLK17	7.4	8.7	8.5	7.1	8.0	8.1	8.8	7.0	7.9		1.98	9.58	6.27
BLK18	7.7	7.4	7.8	7.8	7.6	7.5	7.4	7.5	7.6		1.82	9.1	6.05
BLK19	7.7	8.0	7.7	8.0	7.1	7.6	7.5	7.2	7.6		1.83	9.1	6.04
BLK20	6.2	9.1	9.0	6.5	5.5	6.5	8.3	6.4	7.2	***************************************	2.03	8.85	5.46
BLK21	7.3	9.2	8.8	7.3	7.1	7.5	8.5	7.1	7.8		1.99	9.5	6.17

October 1991

	RUN #1	RUN #2	RUN #3	RUN #4	RUN #5	RUN #6	RUN #7	RUN #8	Avg	M Avg	SD	"+ RANGE"	"- RANGE"
BLK01	9.2	8.6	8.5	8.1	8.4	8.7	8.5	8.2	8.5		2.06	10.25	6.8
BLK02	8.0	7.9	7.9	7.7	7.6	8.1	7.7	7.6	7.8		1.88	9.39	6.24
BLK03	8.6	9.0	8.5	8.1	8.5	8.1	8.5	8.3	8.5	***************************************	2.04	10.16	6.74
BLK04	9.1	9.2	8.8	8.8	8.8	9.0	8.8	8.9	8.9	•••••	2.15	10.72	7.13
BLK05	9.2	9.4	9.4	8.9	9.1	9.3	8.8	8.6	9.1		2.2	10.92	7.25
BLK06	8.8	9.0	8.7	8.6	8.5	8.3	8.7	8.3	8.6		2.08	10.35	6.88
BLK07	8.4	8.1	8.8	8.1	7.6	8.3	8.1	8.0	8.2	• • • • • • • • • • • • • • • • • • • •	1.98	9.83	6.52
BLK7.2	9.1	9.0	8.9		8.7	8.7	8.6	***************************************	8.8	•••••	2.31	10.77	6.9
BLK08	8.2	8.7	8.3	7.9	7.6	8.0	8.0	7.1	8.0	•••••	1.95	9.61	6.34
BLK8.2	8,5	8.9	8.5		8.0	8.4	8.4		8.5		2.22	10.3	6.6
BLK09	8.6	10.1	9.0	7.9	8.1	8.9	9.1	8.3	8.8		2.17	10.56	6.94
BLK9.2	9.3	9.4	8.9	8.7	8.9	9.2	9.1	9.0	9.1	***************************************	2.18	10.89	7.24
BLK10	9.2	9.4	8.9	8.8	8.6	9.1	8.4	8.5	8.9		2.15	10.66	7.07
BLK11	8.7	9.0	8.6	8.4	8.2	9.0	8.4	8.3	8.6	•••••	2.07	10.31	6.84
BLK12	8.8	9.2	8.5	8.4	8.1	8.5	8.4	8.3	8.5		2.06	10.25	6.8
BLK13	8.7	8.7	8.8	8.5	8.0	8.7	8.3	8.3	8,5		2.05	10.22	6.78
BLK14	9.3	9.4	9.1,	9.2	8.9	9.2	9.2	9.2	9.2	9.22	2.2	11	7.32
BLK15	9.3	9.4	9.2	9.0	9.2	9.4	9.1	9.1	9.2		2.21	11.06	7.35
BLK16	7.8	7.7	7.7	7.5	7.1	7.2	7.0	7.3	7.4		1.79	8.88	5.89
BLK17	9.4	10.0	9.0	8.8	9.1	9.0	9.1	8.9	9.1		2.21	10.99	7.29
BLK18	9.6	9.5	9.4	9.8	9.5	9.2	9.1	9.2	9.4	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.26	11,29	7.5
BLK19	9.6	9.7	9.1	9.2	9.3	9.2	9.3	9.3	9.3		2.25	11.2	7.45
BLK20	9.2	9.6	9.1	8.9	9.0	9.1	8.8	8.8	9.1		2.18	10.87	7.22
BLK21	9.6	9.6	9.4	9.2	9.5	9.1	9.0	8.9	9.3	***************************************	2.24	11.14	7.4

Avg = Average value of 8 runs; SD = Standard deviation; + Range & -Range = 95% Confidence interval;

Biochemical Oxygen Demand Concentrations (mg/L)

July 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.5	0.5	1.15	1.4	0.89		0.46	1.62	0.16
BLK02	1	1.3	2	2.6	1.73	·······	0.72	2.87	0.58
BLK03	1.65	1.2	1.1	1.3	1.31	i	0.24	1.69	0.93
BLK04	0.5	0.5	1.55	1.35	0.98		0.55	1.86	0.09
BLK05	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK06	0.5	0.5	1.6	1.4	1.00		0.58	1.93	0.07
BLK07	1.2	1.7	3.1	2.4	2.10		0.83	3.42	0.78
BLK08	1.55	2.6	4.3	1.95	2.60		1.21	4.53	0.67
BLK09	0.5	0.5	0.5	1	0.63		0.25	1.02	0.23
BLK10	0.5	0.5	1	0.5	0.63		0.25	1.02	0.23
BLK11	1.45	2.85	3.8	3.4	2.88		1.03	4.51	1.24
BLK12	1.9	3.45	4.25	3.4	3.25		0.98	4.81	1.69
BLK13	1.7	2.75	2.95	2.6	2.50		0.55	3.38	1.62
BLK14	0.5	1	1.1	1.25	0.96		0.32	1.48	0.45
BLK15	0.5	0.5	1.5	1.5	1.00		0.58	1.92	0.08
BLK16	0.5	0.5	1.2	1.6	0.95		0.54	1.82	0.08
BLK17	1.8	2.7	3.4	3	2.73		0.68	3.81	1.64
BLK18	2.7	3.25	3.9	3.35	3.30		0.49	4.08	2.52
BLK19	2.35	4.05	4.45	3.45	3.58		0.91	5.03	2.12
BLK20	1.3	1.7	2.3	2.35	1.91		0.5	2.71	1.11
BLK21	1.9	2.2	2.7	2.2	2.25		0.33	2.78	1.72

	August 19	91							
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	2.8	0.5	1.25	1.9	1.61		0.98	3.17	0.06
BLK02	2.95	1.1	1.7	2.65	2.10		0.85	3.46	0.74
BLK03	2.95	1.15	0.5	2.85	1.86		1.23	3.82	-0.09
BLK04	2.35	0.5	0.5	2.5	1.46		1.11	3.23	-0.31
BLK05	1.95	0.5	0.5	0.5	0.86		0.72	2.02	-0.29
BLK06	2.7	0.5	0.5	2.35	1.51		1.18	3.39	-0.36
BLK07	3	1.15	1.6	1.9	1.91		0.79	3.17	0.66
BLK08	2.9	1.35	1.55	3.25	2.26	<u> </u>	0.95	3.78	0.75
BLK09	1.75	1.2	0.15	1.25	1.09		0.67	2.16	0.02
BLK10	2.1	0.5	0.5	1.1	1.05		0.75	2.25	-0.15
BLK11	2.55	0.5	0.5	2.1	1.41	<u> </u>	1.07	3.11	-0.29
BLK12	2.25	1.5	1	1.85	1.65		0.53	2.49	0.81
BLK13	2.65	0.5	0.5	2.1	1.44		1.11	3.2	-0.32
BLK14	2.1	0.5	1.4	1.55	1.39		0.66	2.44	0.33
BLK15	2.9	0.5	1.4	2.3	1.78		1.05	3.45	0.1
BLK16	1.55	1.3	0.5	1.35	1.18		0.46	1.91	0.44
BLK17	2.3	2.25	1.2	1.7	1.86		0.52	2.69	1.04
BLK18	3.05	2.55	1.3	2.15	2.26		0.74	3.44	1.09
BLK19	3.1	2.9	1.9	2.55	2.61		0.53	3.45	1.77
BLK20	2.4	2.55	1.3	2.15	2.10		0.56	2.99	1.21
BLK21	2.55	2.65	1.8	2.15	2.29		0.39	2.91	1.67

October 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	1.4	1.6	0.5	1.5	1.25		0.51	2.06	0.44
BLK02	1.25	1.3	1.3	1	1.21	Ī	0.14	1.44	0.98
BLK03	1.1	2	1.45	1.4	1.49		0.38	2.08	0.89
BLK04	1.5	1.8	1.3	1.7	1.58		0.22	1.93	1.22
BLK05	0.5	1,2	0.5	0.5	0.68		0.35	1.23	0.12
BLK06	1.05	1.25	1.65	1.4	1.34		0.25	1.74	0.94
BLK07	1.5	1.8	1.05	0.5	1.21		0.57	2.11	0.31
BLK08	1.05	1.8	1.2	0.5	1.14		0.53	1.99	0.29
BLK09	0.5	1.4	0.5	0.5	0.73	0.5	0	0.5	0.5
BLK10	0.5	1,1	0.5	0.5	0.65	0.5	0	0.5	0.5
BLK11	0.5	1.3	0.5	0.5	0.70	0.5	0	0.5	0.5
BLK12	0.5	1.1	0.5	0.5	0.65	0.5	0	0.5	0.5
BLK13	1.05	0.5	1.15	0.5	0.80		0.35	1.35	0.25
BLK14	1.35	0.5	0.5	0.5	0.71	0.5	0	0.5	0.5
BLK15	1	0.5	0.5	1.2	0.80		0.36	1.37	0.23
BLK16	1.1	1.2	0.5	0.5	0.83		0.38	1.43	0.22
BLK17	0.5	1	0.5	1.2	0.80		0.36	1.37	0.23
BLK18	0.5	1	0.5	1.2	0.80		0.36	1.37	0.23
BLK19	1.45	1	0.5	1.3	1.06		0.42	1.73	0.4
BLK20	1.1	0.5	0.5	1.7	0.95		0.57	1.86	0.04
BLK21	2.4	0.5	2.75	1.7	1.84		0.99	3.42	0.26

Chloride Conc.(mg/L)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	ŜD	"+ RANGE"	"-RANGE"
BLK01	114	114	114	148	122.5	114	0	114	114
BLK02	109	109	NS	100	106.0	·	5.2	114.27	97.73
BLK03	104	104.6	92	100	100.2	Ī	5.8	109.38	90.92
BLK04	97	105	92	100	98.5	[5.45	107.17	89.83
BLK05	67	72.5	65	68	68.1		3.17	73.17	63.08
BLK06	82	82	74	92	82.5		7.37	94.23	70.77
BLK07	78	82	68	78	76.5		5.97	86	67
BLK08	75	78.5	71	74	74.6		3.09	79.54	69.71
BLK09	20	22	19	19	20.0		1.41	22.25	17.75
BLK10	46	48	35	43	43.0		5.72	52.09	33.91
BLK11	67	75	63	65	67.5		5.26	75.87	59.13
BLK12	70	75	60	65	67.5		6.45	77.77	57.23
BLK13	57	64	50	60	57.8		5.91	67.15	48.35
BLK14	22	24	20	21	21.8		1.71	24.47	19.03
BLK15	24	23.9	20	24	23.0	23.97	0.06	24.11	24.11
BLK16	34	36	30	48	37.0		7.75	49.32	24.68
BLK17	57	59	48	57	55.3	57.67	1.15	60.54	54.79
BLK18	79	78.6	65	68	72.7		7.21	84.12	61.18
BLK19	64	68.5	68	71	67.9	•••••	2.9	72.49	63.26
BLK20	52	56.5	50	63	55.4		5.76	64.55	46.2
BLK21	54	85	46	55	60.0		17.15	87.28	32.72

Aug Survey 1991

	Aug Survey 1991										
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	ŞD	"+ RANGE"	"-RANGE"		
BLK01	108	96.8	106	116.4	106.8		5.52	115.58	98.02		
BLK02	104.4	90.4	96	112.8	100.9		9.8	116.49	85.31		
BLK03	100	94	98.5	108.8	100.3		6.2	110.19	90.46		
BLK04	96	90	95	108	97.3		7.63	109.39	85.11		
BLK05	72.4	64.8	69.2	77.6	71.0		5.39	79.58	62.42		
BLK06	90	76.8	84.8	100.4	88.0		9.89	103.74	72.26		
BLK07	78	79	78	156	97.8	78.33	0.58	79.77	76.9		
BLK08	76	72.4	72	140	90.1	73.47	2.2	78.95	68.73		
BLK09	10	19.2	21	21.6	18.0		5.4	26.54	9.36		
BLK10	45	40.8	42	49.2	44.3		3.74	50.21	38.29		
BLK11	56	51.2	57	60	56.1		3.65	61.86	50.24		
BLK12	57.2	48	53	61.6	55.0		5.81	64.2	45.7		
BLK13	48	42	42	55.2	46.8		6.27	56.78	36.82		
BLK14	30	27.6	26	28.8	28.1		1.71	30.82	25.38		
BLK15	28.4	25.2	26.4	28.8	27.2		1.7	29.9	24.5		
BLK16	38	32.4	34.4	40	36.2		3.43	41.66	30.74		
BLK17	47.6	41.6	44	236	92.3	44.4	3.02	51.91	36.89		
BLK18	62.4	54	54	60.4	57.7		4.35	64.62	50.78		
BLK19	60	53.2	54	68	58.8		6.84	69.69	47.91		
BLK20	68	59.6	60.4	67.6	63.9		4.52	71.09	56.71		
BLK21	64	56.4	60	50	57.6		5.94	67.05	48.15		

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	57	59	74	60	62.5	58.67	1.25	61.77	55.56
BLK02	71	78	93	81	80.8		4.19	87.42	74.08
BLK03	70	72	88	79	77.3	73.67	3.86	83.26	64.07
BLK04	70	68	82	94	78.5		6.18	88.34	68.66
BLK05	48	47	70	53	54.5		2.62	58.68	50.32
BLK06	66	61	71	59	64.3		4.66	71.66	56.84
BLK07	58	62	71	62	63.3		1.89	66.25	60.25
BLK08	58	59	69	62	62.0		1.7	64.7	59.3
BLK09	14	14.5	13	18	14.9		0.62	15.87	13.88
BLK10	26	26.5	29	28	27.4		1.19	29.27	25.48
BLK11	45	46	51	48	47.5		1.25	49.48	45.52
BLK12	44	45	50	48	46.8		2.38	50.54	42.96
BLK13	44	43	48	39	43.5		3.2	48.59	38,41
BLK14	12	13.5	14	13	13.1		0.74	14.3	11.95
BLK15	27.5	27.5	31	28	28.5	27.67	0.24	28.25	27.08
BLK16	25.5	27	29	34	28.9		1.43	31.16	26.59
BLK17	36	38	43	41	39.5		2.69	43.78	35.22
BLK18	40	40	48	46	43.5		3.57	49.18	37.82
BLK19	40	40	46	46	43.0		3	47.77	38.23
	NS	52	43	55	37.5		5.1	45.61	29.39
BLK21	49	41	44	54	47.0		4.95	54.88	39.12

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled; Avg = Average value of 4 runs; M Avg = Modified average without outliers; SD = Standard deviation; + Range & -Range = 95% Confidence interval; Detection limit is 1.00 mg/L; All values below 1.0 mg/L are considered as 0.50 mg/L

BLACKSTONE RIVER WATER SAMPLES ANALYSIS RESULTS TSS Conc.(mg/L)

July Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	2.4	2.8	0.6	3	2.20		1.1	3.94	0.46
BLK02	4.6	3.6	3.6	3.8	3.90	3.67	0.12	3.95	3.38
BLK03	0.5	1.4	1.8	0.5	1.05		0.74	2.15	-0.2
BLK04	1.2	1.4	1.4	1.8	1.45		0.25	1.85	1.05
BLK05	1.6	0.6	0.3	0.6	0.78		0.57	1.68	-0.13
BLK06	6.6	1.8	3.2	4	3.90		2.02	7.11	0.69
BLK07	4.2	5.2	9.2	5.6	6.05		2.18	9.52	2.58
BLK08	5	6.8	18.4	16.2	11.60		6.68	22.23	0.97
BLK09	1.8	0.6	1.8	2.6	1.70		0.82	3.01	0.39
BLK10	2.2	1.2	1.2	2.8	1.85		0.79	3.11	0.59
BLK11	9.4	6.6	12.4	13.4	10.45		3.08	15.35	5.55
BLK12	5	9.4	7	5.2	6.65		2.04	9.9	3.4
BLK13	6.4	7.2	8.4	6.8	7.20		0.86	8.57	5.83
BLK14	1.6	2	0.6	1.4	1.40		0.59	2.34	0.46
BLK15	2.4	2.6	1.8	4	2.70		0.93	4.18	1.22
BLK16	5.4	5.4	3.4	7	5.30		1.47	7.65	2.95
BLK17	5.6	8.2	7.8	8	7.40	8	0.2	8.5	7.5
BLK18	8.6	2.6	6.4	5.4	5.75		2.49	9.71	1.79
BLK19	5.8	8	8.2	5.6	6.90		1.39	9.11	4.69
BLK20	3.8	3.2	4.8	3.6	3.85		0.68	4.93	2.77
BLK21	4.6	5	6.8	5.6	5.50		0.96	7.03	3.97

Aug Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	3	3.2	3.4	4.2	3.45		0.53	4.29	2.61
BLK02	4.8	3	3	1.4	3.05		1.39	5.26	0.84
BLK03	2	1	1.6	0.6	1.30		0.62	2.29	0.31
BLK04	1.8	2.6	1.8	1.8	2.00	1.8	0	1.8	1.8
BLK05	1.4	1.8	1.6	0.25	1.26		0.69	2.37	0.16
BLK06	3.6	2.8	1	2	2.35		1.11	4.12	0.58
BLK07	8.6	6.8	5.6	4.4	6.35		1.79	9.2	3.5
BLK08	3.8	6.2	17.8	8.6	9.10		6.12	18.84	-0.64
BLK09	1.6	1.6	1.4	1.2	1.45		0.19	1.75	1.15
BLK10	1.6	1.4	1.8	1	1.45		0.34	1.99	0.91
BLK11	5.2	6	2.4	4	4.40		1.57	6.89	1.91
BLK12	3.6	5.4	. 3	3.2	3.80		1.1	5.54	2.06
BLK13	5.4	4.4	4.8	4.4	4.75		0.47	5.5	4
BLK14	2	3.8	4	2.6	3.10		0.96	4.63	1.57
BLK15	3,8	5.2	6.2	4	4.80		1.12	6.58	3.02
BLK16	2	3.2	5.8	9	5.00		3.1	9.94	0.06
BLK17	3.4	4.2	4.4	4.6	4.15		0.53	4.99	3.31
BLK18	2.4	5.4	4	4.2	4.00		1.23	5.96	2.04
BLK19	4	5.8	6.8	3	4.90		1.72	7.63	2.17
BLK20	2.6	4.4	5.4	7	4.85		1.84	7.78	1.92
BLK21	4.8	7	6.2	6.8	6.20		0.99	7.78	4.62

Oct Survey 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	3.2	4	4.6	2	3.45		1.12	5.24	1.66
BLK02	3.4	3.6	5.4	3.4	3.95	3.47	0.12	3.75	3.18
BLK03	4.4	4.4	5.6	3,6	4.50		0.82	5.81	3.19
BLK04	3.8	3.2	4	2.4	3.35		0.72	4.49	2.21
BLK05	1.2	1	0.6	0.6	0.85		0.3	1.33	0.37
BLK06	4.2	5.4	11.8	3.6	6.25	4.4	0.92	6.68	2.12
BLK07	5	6.2	3.2	3.8	4.55		1.33	6.67	2.43
BLK08	7.4	8.4	3	5.2	6.00		2.41	9.83	2.17
BLK09	1.6	1.6	1.4	0.25	1.21	1.53	0.12	1.82	1.25
BLK10	1.8	1.8	1.2	1	1.45		0.41	2.11	0.79
BLK11	5.4	6.6	5	3.6	5.15		1.24	7.12	3.18
BLK12	3.4	6.6	2.2	2.78	3.75		1.96	6.87	0.63
BLK13	4.2	4.6	5.4	2.4	4.15		1.27	6.17	2.13
BLK14	3	3	1.6	1	2.15		1.01	3.76	0.54
BLK15	3.6	3	2	2	2.65		0.79	3.91	1.39
BLK16	3.4	2.4	1	2.2	2.25		0.98	3.82	0.68
BLK17	4	5	2.4	3.8	3.80		1.07	5.5	2.1
BLK18	4.6	4	3.4	2.8	3.70		0.77	4.93	2.47
BLK19	3.6	5	2.2	2.4	3.30		1.29	5.35	1.25
	NS	3.6	2.8	1.8	2.73		0.9	4.97	0.49
BLK21	4.2	3.6	2	1.4	2.80		1.32	4.89	0.71

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled; Avg = Average value of 4 runs; M Avg = Modified average without outliers; SD = Standard deviation; + Range & -Range = 95% Confidence interval;

BLACKSTONE RIVER WATER SAMPLES ANALYSIS RESULTS VSS Concentrations (mg/L)

July 1991

OTN	DUNI WA	DIDI #0	D. D. 110					
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.8	1.8	0.25	0.8	0.91	0.65	1.94	-0.12
BLK02		2	3	1.8	2.27	0.55	3.23	1.47
BLK03	0.6	0.6	1.4	0.25	0.71	0.49	1.49	-0.06
BLK04	0.25	0.25	0.8	0.8	0.53	0.32	1.03	0.02
BLK05	1.2	0.6	0.25	0.25	0.58	0.45	1.29	-0.14
BLK06	2.6	0.25	1.4	1	1.31	0.98	2.87	-0.25
BLK07	2	2.2	4.8	2.2	2.80	0.12	2.42	1.85
BLK08	2.6	4	6.6	4.2	4.35	1.66	6.99	1.71
BLK09	1	0.25	0.8	1.4	0.86	0.48	1.62	0.1
BLK10	1.2	0.8	1	0.8	0.95	0.19	1.25	0.65
BLK11	3.8	3.4	5.4	4.4	4.25	0.87	5.63	2.87
BLK12	2.6	5.4	4	1.8	3.45	1.59	5.97	0.93
BLK13	3.2	4.2	2	4.6	3.50	1.16	5.35	1.65
BLK14	1	1	0.25	0.8	0.76	0.35	1.33	0.2
BLK15	1.2	1	0.8	1.4	1.10	0.26	1.51	0.69
BLK16	2	2.2	1.8	2	2.00	0.16	2.26	1.74
BLK17		5	4.6	3.6	4.40	0.99	5.58	2.42
BLK18	4	2	2.8	2.2	2.75	0.9	4.18	1.32
BLK19	2.8	4.4	5	2.8	3.75	1.12	5.54	1.96
BLK20	1.8	2.2	3	1.2	2.05	0.75	3.25	0.85
BLK21	1.8	3	3.8	2.4	2.75	0.85	4.11	1.39

August 1991

	August 19	<u>*</u>						
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"-RANGE"
BLK01	1.6		1.8	2	1.80	0.16	2.06	1.54
BLK02	2	2.6	2	1.2	1.95	0.57	2.86	1.04
BLK03	1	0.6	1.2	0.25	0.76	0.42	1.44	0.09
BLK04	0.8		1.4	1.6	1.27	0.34	1.79	0.71
BLK05	1	0.8		0.25	0.76	0.35	1.33	0.2
BLK06	1.8	1	0.6	1.8	1.30	0.6	2.25	0.35
BLK07	3.2	3.8	3.2	2.4	3.15	0.57	4.06	2.24
BLK08	1.2	3.6	4.6	4.2	3.40	1.52	5.82	0.98
BLK09	1.4	1.4	0.8	0.25	0.96	0.55	1.84	0.08
BLK10	0.8	0.8	0.6	0.6	0.70	0.12	0.88	0.52
BLK11	1.8	3.2	1.8	2.2	2.25	0.66	3.3	1.2
BLK12	1.4	3.4	2	1.6	2.10	0.9	3.53	0.67
BLK13	3	3	3.4	2.6	3.00	0.33	3.52	2.48
BLK14	1.4 2.6	2.6	2.2	2	2.05	0.5	2.85	1.25 1.76
BLK15	2.6	3.2	4.8	2.8	3.35	1	4.94	1.76
BLK16	1.2	1.8	3	3.6	2.40	1.1	4.14	0.66
BLK17	2.2	1.4	2.8	3.2	2.40	0.78	3.65	1.15
BLK18	1.4	2.8	3	2.8	2.50	0.12	3.15	2.58
BLK19	2.8	3.8	3.8	1.6	3.00	1.05	4.66	1.34
BLK20	2.2	1.6	1.8	3.6	2.30	0.9	3.73	0.87
BLK21	2.6	4.2	5	4	3.95	1	5.54	2.36

October 1991

STÑ.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	SD	"+ RANGE"	"-RANGE"
BLK01	1.2	1.2	2.8	0.25	1.36	1.06	3.05	-0.32
BLK02	2.8	2		2	2.27	0.95	4.2	1.2
BLK03	2.6	2.4	3.8	1.6	2.60	0.91	4.05	1.15
BLK04	2.4	1	3	1.2	1.90	0.96	3.43	0.37
BLK05	1	0.8	0.25	0.25	0.58	0.38	1.19	-0.04
BLK06	2	2.6		2	2.20	0.35	3.06	1.34
BLK07	2.2	2.4	1.6	1.4	1.90	0.48	2.66	1.14
BLK08	2.8	3	2.4	1.8	2.50	0.53	3.34	1.66
BLK09	1.2	0.8	1.2	0.25	0.86	0.45	1.58	0.15
BLK10	1.4	1	1	0.8	1.05	0.25	1.45	0.65
BLK11	2.2	2.4	1.8	1.4	1.95	0.44	2.66	1.24
BLK12	1.8	1.8	1.4	1.2	1.55	0.3	2.03	1.07
BLK13	2	1.8	2.4	1	1.80	0.59	2.74	0.86
BLK14	2	1.2	1.4	0.8	1.35	0.5	2.15	0.55
BLK15	2.2	1.2	1.4	1.6	1.60	0.43	2.29	0.91
BLK16	2	0.8	0.8	1.4	1.25	0.57	2.16	0.34
BLK17	2	1.6	1.6	2	1.80	0.23	2.17	1.43
BLK18	2.6	1.4	2.2	2	2.05	0.5	2.85	1.25
BLK19	2.2	2	1.4	2	1.90	0.35	2.45	1.35
	NS	1.3	1.6	1.4	1.43	0.15	1.81	1.05
BLK21	2	1.2	1.2	_ 1	1.35	0.12	1.42	0.85

Avg = Average value of 4 runs; NS = Not sampled;

SD = Standard deviation; + Range & -Range = 95% Confidence interval;
Detection limit is 1.00 mg/L; All values below 1.0 mg/L are considered as 0.50 mg/L

BLACKSTONE RIVER WATER SAMPLES ANALYSIS RESULTS Nitrate as N Concentrations (mg/L)

July 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.654	0.509	0.995	0.445	0.65		0.246	1.041	0.26
BLK02	2.892	2.571	4.553	2.023	3.01	2.495	0.439	3.588	1.402
BLK03	4.032	3.64	4.158	3.891	3.93		0.222	4.284	3.577
BLK04	4.432	4.204	4.422	4.474	4.38	4.44	0.03	4.51	4.37
BLK05	0.132	0.082	0.203	4.058	1.12	0.139	0.061	0.29	-0.012
BLK06	2.778	2.639	4.422	0.072	2.48		1.797	5.336	-0.381
BLK07	2.744	2.852	3.63	3.683	3.23		0.498	4.02	2.435
BLK08	2.373	2.289	2.79	3.103	2.64		0.379	3.242	2.035
BLK09	0.149	0.136	0.151	3.182	0.91	0.145	0.008	0.166	0.125
BLK10	0.116	0.027	0.098	0.173	0.10		0.06	0.199	0.008
BLK11	1.699	1.523	2.666	1.744	1.91	1.655	0.117	1.946	1.365
BLK12	1.767	1.39	1.917	1.65	1.68		0.223	2.035	1.327
BLK13	1.565	1.5	1.732	1.461	1.57		0.12	1.755	1.374
BLK14	0.244	0.225	0.01	0.268	0.19	0.246	0.022	0.299	0.192
BLK15	0.379	0.293	0.203	0.392	0.32		0.088	0.456	0.177
BLK16	0.76	0.77	NS	0.772	0.77		0.006	0.781	0.754
BLK17	1.277	1.204	0.388	1.459	1.08	1.313	0.131	1.64	0.987
BLK18	1.232	1.17	1.469	1.411	1.32		0.142	1.547	1.094
BLK19	1.403	1.373	1.574	1.624	1.49		0.124	1.691	1.296
BLK20	1.637	1.711	1.743	1.98	1.77		0.148	2.004	1.532
BLK21	1.592	1.981	2.023	1.901	1.87		0.195	2.184	1.564

August 1991

	August 19	<u> </u>							
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.157	1.454	0.708	0.659	0.75		0.535	1.595	-0.106
BLK02	2.696	3.806	4.182	4.773	3.86		0.875	5.256	2.473
BLK03	4.28	3.634	3.57	5.214	4.18		0.764	5.389	2.96
BLK04	4.086	4.207	3.345	4.198	3.96	4.164	0.067	4.331	3.996
BLK05	0.026		0.129	0.117	0.10	0.13	0.01	0.15	0.1
BLK06	3.418	2.888	4.053	3.369	3.43		0.478	4.193	2.671
BLK07	4.197	2.544	4.24	2.859	3.46		0.885	4.869	2.051
BLK08	2.849	4.28	3.795	2.859	3.45		0.711	4.578	2.314
BLK09	2.455	0.135	0.644	0.085	0.83		1.113	2.6	-0.94
BLK10	0.978	0.192	0.01	0.085	0.32	0.1	0.09	0.32	-0.13
BLK11	1.405	1.454	1.995	1.201	1.51		0.339	2.053	0.974
BLK12	4.53	1.598	2.381	1.329	2.46	1.77	0.55	3.13	0.41
BLK13	0.967	0.823	2.381	0.946	1.28	0.912	0.078	1.105	0.719
BLK14	0.252	0.279	0.223	0.308	0.27		0.036	0.323	0.208
BLK15	0.252	0.249	0.172	0.89	0.39	0.22	0.05	0.34	0.11
BLK16	0.563	0.651	0.675	0.946	0.71		0.165	0.972	0.446
BLK17	0.785	0.823	0.819	1.137	0.89	0.81	0.02	0.86	0.76
BLK18	1.429	1.167	4.647	1.52	2.19	1.372	0.183	1.828	0.916
BLK19	1.76	1.511	1.572	1.966	1.70		0.205	2.029	1.376
BLK20	2.027	1.741	1.978	2.285	2.01		0.223	2.363	1.653
BLK21	1.672	1.626	1.717	2.413	1.86	1.67	0.05	1.78	1.56

October 1991

	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	1.552	0.24	2.19	0.736	1.18		0.864	2.554	-0.195
BLK02	1.237	1.88	2.617	1.985	1.93	1.701	0.405	2.708	0.693
BLK03	1.269	1.012	2.049	2.212	1.64		0.585	2.566	0.705
BLK04	1.127	1.301	1.481	2.212	1.53		0.477	2.289	0.771
BLK05	0.055	0.067	0.055	0.034	0.05		0.014	0.075	0.031
BLK06	1.315	0.954	0.974	1.327	1.14		0.206	1.471	0.814
BLK07	0.804	1.418	1.229	1.191	1.16		0.258	1.57	0.751
BLK08	1.226	0.897	1.397	1.191	1.18		0.208	1.508	0.847
BLK09	0.094	0.096	0.098	0.102	0.10		0.003	0.103	0.092
BLK10	0.01	0.029	0.041	0.034	0.03		0.013	0.05	0.007
BLK11	1.077	0.636	0.804	1.259	0.94		0.278	1.386	0.502
BLK12	2.116	0.665	0.634	1.599	1.25		0.729	2.413	0.094
BLK13	2.071	0.773	0.676	1.259	1.20		0.637	2.209	0.181
BLK14	0.242	0.164	0.154	0.202	0.19		0.04	0.254	0.127
BLK15	0.441	0.164	0.183	0.279	0.27		0.127	0.468	0.065
BLK16	0.69	0.434	0.424	0.539	0.52		0.124	0.718	0.325
BLK17	1.314	0.559	0.564	0.61	0.76	0.58	0.03	0.65	0.51
BLK18	0.618	1.022	0.706	0.766	0.78		0.174	1.054	0.502
BLK19	1.082	0.25	0.536	0.817	0.67		0.359	1.242	0.101
BLK20	0.386	0.154	0.507	0.299	0.34		0.149	0.573	0.1
BLK21	1.38	0.791	0.536	0.714	0.86		0.366	1.437	0.273

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled; Avg = Average value of 4 runs; M Avg = Modified average without outliers; SD = Standard deviation; + Range & -Range = 95% Confidence interval; Detection limit is 0.02 mg/L; All values below the detection limit are considered as 0.01 mg/L

 $F_{ij}(\tau_{ij}^{(i)})$

Ammonia Concentrations as NH3 - N (mg/L)

July	1991
------	------

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.14	0.17	0.24	0.24	0.20		0.05	0.27	0.12
BLK02	0.48	0.26	0.24	0.45	0.36		0.13	0.56	0.15
BLK03	0.29	0.21	0.11	0.18	0.20		0.07	0.32	0.08
BLK04	0.38	0.29	0.28	0.33	0.32		0.05	0.39	0.24
BLK05	0.07	0.07	0.01	0.08	0.06	0.07	0.01	0.09	0.05
BLK06	0.12	0.13	0.12	0.16	0.13		0.02	0.16	0.1
BLK07	0.22	0.16	0.05	0.08	0.12		0.08	0.24	0
BLK08	0.12	0.05	0.14	0.11	0.11		0.04	0.16	0.05
BLK09	0.09	0.04	0.01	0.06	0.05		0.03	0.1	0
BLK10	0.04	0.04	0.04	0.07	0.05	0.04	0	0.05	0.03
BLK11	0.06	0.06	0.1	0.02	0.06		0.03	0.11	0.01
BLK12	0.04	0.05	0.05	0.06	0.05		0.01	0.07	0.03
BLK13	0.05	0.06	0.05	0.09	0.06		0.02	0.09	0.03
BLK14	0.09	0.12	0.08	0.09	0.09	0.09	0	0.09	0.08
BLK15	0.06	0.04	0.05	0.05	0.05		0.01	0.07	0.04
BLK16	0.22	0.26	0.25	0.33	0.27		0.05	0.34	0.19
BLK17	0.06	0.05	0.05	0.09	0.06	0.05	0	0.06	0.04
BLK18	1.03	1.54	1.01	1.07	1.16	1.04	0.03	1.12	0.96
BLK19	1.03	0.6	0.77	0.99	0.85		0.2	1.16	0.53
BLK20	0.55	0.5	0.43	0.45	0.48		0.05	0.57	0.4
BLK21	0.33	0.31	0.36	0.25	0.31		0.04	0.38	0.24

August 1991

	August 10	<u>* · </u>							
STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	1.37	0.65	0.01	0.01	0.51		0.65	1.54	-0.52
BLK02	1.61	0.73	0.01	0.01	0.59		0.76	1.8	-0.62
BLK03	1.66	0.75	0.03	0.01	0.61		0.78	1.85	-0.63
BLK04	1.72	1.13	0.02	0.01	0.72		0.85	2.07	-0.63
BLK05	0.49	0.32	0.09	0.01	0.23		0.22	0.58	-0.13
BLK06	1.21	0.58	0.69	0.01	0.62		0.49	1.41	-0,16
BLK07	0.58	0.93	0.42	0.01	0.48		0.38	1.09	-0.12
BLK08	0.13	0.78	0.32	0.01	0.31		0.34	0.85	-0.23
BLK09	0.26	0.46	0.15	0.01	0.22		0.19	0.52	-0.08
BLK10	0.55	0.18	0.13	0.13	0.25	0.15	0.03	0.22	0.08
BLK11	0.09	0.41	0.4	0.26	0.29		0.15	0.53	0.05
BLK12	0.13	0.33	0.37	0.27	0.27		0.11	0.44	0.1
BLK13	0.08	0.38	0.34	0.26	0.27		0.13	0.48	0.05
BLK14	0.22	0.62	0.25	0.01	0.28		0.25	0.68	-0.13
BLK15	0.09	0.26	0.26	0.39	0.25		0.12	0.45	0.05
BLK16	0.2	0.28	0.17	0.18	0.21	0.18	0.01	0.22	0.15
BLK17	0.01	0.22	0.1	0.14	0.12		0.09	0.25	-0.02
BLK18	0.88	1.25	0.22	0.74	0.77		0.43	1.45	0.1
BLK19	0.67	0.43	0.75	0.83	0.67		0.17	0.94	0.4
BLK20	0.49	0.34	0.04	0.43	0.32		0.2	0.64	0.01
BLK21	0.5	0.44	0.64	0.04	0.40		0.26	0.82	-0.01

October 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.15	0.11	0.15	0.17	0.14	0.15	0.01	0.18	0.13
BLK02	0.19	0.07	0.75	0.54	0.39	0.49	0.23	1.07	-0.08
BLK03	0.16	0.14	0.24	0.56	0.28	0.18	0.04	0.29	0.07
BLK04	0.18	0.2	0.32	0.46	0.29		0.11	0.46	0.11
BLK05	0.01	0.01	0.01	0.01	0.01		0	0.01	0.01
BLK06	0.21	0.13	0.4	0.16	0.23		0.11	0.39	0.06
BLK07	0.14	0.23	0.2	0.24	0.20		0.04	0.26	0.14
BLK08	0.07	0.15	0.21	0.18	0.15		0.05	0.24	0.07
BLK09	0.01	0.01	0.01	0.03	0.01		0.01	0.02	0
BLK10	0.01	0.01	0.01	0.01	0.01		0	0.01	0.01
BLK11	0.07	0.09	0.1	0.09	0.09		0.01	0.11	0.07
BLK12	0.08	0.12	0.09	0.12	0.10		0.02	0.13	0.08
BLK13	0.08	0.1	0.19	0.01	0.09		0.06	0.19	-0.01
BLK14	0.02	0.04	0.07	0.01	0.04	0.04	0.02	0.1	-0.01
BLK15	0.06	0.03	0.11	0.08	0.07		0.03	0.12	0.02
BLK16	0.06	0.06	0.05	0.04	0.06		0.01	0.07	0.04
BLK17	0.01	0.77	0.1	0.05	0.23	0.06	0.04	0.15	-0.04
BLK18	0.04	0.16	0.33	0.22	0.19		0.07	0.17	-0.17
BLK19	0.21	0.2	0.23	0.21	0.21	***************************************	0.01	0.23	0.2
BLK20	0.17	0.01	0.21	0.17	0.14	0.18	0.02	0.23	0.13
BLK21	0.14	0.2	0.25	0.15	0.19		0.04	0.26	0.12

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled;

Avg = Average value of 4 runs; M Avg = Modified average without outliers; SD = Standard deviation; + Range & -Range = 95% Confidence interval;

Detection limit is 0.02 mg/L; All values below the detection limit are considered as 0.01 mg/L Rhode Island Stations

BLACKSTONE RIVER WATER SAMPLES ANALYSIS RESULTS Total Kjeldhal Nitrogen Concentrations (mg/L)

July 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	AVE	M AVE	SD	"+ RANGE"	"-RANGE"
BLK01	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK02	1.195	0.5	1.665	0.5	0.97	0.732	0.401	1.73	-0.266
BLK03	0.5	1.118	1.175	0.5	0.82		0.37	1.42	0.23
BLK04	1.055	0.5	0.5	0.5	0.64	0.5	0	0.5	0.5
BLK05	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK06	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK07	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK08	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK09	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK10	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK11	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK12	0.5	0.5	1.17	0.5	0.67	0.5	0	0.5	0.5
BLK13	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK14	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK15	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK16	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK17	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK18	2.89	1.598	1.665	2.6	2.19		0.65	3.23	1.15
BLK19	1.475	1.558	1.55	2.443	1.76	1.528	0.046	1.642	1.414
BLK20	0.5	0.5	1.125	0.5	0.66	0.5	0	0.5	0.5
BLK21	0.5	0.5	1.068	1.07	0.79		0.33	1.31	0.26

August 1991

August 1991										
		RUN #2	RUN #3	RUN #4	AVE	M AVE	SD	"+ RANGE"	"-RANGE"	
BLK01	1.37	0.5	0.5	0.5	0.72	0.5	0	0.5	0.5	
BLK02	1.616	0.5	0.5	0.5	0.78	0.5	0	0.5	0.5	
BLK03	1.66	0.5	0.5	0.5	0.79	0.5	0	0.5	0.5	
BLK04	1.724	1.125	0.02	0.015	0.72		0.85	2.07	-0.63	
BLK05	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK06	1.212	0.5	0.5	0.5	0.68	0.5	0	0.5	0.5	
BLK07	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK08	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK09	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK10	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK11	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK12	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK13	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK14	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK15	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK16	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK17	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK18	0.5	1.248	0.5	0.5	0.69	0.5	0	0.5	0.5	
BLK19	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	
BLK20	0.5	0.5	0.5	0.5	0.50	***************************************	0	0.5	0.5	
BLK21	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5	

October 1991

STN	RUN#1	RUN#2	RUN#3	RUN#4	AVE	M AVE	SD	"+ RANGE"	"-RANGE"
BLK01	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK02	0.5	0.5	1.053	0.5	0.64	0.5	0	0.5	0.5
BLK03	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK04	0.5	0.5	0.5	1.019	0.63	0.5	0	0.5	0.5
BLK05	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK06	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK07	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK08	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK09	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK10	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK11	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK12	0.5	0.5	0.5	0.5	0.50		0,	0.5	0.5
BLK13	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK14	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK15	0.5	0.5	0.5	0.5	0.50		O	0.5	0.5
BLK16	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK17	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK18	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK19	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5
BLK20	NS	0.5	0.5	0.5	0.38	0.5	0	0.5	0.5
BLK21	0.5	0.5	0.5	0.5	0.50		0	0.5	0.5

Phosphate as PO4-P Concentrations (mg/L)

July 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.023	0.01	0.01	0.01	0.013	0.01	0	0.01	0.01
BLK02	0.893	0.996	1.149	0.11	0.787		0.463	1.524	0.05
BLK03	0.893	0.855	1.067	0.931	0.937		0.092	1.083	0.79
BLK04	0.711	0.76	0.849	0.931	0.813		0.097	0.968	0.658
BLK05	0.082	0.034	0.083	0.876	0.269	0.066	0.028	0.136	-0.003
BLK06	0.637	0.432	0.466	0.055	0.398	0.512	0.11	0.785	0.238
BLK07	0.674	0.571	0.521	0.493	0.565		0.08	0.691	0.438
BLK08	0.527	0.477	0.411	0.439	0.464		0.05	0.543	0.384
BLK09	0.126	0.015	0.066	0.411	0.155		0.177	0.436	-0.127
BLK10	0.148	0.019	0.01	0.01	0.047	0.01	0.01	0.03	0
BLK11	0.381	0.241	0.193	0.104	0.230		0.116	0.414	0.046
BLK12	0.462	0.241	0.165	0.095	0.241		0.159	0.494	-0.012
BLK13	0.308	0.383	0.22	0.12	0.258		0.113	0.438	0.077
BLK14	0.01	0.05	0.138	0.01	0.052		0.06	0.148	-0.044
BLK15	0.02	0.05	0.083	0.01	0.041		0.033	0.093	-0.012
BLK16	0.025	0.05	NS	0.01	0.021		0.022	0.056	-0.013
BLK17	0.132	0.201	0.05	0.059	0.111		0.071	0.223	-0.002
BLK18	0.164	0.286	0.165	0.128	0.186		0.069	0.296	0.076
BLK19	0.188	0.258	0.193	0.065	0.176		0.081	0.304	0.048
BLK20	0.122	0.229	0.176	0.072	0.150		0.068	0.258	0.042
BLK21	0.102	0.201	0.165	0.01	0.120	0.156	0.05	0.281	0.031

August 1991

	August 19								
STN.	RŪN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.051	0.01	0.01	0.01	0.020	0.01	0	0.01	0.01
BLK02	1.195	0.827	1.02	1.343	1.096		0.223	1.451	0.742
BLK03	1.038	0.673	1.02	1.456	1.047		0.32	1.557	0.537
BLK04	0.809	0.827	0.829	1.4	0.966	0.822	0.011	0.849	0.794
BLK05	0.01	0.01	0.01	0.063	0.023	0.01	0	0.01	0.01
BLK06	0.65	0.313	0.656	0.895	0.629		0.239	1.009	0.248
BLK07	0.315	0.077	0.144	0.586	0.281		0.227	0.642	-0.081
BLK08	0.01	0.036	0.01	0.417	0.118	0.019	0.015	0.056	-0.019
BLK09	0.01	0.01	0.01	0.041	0.018	0.01	0	0.01	0.01
BLK10	0.079	0.01	0.01	0.024	0.031	0.01	0.01	0.03	-0.01
BLK11	0.01	0.01	0.01	0.193	0.056	0.01	0	0.01	0.01
BLK12	0.087	0.01	0.01	0.165	0.068		0.074	0.186	-0.05
BLK13	0.01	0.01	0.01	0.12	0.038	0.01	0	0.01	0.01
BLK14	0.063	0.01	0.072	0.024	0.042		0.03	0.09	-0.005
BLK15	0.01	0.01	0.083	0.024	0.032	0.015	0.008	0.035	-0.005
BLK16	0.01	0.01	0.062	0.024	0.027		0.025	0.066	-0.013
BLK17	0.01	0.01	0.109	0.176	0.076		0.081	0.206	-0.053
BLK18	0.161	0.01	0.179	0.361	0.178		0.144	0.406	-0.051
BLK19	0.13	0.01	0.169	0.33	0.160		0.132	0.37	-0.05
BLK20	0.099	0.01	0.34	0.249	0.175		0.148	0.41	-0.061
BLK21	0.087	0.01	0.28	0.193	0.143		0.118	0.331	-0.046

October 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.048	0.157	0.195	0.068	0.117		0.07	0.229	0.005
BLK02	0.342	0.619	0.502	0.619	0.521		0.131	0.729	0.312
BLK03	0.342	0.526	0.489	0.619	0.494		0.115	0.677	0.311
BLK04	0.415	0.444	0.416	0.434	0.427		0.014	0.45	0.405
BLK05	0.01	0.022	0.024	0.01	0.017		0.008	0.029	0.004
BLK06	0.205	0.26	0.249	0.316	0.258		0.046	0.33	0.185
BLK07	0.161	0.2	0.205	0.205	0.193	0.2	0	0.21	0.2
BLK08	0.161	0.225	0.205	0.205	0.199		0.027	0.242	0.156
BLK09	0.01	0.022	0.01	0.103	0.036	0.014	0.007	0.031	-0.003
BLK10	0.01	0.022	0.01	0.01	0.013	0.01	0	0.01	0.01
BLK11	0.205	0.15	0.117	0.15	0.156		0.036	0.214	0.097
BLK12	0.249	0.15	0.117	0.15	0.167		0.057	0.257	0.076
BLK13	0.161	0.15	0.017	0.15	0.120	0.154	0.006	0.169	0.138
BLK14	0.01	0.031	0.01	0.01	0.015	0.01	Ö	0.01	0.01
BLK15	0.01	0.031	0.01	0.01	0.015	0.01	0	0.01	0.01
BLK16	0.01	0.031	0.01	0.032	0.021		0.012	0.041	0.001
BLK17	0.048	0.137	0.049	0.068	0.076	0.06	0.01	0.08	0.03
BLK18	0.048	0.138	0.137	0.068	0.098		0.047	0.172	0.024
BLK19	0.078	0.138	0.107	0.032	0.089		0.045	0.16	0.017
BLK20	0.078	0.155	0.078	0.068	0.095	0.07	0.01	0.09	0.06
BLK21	0.078	0.09	0.078	0.068	0.079		0.009	0.093	0.064

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled;

Avg = Average value of 4 runs; M Avg = Modified average without outliers;

SD = Standard deviation; + Range & -Range = 95% Confidence interval;
Detection limit is 0.02 mg/L; All values below the detection limit are considered as 0.01 mg/L

Chlorophyll a Concentrations (ppb)

July 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	0.5		2.8		1.65		1.63	16.3	-13
BLK02	2		1.9		1.95		0.07	2.59	1.31
BLK03	2.1	****	2.3		2.20		0.14	3.47	0.93
BLK04	1		2		1.50		0.71	7.87	-4.87
BLK05	NS		NS		0.00		0	0	0
BLK06	3.2		3.7		3.45		0.35	6.63	0.27
BLK07	6.2		22		14.10		11.17	114.73	-86.53
BLK08	17		20.6		18.80		2.55	41.73	-4.13
BLK09	NS		NS		0.00		0	0	0
BLK10	NS		NS		0.00		0	Ö	0
BLK11	12.1		19.6		15.85		5.3	63.62	-31.92
BLK12	21		13		17.00		5.66	67.95	-33.95
BLK13	17.8	-	20.6		19.20		1.98	37.03	1.37
	NS		NS		0.00		0	0	0
	NS		NS		0.00		0	0	0
BLK16	1.9		5.6		3.75		2.62	27.32	-19.82
BLK17	NS		25.2		12.60		17.82	173.1	-147.9
BLK18	15		29.5		22.25		10.25	114.6	-70.1
BLK19	18		26.2		22.10		5.8	74.33	-30.13
BLK20	4.3		5.6		4.95		0.92	13.23	-3.33
BLK21	13.1		11.3		12.20		1.27	23.66	0.74

August 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	1.9		3		2.45		0.78	9.46	-4.56
BLK02	0.5		1		0.75		0.35	3.93	-2.43
BLK03	0.5		1		0.75		0.35	3.93	-2.43
BLK04	0.5		1		0.75		0.35	3.93	- 2.43
BLK05	1.9		1.1		1.50		0.57	6.6	-3.6
BLK06	1		5.8		3.40		3.39	33.97	-27.17
BLK07	3.7		10.7		7.20		4.95	51.78	-37.38
BLK08	3.7		31.2		17.45		19.45	192.6	-157.7
BLK09	0.5		1.9		1.20		0.99	10.12	-7.72
BLK10	1.9		1		1.45		0.64	7.18	-4.28
BLK11	4		8		6.00		2.83	31.48	-19.48
BLK12	6.7		4.9		5.80		1.27	17.26	-5.66
BLK13	7		14		10.50		4.95	55.08	-34.08
BLK14	1		3.2		2.10		1.56	16.11	-11.91
BLK15	5.3		3.9		4.60		0.99	13.52	-4.32
BLK16	1		4.1		2.55		2.19	22.29	-17.19
BLK17	9.1		15		12.05		4.17	49.63	-25.53
BLK18	5		10.1		7.55		3.61	40.03	-24.93
BLK19	6		11.9		8.95		4.17	46.53	-28.63
BLK20	3		18.7		10.85		11.1	110.84	-89.14
BLK21	13.8		13.5		13.65		0.21	15.56	11.74

October 1991

STN.	RUN #1	RUN #2	RUN #3	RUN #4	Avg	M Avg	SD	"+ RANGE"	"-RANGE"
BLK01	2.8		1		1.90		1.27	13.36	-9.56
BLK02	2.9		1.1		2.00		1.27	13.46	-9.46
BLK03	1		0.5		0.75		0.35	3.93	-2.43
BLK04	1		1,1		1.05		0.07	1.69	0.41
BLK05	2.8		4.7		3.75		1.34	15.85	-8.35
BLK06	2		3.2		2.60		0.85	10.24	-5.04
BLK07	0.5		3.1		1.80		1.84	18.36	-14.76
BLK08	2.8		2		2.40		0.57	7.5	-2.7
BLK09	2		1		1.50		0.71	7.87	-4.87
BLK10	1		3.3		2.15		1.63	16.8	-12.5
BLK11	0.5		1.9		1.20		0.99	10.12	-7.72
BLK12	2		0.5		1.25		1.06	10.8	-8.3
BLK13	3.7		1		2.35		1.91	19.55	-14.85
BLK14	2		4		3.00		1.41	15.74	-9.74
BLK15	4		6		5.00		1.41	17.74	-7.74
BLK16	0.5		0.5		0.50		Ö	0.5	0.5
BLK17	2.9		3.1		3.00		0.14	4.27	1.73
BLK18	2.9		1		1.95		1.34	14.05	-10.15
BLK19	1.1		2		1.55		0.64	7.28	-4.18
BLK20	2.8		2		2.40		0.57	7.5	-2.7
BLK21	2.1		4		3.05		1.34	15.15	-9.05

Underlined values indicate the statistical outliers (Grubbs & Beck); NS = Not sampled;

Avg = Average value of 4 runs; M Avg = Modified average without outliers;
SD = Standard deviation; + Range & -Range = 95% Confidence interval;
Detection limit is 0.10 ppb; All values below the detection limit are considered as 0.05 ppb0.05 mg/L Rhode Island Stations

Point Source Effluent BOD5 Concentrations (mg/L)

July 5-9, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5		Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	3.1	5	6.9	6.5	9.9		6.28	2.51	9.4	3.16
Woonsocket Final	4.2	7.5	3.7	NS	7.6		 5.75	2.09	8.34	3.16
UBWPAD Secondary	3	1.75	1	3	5		2.75	1.52	4.64	0.86
UBWPAD Final	5	3.25	2	2.75	5	 I	 3.60	1.35	5.28	1.92

August 9-13, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5		Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	9.15	7.2	19.05	10.2	10.5		11.22	4.56	16.88	5.56
Woonsocket Final	8.4	7.5	14.4	12.15	6.15		9.72	3.44	13.98	5.46
UBWPAD Secondary	2.02	3.45	2.25	1.87	0.5		2.02	1.05	3.32	0.71
UBWPAD Final	3.75	4.58	5.7	3.9	NS		4.48	0.89	5.59	3.38

October 23-30, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	13.4	10.2	18.6	25.5	21.9	20.8	22	22	19.30	5.07	23.57	15.03
Woonsocket Final	11.9	8.7	7.65	13.5	18.5	14	20	16	13.78	4.36	17.45	10.12
UBWPAD Secondary	6.7	3.7	3.38	2.93	3.45	5.3	5.5	3.15	4.26	1.38	5.42	3.1
UBWPAD Final	2.9	1.73	3.23	1.88	2.48	4.5	3.15	4.7	3.07	1.09	3.99	2.15

Avg = Average value of all the days; SD = Standard deviation; + Range & -Range = 95% Confidence interval;

BLACKSTONE RIVER WWTF EFFLUENT ANALYSIS Point Source Effluent TSS Concentrations (mg/L)

July 5-9, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5			Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	7.2	10.4	5	11.4	8.8			8.56	2.81	12.05	5.07
Woonsocket Final	6	8.2	7.6		7	 		5.76	3.83	10.52	1
UBWPAD Secondary	2.4	1.8	2.4	2	1.8			2.08	0.28	2.43	1.73
UBWPAD Final		4.8	5		Ĺ	 ***************************************	***************************************	1.96	2.83	5.47	-1.55

August 9-13, 1991

, inguest 10, 100,											
STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5			Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	16.4	14.6	8.8	7.6	29.4			15.36	10.01	27.78	2.94
Woonsocket Final	14.6	16.6	8.4	8.8	22.8		[14.24	6.89	22.79	5.69
UBWPAD Secondary	1.4	4.4	1.8	0.6	3.2			2.28	1.65	4.33	0.23
UBWPAD Final	6	2.4	2.4	2.2				2.60	1.17	4.05	1.15

October 23-30, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	8	8.4	22.25	33.2	28.4	28.4	28.8	38.24	22.00	9.49	29.98	14.02
Woonsocket Final	16.86	16	15	20.4	24.4	13.14	23.6	26.36	16.00	5.18	20.35	11.65
UBWPAD Secondary	4.4	5.2	3.6	4.6	7.6	2	1.2	2.4	3.90	2.2	5.73	2.02
UBWPAD Final	8	2.8	5.8		4.6	2.8	3.6	3	3.80	1.8	5.34	2.31

Ave = Average value of all the days; SD = Standard deviation; = Range & -Range = 95% Confidence interval;

Point Source Effluent VSS Concentrations (mg/L)

July 5-9, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5			Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	7.8	8	3.2	8.8	6.4			6.84	2.48	9.91	3.77
Woonsocket Final	4.8	6.2	7.2		5.2	 	***************************************	4.68	3.21	8.66	0.7
UBWPAD Secondary	2	0	2.2	1.6				1.36	0.94	2.52	0.2
UBWPAD Final		4	3.8				****	1.56	2.25	4.36	-1.24

August 9-13, 1991

71090010 10, 1001										
STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5		Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	10.8	10.4	6.4	5.6	19.2		10.48	6.23	18.21	2.75
Woonsocket Final	10.8	12.2	5.2	4.8	15.2		 9.64	5.17	16.06	3.22
UBWPAD Secondary	0.8	3.2	1	0.4	2.6		1.60	1.32	3.23	-0.03
UBWPAD Final	4.4	1.6	2	1.2			 1.84	0.86	2.91	0.77

October 23-30, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	6.4	7	16.75	25.6	23.6	20.8	21.6	27.65	22.00	6.88	27.79	16,21
Woonsocket Final	14	12.89	13.25	17.6	19.2	9.43	17.6	20	16.00	3.9	19.28	
UBWPAD Secondary	3.2	2.8	. 3	4	6	1.6	0.8	1.8	2.90	1.74	4.36	
UBWPAD Final	6.8	2.4	4.6		3.8	1.8	3.2	2.2	3.10	1.49		

Ave = Average value of all the days; SD = Standard deviation; = Range & -Range = 95% Confidence interval;

Point Source Effluent Dissolved Ammonia-N Concentrations (mg/L)

July 5-9, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5			Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	26.6	33.8	28.2	21.5	21.4			26.30	5.17	32.72	19.88
Woonsocket Final	28.6	27.7	27.8	28.4	NS			 28.13	0.44	28.67	27.58
UBWPAD Secondary	0.8	1	0.2	0.5	0.2			0.54	0.36	0.98	0.1
UBWPAD Final	1.1	0.6	0.1	0.2	0.2		***************************************	 0.44	0.42	0.96	-0.08

August 14-15, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	-	 Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	15.2	15	13.5	12	13.2		13.78	1.33	15.43	12.13
Woonsocket Final	12.9	9.5	12	16.8	14.3		 13.10	2.71	16.46	9.74
UBWPAD Secondary	0.2	0.3	0.2	0.3	0.3		0.26	0.05	0.33	0.19
UBWPAD Final	0.2	0.6	0.1	0.1	NS		 0.25	0.24	0.55	-0.05

October 2-3, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	6.5	10.8	13	13	6.1	12.1	10.5	8.9	10.11	2.72	12.4	7.82
Woonsocket Final	7.7	9.9	15.8	13.8	8.4	13.2	13.5	10.5	11.60	2.88	14.02	9.18
UBWPAD Secondary	0.5	0.4	0.2	1	0.4	0.3	0.4	0.2	0.43	0.25	0.64	0.21
UBWPAD Final	0.8	0.2	0.2	0.4	0.4	0.2	0.1	0.2	0.17	0.22	0.35	-0.02

Avg = Average of all the days; SD = Standard deviation; +Range & -Range = 95% Confidence Interval

Point Source Effluent Dissolved Nitrate-N Concentrations (mg/L)

July 5-9, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5			Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	0.4	0.4	0.4	0.3	0.3			0.35	0.07	0.44	0.27
Woonsocket Final	0.9	0.9	0.9	NS	1		[0.94	0.06	1.01	0.87
UBWPAD Secondary	6.3	5.7	NS	6.6	6.3			6.23	0.38		5.76
UBWPAD Final	6.8	5.7	6.4	7.1	6.4		<u> </u>	6.48	0.52	7.13	5.83

August 9-13, 1991

7.tagaete 10, 1001										
STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5		Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	1.7	3.7	29.7	33.2	39.6		21.57	17.6	43.42	
Woonsocket Final	3.8	2	38.8	9.9	58.5		22.61	24.96	53.58	-8.37
UBWPAD Secondary	7.2	3.6	26.8	12.3	23.6		14.69	10.14	27.28	2.1
UBWPAD Final	6	26.3	30.9	8.8	31.6	 	20.74	12.34	36.05	5.42

September 23-30, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	NS	NS	NS	NS	NS	1.6	2.1	3.9	2.52	1.17	3.51	1.54
Woonsocket Final	NS	NS	NS	NS	NS	1.4	2.7	4.7	2.94	1.66	4.33	1.54
UBWPAD Secondary	NS	NS	NS	NS	NS	12	7.7	10.9	10.16	2.24	12.05	8.28
UBWPAD Final	NS	NS	NS	NS	NS	13.4	9.8	11.8	11.67	1.76	13.15	10.19

NS = Not sampled; Avg = Average value of all the days; SD = Standard deviation; + Range & -Range = 95% Confidence interval;

Point Source Effluent Total Kjeldahl-N Concentrations (mg/L)

July 1991

STATION	DAY 1	DAY 2	DAY 3	DAY4	DAY5		Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	32.1	27.2	38.82	NS	24.34		30.62	6.34	38.48	22.75
Woonsocket Final	25.6	13.38	41.95	NS	42.09		 30.76	13.93	48.05	13.46
UBWPAD Secondary	1.99	2.17	2.94	1.02	1.04		1.83	0.81	2.84	0.82
UBWPAD Final	2.47	2.17	1.61	1.14	1.48		1.77	0.54	2.44	1.11

August 1991

STATION	DAY 1	DAY 2	DAY 3	DAY4	DAY5			AVERAG	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	18.62	15.42	19.46	15.58	17.58			17.33	1.8	19.57	15.1
Woonsocket Final	13.72	17.08	18.76	17.18	17.78	••••••	 	16.90	1.9	19.26	14.54
UBWPAD Secondary	1.38	1.08	1.11	1.29	1.26			1.22	0.13	1.38	1.06
UBWPAD Final	2.26	1.79	1.44	1.4	1.3		 ***************************************	1.64	0.39	2.13	1.15

October 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	DAY 7	DAY 8	AVERAG	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	9.31	8.7	7.73	NS	NS	15.05	13.05	11.1	10.82	2.8	13.18	8.46
Woonsocket Final	6.35	7.54	7.48	NS	NS	11.5	13.5	13.7	10.01	3.29	12.77	7.25
UBWPAD Secondary	0.5	0.5	0.5	NS	NS	0.5	0.5	0.5	0.50	Ö	0.5	0.5
UBWPAD Final	0.5	0.5	0.5	NS	NS	0.5	0.5	1.2	0.62	0.29	0.86	0.38

BLACKSTONE RIVER WWTF EFFLUENT ANALYSIS

Point Source Effluent Dissolved PO4-P Concentrations (mg/L)

July 5-9, 1991

	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5		Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	3.64	2.64	3.47	3.14	1.3		2.84	0.94	4.01	1.67
Woonsocket Final	3.9	2.97	3.47	NS	3.14	***************************************	3.37	0.41	3.88	2.86
UBWPAD Secondary	2.3	•	NS	2.53	1.39		2.05	1.01	3.3	0.79
UBWPAD Final	2.47	1.97	2.44	2.97	1.56		2.28	0.54	2.95	1.62

August 9-13, 1991

71090010 10, 1001									
STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	3.5	3.59	4.73	4.56	4.73	4.22	0.62	5	3.45
Woonsocket Final	3.68	3.68	4.47	0.01	4.91	3.35	1.94	5.76	0.94
UBWPAD Secondary	2.03	2.86	2.13	2.09	2.87	2.40	0.43	2.93	1.86
UBWPAD Final	2.15	2.97	1.89	2.18	2.61	2.36	0.43	2.89	******************************

September 23-30, 1991

STATION	DAY 1	DAY 2	DAY 3	DAY 4	DAY 5	DAY 6	IDAY 7	DAVO	I A	100	B. DANOE	# DANIOE#
						DATO	DAT /	DAY 8	Avg	SD	"+RANGE"	"-RANGE"
Woonsocket Secondary	INS	NS	NS	NS	NS	4.2	4.6	3.9	4.23	0.35	4.53	3.94
Woonsocket Final	NS	NS	NS	NS	NS	4.1	4.2	3.7	4.00	0.26	4.22	3.78
UBWPAD Secondary	NS	NS	NS	NS	NS	3.1	2.5	2.6	2.73	0.32	3	2.46
UBWPAD Final	NS	NS	NS	NS	NS	3.3	2.4	3.4	3.03	0.55	3.5	2.57

NS = Not sampled; Avg = Average value of all the days; SD = Standard deviation; + Range & -Range = 95% Confidence interval;

Section A15-3

Wet Weather Data - Storm 1

- all Data with Statistics -

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS
Water Quality Data For STORM I

E. coli	CEU/100mL	410	420	200	12,000	6,800	1,700	190	370	130	92		410	
Fecal Coliform	CEN\100mL	13,000	3,500	3,000	18,000	12,000	4,300	2,800	2,500	1,600	760		13,000	
Zinc		2	<u>.</u>	<u> </u>	34	<u> </u>			ļ		<u> </u>		12	
ревад	· qdd	6.5	7.3	32.6	22.0	17.3	10.4	8.9	8.7	6.9	3.9		6.5	
Nickel	qdd	1.6	1.6	3.6	7.0	2.5	2.0	1.5	1.9	1.1	0.9		1.6	
Copper	qdd	0.9	4.8	7.4	6.4	11.3	5.4	4.7	1.3	3.6	2.4		9.0	
Сһготіит	qdd	1.30	1.30	4.20	2.20	1.70	1.40	1.10	1.50	9.	0.60		1.30	
muimbsO	qdd	0.21	0.24	0.81	1.12	0.82	0.17	0.15	0.50	0.16	0.08		0.21	
q-40q		l	İ								0.03	П	0.03	
N-SON+2ON	ე/ 6ⴍ	<u> </u>	ļ	i								ll	0.58	
N-EHN	շ /6ա	0.050	0.080	0.220	0.310	0.050	090.0	0.110	0.120	0.050	0.350		0.050	
muiboS	- 7/6w	28	25	19	13	13	17	22	56	26	26		78	
magnesium		ı	•		•								3.35	
muiolsO		l										! !	22.1	
Chloride	7/6ш	59.6	65.5	45.5	27.5	30.1	35.1	44.3	54.2	49.1	58.7		59.6	
SSA		ļ		<u></u>	<u></u>								1.6	
881	ე /მⴍ	2.4	1.3	3.4	15.4	11.0	7.4	6.8	5.6	8.0	3.2		2.4	
вор													3.8	
nagyxO bavlossiO													8.4	
Conductivity	широгусш				6.6 10							ı	6.8 255	
Hq													18.5	1
Temperature	,				59.5								15.3	ior roi
Flow	cţa			·										and 3
9mi T					2 540									1
əjsQ		9/22/92	9/22/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/24/92	9/24/92		(e)	a. Dain
Вип		Ъ		က	9	<u>თ</u>	12	9	24	32	40		1 samp	(A)! da
Weather (Dry, rain, days after rain)		Dry	Rain	Rain	Rain	24h	24h	24h	24h	48h	48h	1	HER	THEP,
Station		BWW00	BWW00	BWW00	BWW00	BWW00	BWW00	BWW00	BWW00	BWW00	BWW00		DRY WEATHER (1 sample)	WET WEATHED (All data: Dain Dave 1 and 2 after rain

WEI WEATHER (All data: Kain, Days 1 and 2 after rain)	7 and 2 after	er rain,	_																				
Count			9 8	6	6	7	6	6	6	6	6		6	6	7	6	6	6	l	6	6	6	6
Mean (*)	51.1	•	0 6.4	150	8.0	3.3	6.9	2.8	45.6	15.5	2.71	21	0.150	0.24	0.03	0.45	1.67	5.3		13.1	24	3,520	648
Minimum	15.3	15.0		İ	6.4	1.3	1.3	0.7	27.5	9.0	1.67		0.050	0.15	0.02	0.08	09.0	1.3		3.9	10	760	76
Maximum	172.0	: 1	0 6.8	196	9.1	9.9	15.4	6.4	65.5	20.9	3.52		0.350	0.41	0.03	1.12	4.20	11.3	7.0	32.6	50	18,000	12,000
WET WEATHER (during rain)																							
Count	3		l	3	3	3	3	3	3	3	3		3	3	3	3	က	3	Ĺ	3	8		3
Mean (*)	89.9	19.6	6.5	138	7.5	4.8	6.7	3.0	46.2	14.0	2.50	19	0.203	0.36	0.02	0.72	2.57	6.2	4.1	20.6	33	5,739	1,361
Minimum	38.3	18.8	8 6.1	101	6.4	3.0	1.3	0.7	27.5	9.0	1.67		0.080	0.28	0.02	0.24	1.30	4.8	<u> </u>	7.3	15	3,000	420
	172.0	20.0		182	8.3	9.9	15.4	6.4	65.5	20.9	3.52		0.310	0.41	0.03	1.12	4.20	7.4	Ĺ	32.6	20	18,000	12,000
WET WEATHER (Day 1 after rain)																					:		
Count			4 3	4	4	3	4	4	4	4	4		4	4	3	4	4	4	l	4	4	4	4
Mean (*)	38.1	: :				2.4	7.7	2.9	40.9	14.5	2.56	ŀ	0.085	0.20	0.03	0.41	1.43	5.7		11.3	<u>. </u>	4,360	949
Minimum		16.5	5 6.2	97	8.4	1.5	5.6	1.6	30.1	9.5	1.75	13	0.050	0.15	0.02	0.15	1.10	1.3	1.5	8.7	15	2,500	190
ا۔	53.7	19.2	2 6.5	183	9.1	4.0	11.0	4.0	54.2	19.6	3.28	l	0.120	0.29	0.03	0.82	1.70	11.3		17.3		12,000	6,800
WET WEATHER (Day 2 after rain)																							
Count			2 2	2	2	-	2	2	2	2	2	1	2	2	1	2	2	5	2	2	7	2	2
Mean (*)	18.6	15.5	5 6.6	189	7.3	1.3	5.6	2.6	53.9	19.6	3.33	26	0.200	0.16	0.03	0.12	0.80	3.0	1.0	5.4	13	1,103	66
Minimum		15.0	0 6.5		7.3		3.2	2.6	49.1	19.5	3.23		0.050	0.16	0.03	0.08	0.60	2.4	0.9	3.9	10	760	76
Maximum	21.9	16.0		196	7.3		8.0	2.6	58.7	19.7	3.43	H	0.350	0.16	0.03	0.16	1.00	3.6	1.1	6.9	15	1,600	130
WET WEATHER (Day 3)					-		-				-			ļ 		-			-	-	-		
ND = Not Detected NM= N	NM= Not Measured	pe.		NS= N	NS= No Sample	m	Z	'A = Not	NA = Not Analyzed	þe		*	(*) Geometric mean for Fecal Coliform and E.	stric mea	an for Fe	scal Coli	iform an	d E. Col	_				

E. coli	CFU/100mL	150	6,800	5.600	5,700	2 900	1 700	470	370	270	150	150		6	1,252	150	6,800			က	6,010	5,600	6,800		T	4 6	796	3/0	2,900		2	201	150	270	,
Fecal Coliform	CFU/100mL	8,300	11,000	17 000	13,000	9.700	6 700	5.300	6 600	880	1,600	8,300		6	5,830	880	17,000			က	13,446	1,000	17,000			1 100	0,905	5,300	3,700		2	1.187	880	1 600	1
Sinc	qdd	42	43	55	38	40	54	20	40	24	27	42		6	41	24	55		ì	က	42	38	22			1 (\$	40:	2 2 2 3		t.				ł
рвад	qdd	3.3	11.8	21.6	11.1	14.0	13.9	7.1	3.8	30	6.4	3.3		6	10.3	3.0	21.6			က	14.8	11	21.6		-	† 1	2 0	9	14.U		2	4.7	3.0	6.4	;
Nickel	qdd	9.6	3.5	4.3	3.0	3.2	4.6	2.7	3.6	2.9	2.9	9.6		6	3.4	2.7	4.6			1	m	۳.	4		Ī	† L	0	2.7	4.0		2	2.9			
Copper	qdd	7.1	1.3	14.8	10.4	6.1	8.4	6.2	4.7	2.8	3.4	7.1		6	6.5	1.3	14.8			က	8.8	.3	14.8		1	1	9	4.	δ. 4.		2	3.1	2.8	3.4	,
тиітол4Э	qdd	2.20	4.90	5.00	2.40	2.70	5.40	3.80	3.50	3.40	3.60	2.20		6	3.86	2.40	5.40		ŀ	6	4.10	2.40	5.00			,	0.0	2.7	5.40		2	3.50	3.40	3 60	
muimbsO	qdd	0.30	0.43	0.50	0.27	0.23	0.31	0.22	0.16	0.17	0.19	0.30		6	0.28	0.16	0.50		ŀ	ი :	6	0.27	읽			1 6	3.0	0.10	0.31		5	0.18	0.17	0 19	
d-⊅0d	7/6ա	0.02	0.06	Q	0.02	0.02	0.02	0.02	QN	Q	9	0.02		2	0.03	8	0.06			2	0.04	0.02	0.06			9	70.0	0.00	0.02		ļ		ļ	ļ	
NO2+NO3-N		0.50	0.61	0.36	0.48	0.45	0.53	0.43	0.40	0.35	0.39	0.50		6	9. 4	0.35	0.61		ŀ	8	0.48	0.36	0.61		-	,	9	0.40	0.03		7	0.37	0.35	0.39	
N-EHN	7 /6ш	0.110	0.420	0.200	0.240	0.200	0.270	0.090	0.040	0.080	0.450	0.110		6	0.221	0.040	0.450		ŀ	e :	0.287	0.200	0.420		F		200	0.040	0.2/0		2	0.265	0.080	0 450	
muibo&	¬/6w	35	34	34	29	28	51	35	35	37	41	35		6	36	28	51			က	32	28	22		-	,	2	9 2			2	39	37	41	
muisəngsM	 ша\ך	3.87	3.97	3.60	3.44	2.87	3.66	3.48	3.87	3.89	4.01	3.87		6	3.64					۳ ا		3.44			-	7 7	100	7.07	0.0		2	3.95	3.89	4 01	
Calcium		26.7	23.5	18.2	18.1	16.0	17.3	19.7	22.6	23.8	25.0	26.7		6	20.5	16.0	25.0			e (9	18.1	23.5		-	100	0 0	0 0	22.0:		2	24.4	23.8	25.0	
Chloride	 7/6w	208.0	188.0	72.4	57.3	55.9	94.9	65.5	70.2	74.1	82.1	208.0		6	84.5	55.9	188.0		-	n (500	57.3	188.0			140	2	900	94.9:		2	78.1	74.1	82.1	
SSA	η/δω	2.5	2.4	8.8	5.2	3.4	2.8	2.4	9.0	1.8	2.2	2.2		6	3.3	9.0	8.8		ļ	ε I	0	4.7	0.0		 -		3 0	0 0	4.0		2	2.0	1.8	2.2	
SST	7/6ш	2.6	3.4	26.4	11.4	6.0	5.2	4.0	2.8	3.8	2.2	2.6		6	7.2	2.2	26.4		ŀ	n [5.0	4.6	70.4		Į.	, W	2 0 F C	0 0	2.0		2	3.0	2.2	3.8	
BOD		5.4	10.3		4.1			2.6	1.5	1.0	2.5	5.4		6	4.0	1.0	10.3		ŀ	უ .	Ç	4.7	~		4	9	7 7	0 0	, 1		2	1.8	1.0	2.5	
Dissolved Oxygen	7/6w	8.4	7.5	6.3	7.5	7.8	8.8	8.2	8.2	7.2	7.2	8.4			7.6		: 1		ŀ	n 1	-	1	!		7	0	2 0	0 0	0		2	7.2	7.2	7.2	
Conductivity	шшровусш	260	240	176	186	169	270	218	238	242	328	260		6	230	169	328			ۍ د	50,	9/2	Z40:		P	700	100	270	2/0		I	285		i	ı
Hq		6.7	6.4	6.6	6.7	6.0	6.2	6.4	Ž	6.6	6.9	6.7	į	8	6.5	6.0			ľ	n .		0 0			۳.			5 6			l	6.7	Ē	<u></u>	J
Temperature	O gəb	18.8	19.8	19.1	18.5	18.2	18.5	18.9	16.4	14.8	16.0	18.8	rain)	 6	17.8	14.8	19.8		į	ς γ	2	0.0	8.0		4	100	9 0	t 0	0.0		2	15.4	14.8	16.0	
Flow	cfs	16.5	41.2	185.0	64.0	57.8	46.4	36.3	23.5	16.5	23.5	16.5	and 2 after rain	 ნ	54.9	16.5	185.0		1	2 6	9	41.2	1000		4	74.0	200	57.0	5		2	20.0	16.5	23.5	
9miT	I				545				i				1				- 1		ŀ	- :	÷		1		-			-			L		_	_	
Date			- 1		9/23/92		: :			: :	: 1		WET WEATHER (All data: Rain, Days						lu l					r rain)						after rain)					
uny		P 9/2			ļļ							mple)	data: F						ing rai					1 1 after rain						0					
Weather (Dry, rain, days after rain)	·		·····!	٠ إ	Rain 6		••••••					R (1 S	ER (All						וא (ממי					ER (Day						R (Da)					
			-									DRY WEATHER (1 sample)	ÆATHE		£	E		THE TAXABLE TO SERVICE	Ž V	*	, , ,	= 4		EATHE		F	, ,			'EATHE		Ť,	E	Ε	
noitst2		BWWC	BWWC	BWWC	BWW01	BWWC	BWW0	BWW0	BWW0	BWW0	BWW0	DRY W	WETW	Count	Mean (*)	Minimum	Maximum	14/T-T-14/	A C	I POOL			MaxIII	WET WEATHER	Count	Mean	Minim	Moximus		WET WEATHER (Day	Count	Mean (*)	Minimur	Maximo	

(*) Geometric mean for Fecal Coliform and E. Coli

NA = Not Analyzed

NS= No Sample

NM= Not Measured

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS
Water Quality Data For STORM!

Fecal Coliform	Jm001\U30						7 <1				5 <1	18 1			15		1,400		33		3 <1			4	17	7	28 <1		2		7	5	
oniZ	qdc	J		<u> </u>	<u>. I</u>	<u>L</u>	5 41	<u>.</u>		<u> </u>		4 46		ļ	<u>.</u>	6 40			ļ	<u>.</u>	5 55			l	<u> </u>	<u> </u>	57		<u> </u>		l.	29	
read	qdo	1			1		6 4.5	6	4	<u>س</u>	0	3.			6	7 2.0	31			16.	7 5.	31		l	İ	<u>.</u>	6 11.0			۳	3 0	3.8	
ліскеІ	•	12	29	4	2	7	9	7	က	19	22	25			11	8	8			12	8 2.	29		ļ	4	2	7 10.			3	2 19	25.	
Copper	qdc	1		:			:	:	: :	:	: 1	41.8			15	۳-	42	i		15	-	45.			9	^	1			33	3 2	4	
Сһготіит	qdc	"	15	18	~	œ	1	S	12	9	5	7.30			6	5.10	8			4	1	48			7	Ŋ	12.40			4	0.10		
muimbsO		1	1	1		į	1.14				1	1.80		l	0	0.08	7		1		0.14			<u> </u>			1.14		l	_		الل	
d-†Od	L.	J	j	<u>.</u>	<u>. j</u>	Ĺ	ļ	Ĺ		<u>.</u>	<u>.</u> l	1.13		ļ	0	0.27	_		(C)	0.82	0.59	1.13		4	0.82	0.74	0.90		2		0.27	0.27	
N-SON+SON	İ	1		1	1	ŀ	1				i 1	1.54		6	1.18	0.68	1.94			0	0.68	-			_	0	1.94		2	1 16	0.97	1.34	
N-SHN	7/6ա	1,820	2 950	2 270	1.730	1.200	0.520	0.560	0.800	S	1.220	1.820		8	1,406	0.520	2.950		33	2.317	1.730	2.950		4	0.770	0.520	1.200		1	1 220	1.220		
muiboS		6	•		:	:	37	:	: :	:	: 1	69		6	49	37	91		3	53	4	61		4	43	37	52			•	23	1	
muisəngsM	7 /6w	3.66	3.47	3.56	3.52	3.14	2.85	2.82	2.99	3.47	3.38	3.66		6	3.24	2.82	3.56		3	3.52	3.47	3.56		4	2.95	2.82	3.14		2		3 38		
muiɔlsɔ	7/6w	25.0	26.2	23.6	21.0	19.6	17.2	17.4	20.1	21.9	23.9	25.0		6	21.2	17.2	26.2		3	23.6	21.0	26.2		4	18.6	17.2	20.1		5	229	21.9	23.9	
Chloride	7/6w	31.0	36.0	87.4	95.4	77.0	67.3	75.7	80.4	6.77	93.6	131.0		6	87.9	67.3	36.0		33	06.3	87.4	36.0		4	75.1	:0	80.4		2	85.8	9 22	93.6	
SSA		4.5	3.0	5.6	5.6	4.4	3.8	3.4	3.4	Ϋ́	4.2	4.5				3.0				7	3.0	9		4	œ	4	4.4			4.2	<u> </u>	1	
SSL	_	l			1							9.0			6	4.2	7			7	4.2	7		4	∞		7.2			. 00	5.8	5.8	
BOD		_	_		ļ_	3	4	7	ω.	2	2	8.7		l	6	7	3		3	8	-	3			က	4	6.3		2	. 6	2 6	2	
Dissolved Oxygen		1	<u>.</u>	<u> </u>	<u> </u>	İ	8.3		ll			7.7		 6	i	6.8 1.	- 1		3	i	6.8 7	I		4	•		8.3			Ö	0 8	8.0	
Conductivity Discolused Owners		1										440		ļ		230					240					L.	309		2	L	319		
Hd		22	2	2	5	<u>س</u>	6.1	7	∢	က	2	6.5		ļ	က	6.1	2			4	6.2	2			7	<u> </u>	6.3			4	6.3	2	
Temperature		20.8	20.4	20.5	19.5	19.8	20.0	20.0	17.5	16.5	18.2	20.8	ain)	6	19.2	16.5	20.5		3	20.1	19.5	20.5		4	19.3	17.5	20.0		2	17.4	16.5	18.2	
Flow		I	i	i	i	ì	118.0				1	73.3	and 2 after rain	6	ŀ						107.4	- 1				1	142.1		l	7	49.6	7	
Elow	340												1 and 2	_			72		L	1.	¥	K		-		Г	1,			9			
Тіте	······						2 1150		2 2346				Days										2					9					
Date		9/22/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/24/92	9/24/92	(<u>e</u>)	a: Rain,					rain)					after rain	,				fter rain					
Run	-	<u>a</u>	ļ	ļ	ļ		12					1 samp	'All dat					during	1				1	1				Day 2 a					
Weather (Dry, rain, days after rain)		Ω	Rain	Rain	Rain	24h	24h	24h	24h	48h	48h	THER (THER (}				THER (THER (THER (
noitst2		BWW02	BWW02	BWW02	BWW02	BWW02	BWW02	BWW02	BWW02	BWW02	BWW02	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Mean (*)		Maximum	WET WEATHER (during	Count			Maximum	WET WEATHER (Dav	Count	Mean (*)	Minimum	1 I	WET WEATHER (Day 2 after rain)	Count	Mean (*)	1		

Station Weather (Dry, rain, day after rain)			Rain	Rain	Rain	BWW04 24h 9	246	746	74U	24h	48h	48h	DRY WEATHER (1 sa	WET WEATHER (All data: Rain, Days 1	Count	£	Minimum	Maximum	WET WEATHED Advisory	WEI WEATHER LOW	Moss /*)	Minimum	Maximum	WET WEATHER (Day 1 after rain)	מבן אורטוויין	Moan (*)		:	WITT MIT ATTITUDE	WEI WEAINER (Day 2	Mean (*)	Minimim	Maximum		WET WEATHER (Day 3)	ND = Not Detected
Date		9/22/92	9/23/92	9/23/92	9/23/92	9/23/92	20/20/0	26/22/07	28/57/8	9/24/92	9/24/92	9/24/92	sample)	data: Rain, Da				ļ	laicz soi	ing iam)				1 offer rain	i micei ranni					z arrer rain)					3)	
əmiT						915	1		1	-	1	- 1	H	ys 1 and	L						÷	÷	$\overline{\cdot}$		-	-	÷					L	<u> </u>			NM= Not Measured
Flow Temperature		ı											79.0 20	and 2 after rain,	6	126.9 18	53.0 15.2	.45.0 2C		ï	1	•	245.0 20.		-	1	•	163.0 20	1 1	į	1 4) 	66.0			asured
Hq	O gab				1	7 7			-				20.0 6.8	(u)		9	9	7			2 C	2 0	7		1			20.8 7.0	Ш		2 5	9 6	7.2 6.7			
Conductivity	шров/сш	l	l	L.	<u>. i</u>	. <u>i</u>	<u>. i</u>		i_		!		8 455			<u></u>	5 252				<u>ļ.</u> .	. <u>l</u>	7 313	:	I	<u>. L</u> .	.İ	270	П		<u>.L</u>	<u>.l.,</u>	316			NS= No
nissolved Oxygen		80	œ	80	α	1	٥	n c	ρ	<u>ත</u>	∞	8	8.7		6	8.7	8.2	9.2			٥	σ α	8.6			r c) (d	9.5			α	jα	6 8			o Sample
BOD			:	:	:		:	:	:	:		- 1	8.3		6		1.1				o c	, a				7 4	2 -	6.2			200	>÷<	3.6		ļ	
SST	_	0	80				1.0	0 0	χ,	4	2		5.0			'n	1.5	8		١	0 1		35.8 1			f C		10.2			9 6	1 4	2 00		 	¥
ASS Valentide		2	9	2	Ια			0 0	o o	9	æ		4.2 10		 6	æ	0.8	2 1			i		15.2 11			1 6) (5.0		ï	ν α	Σ α	2 8 6		 	ш
Calcium				i	1	į	i	1		- 1	ı		106.0		6	S	73.2	0		ï			110.0 23.			1 6	1 0	81.6 19.			v 0	5 0	88.8	;	<u> </u>	Not Analyzed
Magnesium		7 3	3	5 3	0	2 6	0 0	ກ (n (0	0	2	23.7 3.6			9	18.0 2.8	3			2 0	יי פי	3 6			1 6	, ,	9 6			7 4) C	2 C	; ;	 	
muibo8		စ္က	37	7(2 2	1 5	2 9	2	ď	υ	12	59 62				85 38			L			37 56			<u>.</u>	<u>.</u>	20 44			_[_	<u>.</u>	22 51		 	
N-EHN	7/6ш	!	•	1		1 610		i	i			- 1	2 0.810			<u>.</u>	8 0.100				•		1.660			7		1.610		L	_L	.İ	0 0	.]	ļ 	(£)
N-EON+ZON	٦/6ш		1	1	1	4.07		1	•	- [- 1	- 1	0 1.75			7	0 1.62	က			٢	4	0 2.63			٢	1 -	2.86		L	<u>.i.</u>	.i	3.40	.J		Geometric mean
д-рОф-	7/6ա	ı	:	:	:	÷		- 3			:		1.11			0	0.36	-		ľ	•	2 2	1.15		l.	1 20 0	5	0.76			•	9 0	0.30	1		ean for
muimbeO		!	1	•	1			÷	- 1	- 1	1	- 1	1.09		6	1.13	0.68	2.60		П	1	i	2.60		,	•	5	1.15		Ġ	77.0	9 0	0 0	3		for Fecal Co
Сһготіит		∞	LO.	17	7	1	9	י	ų.	4	œ	5	8.20		6	7.97	4.60	17.00				- 4	17.00					8 0 0		;	7 05	300	8 90	200		Coliform and
Copper	qdd	43.6	44.5	69 1	28.6	2000	3 6	27.3	27.4	24.7	28.3	24.4	43.6		6	34.9	24.4	69.1		;	7 P		69.1		-	4 7 7	1 7 7 7	30.0			7 30	24.4	283	2		d E. Coll
Nickel	:		4		1 0	. α		 1		7	စ		23.8		6	20.3	16.2	32.2			າເ	v .	32.2		Ļ	4 6	5 6	17.8		ï		'nά	0 6			_
Lead ————————————————————————————————————			3		1 0	0 0		4 (ا د	_	4	6	3.0		 6	œ	2.9	2			7 L	9 0	18.2			1 C		2.0			7 6	10	3.4	:	ļ	
Fecal Coliform		=		٦	Ţ	785							41 610				32 150	1					1,600					58 580					200			
E. coli	CFU/100mL						-				12		0			<u> </u>	0 12						190					130					23		ļ	

BLACKSTONE RIVER WEATHER WATER SAMPLES ANALYSIS RESULTS
Water Quality Data For STORM I

Name 19 19 19 19 19 19 19 1	Characteristics Characteri	Part Part	Station Weather (Dry, rain, days after rain)	Date	Mol	Temperature	Hq	Conductivity Dissolved Oxygen	BOD	SST	SSV	-binoide	muiolsO	muisəngsM muibo2	N-SHN	N-SON+ZON	d-t-0d	muimbsO	Chromium	Copper	ліскеІ 	Lead Zinc	Fecal Coliform	E. coli
DN P 922922 112 45 12 12 14 15 15 15 15 15 15 15	Part Part	Part 9 102392 1312 4 2 2 7 2 2 5 15 102 NA 15 1 15 7 0 6 193 357 35 NA 0.25 0.02 NA 0.25 0	<u> </u>			ე бәр		:	<u>i_</u>		, 7/6w	7/6w	7/6w			၂/6 ա			qdd	qdd	<u> </u>	<u> </u>		CFU/100mL
Name State	Rain 3 22322 417 38 61 61 61 61 61 61 61 6	Figure 1 202362 447 38 64 64 65 72 NM 17 13 74 48 75 28 00 10 00 00 10 00 00 10 00 00 10 00 00 10 00 00 10 00	Dry		4	Jj	1 1	1 :	Z		1i	70.6	က		5	1	1 :	1 :			Ji	<u>i</u>		
State 3 273202 44 45 45 45 45 45 45 4	State 3 272282 44 6.2 18.5 6.4 18.5 7.0 MM 1.4 1.0 10.5 1.0 1.0 MM 1.4 1.0 1.0 1.0 MM 1.4 1.0 1.0 1.0 MM 1.4 1.0 1.0 1.0 MM 1.4 1.0 1.0 1.0 MM 1.4 1.0 1.0 1.0 MM 1.4 1.0	State 2 20,2392 24.6 25 14.5 25 14.5 25 14.5 25 25 25 25 25 25 25	Rain		က				z			74.4	7							3.2				
State 6 972892 725 7	State 6 10 10 10 10 10 10 10	Sun Sun	Rain		ထ			: :	Z			75.0	6							3.1				
247 9 972902 945 79 180 65 199 94 79 180 65 199 94 79 180 94 94 97 91 90 94 94 94 94 94 94 94	248 9 972929 945 75 180 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 5 199 6 199 19	24 2 973922 1245 2 130 6 130 6 130 130 14 130 130 14 130 130 14 14 150 130 14 150 150 1	Rain		ဖ	ļ	:	:	z		<u>. </u>	6.09		<u> </u>		Į	i	1		2.2	<u>.</u>	<u>.</u>		
24 12 972392 145.5	248 12 372802 1245 93 199 64 202 202 94 10 10 10 10 10 10 10 1	248 12 375	24h		7	ļ	:	:	Z		<u>L</u>	70.2		<u> </u>		Į	į	1		1.3	<u>i</u>	l		
248	248 22 924492 366 645 75 75 95 96 NA NA 14 15 95 95 95 NA NA NA NA NA NA NA N	248 12 12 12 12 12 13 13 1	24h		6	į	:	:	Z		İ	67.4	5	<u> </u>		ļ	1	•		10	l	<u> </u>		
24 22 912492 655 65 65 65 65 65 65	24 22 912462 855 65 65 65 65 65 65 6	24 22 324/92 565 56 150	24h		6	ļ	:	:	Z		l	63.3	6	L	<u></u>	<u>.</u>	1	1		1.5	İ	<u>i</u>		
Attribute Attr	Attriber Attriber	ATHER 23 9124492 1659 65 16 16 16 16 17 16 18 18 18 18 18 18 18	24h		9	ļ		:	Z		1	99				.i	1	•		10	.i	<u>i</u>		
ATHER (Autigration) 4.6 9724/92 1639 5.1 17.5 5.9 201 1.5 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.0 1.5 1.5 1.0 1.5	ATHER (during rain) 4.6 20.24 ics.) 5.1 4.6 5.0 6.2 6.24 ics.) 6.3 6.2	440 972402 1539 51 175 69 201 89 NA 20 20 706 190 344 30 NA ND ND 1.00 0.6 0.6 1.1 ND NA ND ND ND ND ND ND	48h		rc.	ļ			Z		J	63.4		<u> </u>		.i	1	1		0	.i	.i		
ATHER (Juling rain) ATHER (Day 2 after rain) ATHER (Day 3 after rain) ATHER (Day 2 after rain) ATHER (Day 3 after rain	ATHER (during rain) 4.5 20.7 7.3 21.5 10.2 1.5 1.5 7.06 19.3 3.37 3.27	ATHER (1 sample) 4.6 20.7 7.3 216 10.2 1.5 1.5 706 19.3 3.37 3.2 3.7 3.2 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 </td <td>48h</td> <td></td> <td>5</td> <td><u>.</u></td> <td>1</td> <td></td> <td>Z</td> <td></td> <td>.i</td> <td>70.6</td> <td></td> <td></td> <td></td> <td>.į</td> <td>•</td> <td></td> <td></td> <td>0.8</td> <td></td> <td>.L</td> <td></td> <td></td>	48h		5	<u>.</u>	1		Z		.i	70.6				.į	•			0.8		.L		
ATHER (All data: Rain, Days 1 and 2 after rain) ATHER (All data: Rain, Days 1 and 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (All data: Rain, Days 1 and 2 after rain) ATHER (Day 2 after rain) ATHER (All data: Rain, Days 1 and 2 after rain) ATHER (All data: Rain, Days 2 afte	ATHER (All data; Rain, Days 1 and 2 after rain) ATHER (Alu data; Rain, Days 1 and 2 after rain) ATHER (Alu data; Rain, Days 1 and 2 after rain) ATHER (Day 1 after rain) ATHER (Day 2 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 4 after rain) ATHER (Day 3 after rain) ATHER (Day 4 after rain) ATHER (Day 4 after rain) ATHER (Day 4 after rain) ATHER (Day 4 after rain) ATHER (Day 5 after rain) ATHER (Day 5 after rain) ATHER (Day 7 after rain) ATHER (Day 8 after rain) ATHER (Day 9 after rain) A	ATHER (All data; Rain, Days 1 and 2 after rain) 1 ATHER (All data; Rain, Days 1 and 2 after rain) 2 S	EATHER (1 sam				1 1		1.2	1.5		70.6			32	0.2	111	J []		1.1	1.5			
ATHER (during rain) ATHER (du	ATHER (Day 2 after rain) 10	Name Control of the control of t	EATHER (All da	ta: Rain, Days	-	er rain)																		-
ATHER (during ratio)	Continue	Continue of the continue of						 6	6		Ĺ			6	6			<u> </u>		6	<u></u>		- -	
ATHER (during rain) 5.4 19.2 19.6 6.9 19.6 19.7 3.2 3.0 0.11 0.17 0.90 0.6 1.0 0.1 0.18	ATHER (during rain) ATHER (du	National Control of the Control of			9	18	2		7			67	0	39	31	0.1	0	0	٣	1.7	6			
ATHER (during rain) ATHER (during rain) ATHER (Day 2 after rain) ATHER (Day 3 after rain) AT	ATHER (during ratio) ATHER (during ratio) ATHER (during ratio) ATHER (during ratio) ATHER (during ratio) ATHER (during ratio) ATHER (during ratio) ATHER (Day 2 after ratio) ATHER (Day 2 after ratio) ATHER (Day 2 after ratio) ATHER (Day 2 after ratio) ATHER (Day 3 after ratio) ATHER (Day 2 after ratio) ATHER (Day 3 after ratio) AT	ATHER (Day 2 after rain) ATHER (Day 3	_		က	16	3		0.			8		22	30	0.1		0	0	0.8	2			
ATHER (during rain) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ATHER (during rain) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ATHER (during rain) 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			6	13			9.6			75		4	32	0.2	2	0.33	-	3.2	<u>ო</u>	30.6		
ATHER (Day 2 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (DAY 3 after	ATHER (Day 2 after rain) 2 3 4 <td>ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 3 and a leg of</td> <td>EATHER (during</td> <td>g rain)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 3 and a leg of	EATHER (during	g rain)									•											
Secondary Seco	State Stat	ATHER (Day 2 affect ratin) ATHER (Day 3 affect ratin) ATHER (Day 3 affect ratin) 5.4 192 6.5 199 7.1 1.4 1.5 1.0 6.0 9 18.7 1.9 1.0 1.1 1.0 6.0 9 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			8	ļ			3			3	3:	3	3	ļ 	3	-			ļ	33		
ATHER (Day 2 after rain) ATHER (Day 3 after rain) ATHER (Day 2 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after	ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 3 after	ATHER (Day 1 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 4 after rain) ATHER (Day 3 after rain) ATHER (Day 4 after rain) ATHER (Day 4 after rain) ATHER (Day 4 after rain) ATHER (Day 4 after rain) ATHER (Day 4 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 4 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 4 after rain) ATHER (Day 4 after rain) ATHER (Day 4 after rain) ATHER (Day 5 after rain) ATHER (Day 5 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 7 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after rain) ATHER (Day 6 after				9	5		7	1.5	<u> </u>	70.1	6	.32	31	0.1	80	0.17			0	2		
ATHER (Day 1 after rain) ATHER (Day 2 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after rain) ATHER (Day 3 after	ATHER (Day 2 after rain) 4 <td>ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 3) 1.7 1.3 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 3.4 4</td> <td>_</td> <td></td> <td></td> <td>20</td> <td>4</td> <td></td> <td>O</td> <td>1.4</td> <td>Ĺ</td> <td>609</td> <td>7</td> <td>22</td> <td>30</td> <td>0.1</td> <td>2</td> <td></td> <td></td> <td></td> <td>6</td> <td>2</td> <td></td> <td></td>	ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 3) 1.7 1.3 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 7.5 1.5 3.4 4	_			20	4		O	1.4	Ĺ	609	7	22	30	0.1	2				6	2		
ATHER (Day 1 after rain) 4 </td <td>ATHER (Day 1 after rain) 4 3 4 1 1 3 4<!--</td--><td>ATHER (Day 1 after rain) 4<td></td><td></td><td></td><td>19</td><td>9</td><td></td><td>.2</td><td>1.7</td><td></td><td>75.0</td><td>0</td><td>42</td><td>32</td><td>0.2</td><td>2</td><td></td><td>-</td><td></td><td>7</td><td>30.6</td><td></td><td><u>.</u></td></td></td>	ATHER (Day 1 after rain) 4 3 4 1 1 3 4 </td <td>ATHER (Day 1 after rain) 4<td></td><td></td><td></td><td>19</td><td>9</td><td></td><td>.2</td><td>1.7</td><td></td><td>75.0</td><td>0</td><td>42</td><td>32</td><td>0.2</td><td>2</td><td></td><td>-</td><td></td><td>7</td><td>30.6</td><td></td><td><u>.</u></td></td>	ATHER (Day 1 after rain) 4 <td></td> <td></td> <td></td> <td>19</td> <td>9</td> <td></td> <td>.2</td> <td>1.7</td> <td></td> <td>75.0</td> <td>0</td> <td>42</td> <td>32</td> <td>0.2</td> <td>2</td> <td></td> <td>-</td> <td></td> <td>7</td> <td>30.6</td> <td></td> <td><u>.</u></td>				19	9		.2	1.7		75.0	0	42	32	0.2	2		-		7	30.6		<u>.</u>
ATHER (Day 2 affer rain) 2 2 2 2 2 2 2 2 2 2 3 4 <td>ATHER (Day 2 after rain) 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4</td> <td>ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 2 3 4<td>EATHER (Dav 1</td><td>after rain)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td>	ATHER (Day 2 after rain) 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 2 3 4 <td>EATHER (Dav 1</td> <td>after rain)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	EATHER (Dav 1	after rain)																				
ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 3 4 3 3 4 3 4 3 4 3 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 <td>ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 3 4 3 4 3 4 3 4 3 4<td>ATHER (Day 2 after rain) 8.3 1.3 0.9 66.7 19.0 3.41 31 0.15 0.02 0.33 1.07 1.2 1.0 ATHER (Day 2 after rain) 2.3 17.5 6.3 18.0 8.0 1.6 1.0 70.2 19.2 3.44 32 0.18 0.90 1.5 1.30 1.5 1.30 1.5 1.3 1.0 0.8 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0</td><td></td><td></td><td> </td><td>L</td><td></td><td>4</td><td><u></u></td><td></td><td>L</td><td>Ψį</td><td>4</td><td></td><td>Į.</td><td></td><td>1</td><td>۲</td><td>7</td><td>Į.</td><td> </td><td></td><td></td><td></td></td>	ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 3 4 3 4 3 4 3 4 3 4 <td>ATHER (Day 2 after rain) 8.3 1.3 0.9 66.7 19.0 3.41 31 0.15 0.02 0.33 1.07 1.2 1.0 ATHER (Day 2 after rain) 2.3 17.5 6.3 18.0 8.0 1.6 1.0 70.2 19.2 3.44 32 0.18 0.90 1.5 1.30 1.5 1.30 1.5 1.3 1.0 0.8 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0</td> <td></td> <td></td> <td> </td> <td>L</td> <td></td> <td>4</td> <td><u></u></td> <td></td> <td>L</td> <td>Ψį</td> <td>4</td> <td></td> <td>Į.</td> <td></td> <td>1</td> <td>۲</td> <td>7</td> <td>Į.</td> <td> </td> <td></td> <td></td> <td></td>	ATHER (Day 2 after rain) 8.3 1.3 0.9 66.7 19.0 3.41 31 0.15 0.02 0.33 1.07 1.2 1.0 ATHER (Day 2 after rain) 2.3 17.5 6.3 18.0 8.0 1.6 1.0 70.2 19.2 3.44 32 0.18 0.90 1.5 1.30 1.5 1.30 1.5 1.3 1.0 0.8 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0				L		4	<u></u>		L	Ψį	4		Į.		1	۲	7	Į.				
ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 2 2 2 3 4 32 0.18 0.18 1.30 1.5 1.5 1.30 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	ATHER (Day 2 after rain) 6,7 17.5 6,3 16 0,6 63.3 18.8 3.37 3.1 0,11 0,90 1.0 0.8 0.6 63.3 18.8 3.37 3.1 0,118 0,90 1.0 0.8 1.3 1.1 1.3 1.1 1.3 1.1 1.1 1.3 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	ATHER (Day 2 after rain) 2 3 4 <td></td> <td></td> <td>œ.</td> <td>78</td> <td></td> <td></td> <td>σ</td> <td></td> <td>•</td> <td>66.7</td> <td></td> <td>41</td> <td>34</td> <td></td> <td>_</td> <td>0 33</td> <td>1 07</td> <td>12</td> <td>ric</td> <td>, r</td> <td></td> <td></td>			œ.	78			σ		•	66.7		41	34		_	0 33	1 07	12	ric	, r		
ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 32 0.18 1.30 1.5 1.30 1.5 1.31 ATHER (Day 2 after rain) 2	ATHER (Day 2 after rain) 2 <td>VTHER (Day 2 after rain) 2 3 3 1.05 0.9 0.7 5.0 1 1 6 3 201 8.5 2.0 2.0 63.4 3.4 32 1.10 0.8 0.6 0.8 0.8 0.8 0.5 2.5 7.06 19.3 3.44 32 1.10 0.10 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8<td></td><td></td><td>6.7</td><td>1</td><td></td><td>İ</td><td>C</td><td></td><td></td><td>63.3</td><td>α</td><td>37</td><td>34</td><td></td><td>•</td><td></td><td>6</td><td></td><td>α</td><td>2 0</td><td></td><td></td></td>	VTHER (Day 2 after rain) 2 3 3 1.05 0.9 0.7 5.0 1 1 6 3 201 8.5 2.0 2.0 63.4 3.4 32 1.10 0.8 0.6 0.8 0.8 0.8 0.5 2.5 7.06 19.3 3.44 32 1.10 0.10 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 <td></td> <td></td> <td>6.7</td> <td>1</td> <td></td> <td>İ</td> <td>C</td> <td></td> <td></td> <td>63.3</td> <td>α</td> <td>37</td> <td>34</td> <td></td> <td>•</td> <td></td> <td>6</td> <td></td> <td>α</td> <td>2 0</td> <td></td> <td></td>			6.7	1		İ	C			63.3	α	37	34		•		6		α	2 0		
ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ATHER (Day 2 after rain) 2 3 3 3 3 3 3 3 4 3 3 4 3 3 4 3 4 3 4 <t< td=""><td></td><td></td><td>6</td><td>- 6</td><td></td><td></td><td>9</td><td></td><td>-</td><td>70.2</td><td>2 2</td><td>4</td><td>32</td><td></td><td>- 80</td><td></td><td>1.30</td><td>1.5</td><td></td><td>2.0</td><td></td><td></td></t<>			6	- 6			9		-	70.2	2 2	4	32		- 80		1.30	1.5		2.0		
ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ATHER (Day 2 after rain) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ATHER (<i>Day 2 after rain</i>) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2																						
2 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 4 3 4 4 3 4	2 3 3 3 3 3 3 3 4 3 3 4 3 3 4 3 3 4 3 4 3 4 3 4	State Stat	EATHER (Day 2	after rain)																				
5.4 16.8 6.6 205 8.7 2.3 2.3 67.0 19.2 3.43 3.1 0.13 1.05 0.9 0.7 5.1 16.0 6.3 201 8.5 2.0 6.3 4.1 30 1.10 0.8 0.5 5.6 17.5 6.9 209 8.9 2.5 2.5 70.6 19.3 3.44 32 1.10 1.0 0.8	5.4 16.8 6.6 205 8.7 2.3 2.3 67.0 19.2 3.43 3.1 0.13 1.05 0.9 0.7 5.1 16.0 6.3 201 8.5 2.0 63.4 19.0 3.41 30 1.00 0.8 0.5 ATHER (Day 3) 1 1 1 1 1 1 1 1 0 0 8 0 5 1 1 1 1 0 0 8 1 1 1 1 0 0 8 1 1 1 1 0 0 8 1 1 1 1 0 0 8 1	5.4 16.8 6.6 205 8.7 2.3 2.3 67.0 19.2 3.43 31 0.13 1.05 0.9 0.7 5.1 16.0 6.3 201 8.5 2.0 63.4 19.0 3.41 30 1.10 0.8 0.5 ATHER (Day 3) 1 1 1 1 1 1 1 1 0.8 0.5 Detected NM= Not Measured NS= No Sample NA = Not Analyzed (*) Geometric mean for Fecal Coliform and E. Coli Coli 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td><td></td><td></td><td>2</td><td>2</td><td>2</td><td>2</td><td></td><td><u></u></td><td></td><td>2</td><td>2</td><td>2</td><td>2</td><td></td><td></td></t<>							2			2	2	2	2		<u></u>		2	2	2	2		
5.6 17.5 6.9 209 8.9 2.5 2.5 70.6 19.3 3.44 32 1.00 0.8 0.5 10.8 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	5.1 16.0 6.3 201 8.5 2.0 2.0 63.4 19.0 3.41 30 1.00 0.8 0.5 0.5 17.5 6.9 209 8.9 2.5 2.5 70.6 19.3 3.44 32 1.10 1.0 0.8 0.8 0.	ATHER (Day 3) 5.1 16.0 6.3 201 8.5 2.0 2.0 63.4 19.0 3.41 30 1.100 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.5 0.8 0.8 0.5 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8				16			7	7	7	67.0	7	£	31	0.1	2		1.05	6.0	0.7	1.2		
6.6 17.5 6.9 2.0 2.5 70.6 19.3 3.44 32 1.10 1.0 0.8	ATHER (Day 3) 5.6 17.5 6.9 209 8.9 2.5 2.5 70.6 19.3 3.44 32 1.10 1.0 0.8	ATHER (Day 3) NM= Not Measured NS= No Sample 2.5 2.5 70.6 19.3 3.44 32 1.10 1.0 0.8				16		<u> </u>	5	2	2	63.4	0	41	30	ļ	ļ		1.00	0.8	0.5			ļ
	VHER (Day 3)	ATHER (Day 3) Detected NM= Not Measured NS= No Sample NA = Not Analyzed (*) Geometric mean for Fecal Coliform and E.	L			17			6	7	2	70.6	3	44	32				1.10	1.0	0.8	1.2		
	3)	3)									ľ													

1		1-	^	:0	<u> </u>	က္သ	Ξ.	တ်	ဖ	#	16	우		0)	118	16	윉		ľ	2	2	530		4	Ξ	6	230	ıΓ	9	7	7	16	4
E. coli	CFU/100mL																																
mroliloO lsoeT	CFU/100mL	8	330	980	260	066	1,400	460	310	35	120	80		<u></u> 6	376	35	1,400		ď	786	330	980		4	299	310	1,400			7 5	S	35	1
Sinc	qdd	32	47	32	40	51	39	35	42	30	35	32		<u></u>	39	8	51			40	32	47		4	42	35	51		ï	2 5	33	8 %	;
рва-	qdd	7.5	33.5	9.3	8.6	10.0	8.9	7.5	9	6.5	6.8	7.5		 o	11.1	6.5	33.5			17.1	8	33.5		4	8.9	7.5			ë	7 .	6.7	0 0 0 0	;
Nickel	qdd	17.5	20.7	20.1	20.1	22.1	19.5	16.2	16.0	14.4	15.4	17.5		<u></u>	18.3	14.4	22.1			203	20 1	20.7		4	18.5	16.0	22.1		ë	7 ,	7.9	15 4. 4. 4	,
Соррег		ူၕ	43	:	88	4	೫	22	28	33	24	30.2		<u></u>	32.5					411	38 1	43.9		4	30.5	25.2	40.2	-	ë			23.0	
Сһготіит	qdd	4.90	8.20	7.10	7.60	10.00	9.20	6.20	5.50	4.80	6.20	4.90		σ	7.20	õ	윘			7 63	7 10	8.20		4	7.73	5.50	10.00			2 5	5.50	6 20	
muimbsD	qdd	0.86	1.26	0.91	1.06	1.21	1.22	0.88	0.82	0.92	0.75	0.86		<u>ი</u>	1.00	0.75	1.26				0.91	1.26		4	1.03	0.82	1.22		ï	2 2	0.84	0.75	
d-‡0d		<u> </u>	66	4	Į Q	4	88	တ္က	7	55	ည	0.77		 თ	0.75	0.55	0.94					0.94		4	0.71	0.59			7	7 7	0.57	0.55	
N-SON+ZON		<u> </u>	0	7	82	.5	7	7	35	~	7	3.36		<u>ග</u>	3.17	64	75			7	4	3.58		4	45	05	<u></u>		;	~ 5	23	1.64	
N-EHN		ı	•	0.440				•	•			0.360			511	220	010			437	370	200		3:		•	1.010		.,	7 5	240	220	
		<u></u>	1	51 0								46 0		<u></u>	47 0.			ŀ	 	l		53 0.		L	46 0	İ				٩	9	39	1
muibo&	_	 2	<u> </u>	.07	<u> </u>			<u> </u>		<u> </u>		752			. 84							07			80	<u> </u>			١				ı
		က	က	က	က	7	7	7	7	7	7	3		 6	0	32	5 3			64	"	5 3.		_	7 2	5	8 2		I.,	N (2.58	;
muiolsO			0		<u>.</u>	ര	4	4				2 22.			2 20						1	0 21		<u> </u>	2 19	18	20		-		- 1	2 2	П
Chloride		8	105	78	75	95	83	73	72	76	79	88			82.	72	105.			86	75	105.			81.	72.	95.			F		9 6	
SSA		1			•							1.8			3.7	_	9		8	2	80	6.8		4	2.8	1.6	3.8		ľ			3 2	
ss _T	л9/Г	1										3.8	11		7.6		`			96	7.5	11.4				2	6				اف	5.2	1
BOD		4.9	8.4	6.1	2.9	5.3	4.2	3.9	3.3	2.4	3.7	4.9		တ	4.5	2.4						8.4		4	4.2	33			ï			3.7	
Dissolved Oxygen	7/6w	8.3	7.8	7.7	7.8	8.5	8.4	8.7	8.5	8.7	8.5	8.3			8.3				8	7 8	7.7	7.8		4	8.5	8.4	8.7		ï	7 0	0.0	0.0	
Conductivity	mmhos/cm	380	303	304	313	316	289	262	270	260	268	380		6	287	260	316		σ.	307	303	313		4	284	262	316	1	ï	7 20	407	768	
Hq		6.7	6.7	6.6	6.5	6.3	6.3	6.5	Ϋ́	6.5	6.8	6.7		 80	6.5	6.3	6.8		ď	9	6.5	6.7		3	6.4	6.3	6.5		Ġ	V 1	٥	0 8	
Temperature	O geb	19.8	20.5	20.5	19.2	19.2	20.0	20.1	17.5	15.7	16.5	19.8	rain)	Ö	18.8	15.7	20.5		с.	20.1	19.2	20.5		4	19.2	17.5	20.1		č	V 7	10.1	15.7	
Wol	cfs	79.7	67.4	110.8	110.8	141.3	165.7	165.7	120.2	100.0	90.0	79.7	and 2 after rain	<u>က</u>	119.1	67.4	165.7		٣	96.3	67.4	110.8		4	148.2	120.2	165.7		ï	7 20	3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	90.0 100.0	
əmiT		1257	119	440	715	935	1230	1700	20	835	1625		1											-					ľ	Ť	Ť	Ť	1
Date		9/22/92	9/23/92	9/23/92	9/23/92	9/23/92	3/23/92	3/23/92	9/23/92	3/24/92	9/24/92		: Rain, D					luie					ter rain)					Inject soft	Ter Jany				
Вun		 	ļ	ļ					24 :	ļ		sample	III data					ining	6				ay 1 al					20,00	ay ca				
Weather (Dry, rain, days affer rain)	· · · · · · · · · · · · · · · · · · ·	5	Rain	Rain	ļ	·····				ļ		1ER (1	HER (A					FP (A	2				ter (D					(V) d'air	7 47				
Station		····		BWW06 F								DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	ount	Mean (*)	Minimum		WET WEATHER (during rain	Į.	Mean (*)	Minimum	Maximum	WET WEATHER (Day 1 after rain	ount	Mean (*)	Minimum	Maximum	WET WEATUED (Day 2 after rain	יבו אבאיי	OUNT **	ean ()	Maximum	

(*) Geometric mean for Fecal Coliform and E. Coli

NA = Not Analyzed

NS= No Sample

NM= Not Measured

WET WEATHER (Day 3) ND = Not Detected

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM I

Conductivity Diesolved Oxygen BDD YSS VSS Chloride Chloride Calcium Magnesium Sodium Mugnesium	7/6w 7/6w 7/6w 7/6w 7/6w 7/6w 7/6w	350 8.6 3.1 1.8 1.4 88.4 21.4 3.06 45 0.510	332 9.2 3.2 6.2 2.8 83.1 21.3 3.09 44 1.080	345 9.1 3.5 6.2 2.8 85.1 20.9 3.07 45 1.350	338 8,4 2.3 8.8 2.6 74.8 20.8 3.22 47 1.130	325 7.8 2.2 9.6 3.4 82.2 21.3 3.13 50 1.210	335 9.2 2.8 9.0 4.8 80.0 21.6 3.10 47 1.790	360 9.9 1.5 3.2 1.8 86.8 21.3 3.00 49 0.480	330 9.4 2.1 12.4 4.8 89.9 20.1 3.09 48 0.280	290 8.1 2.2 11.0 2.4 78.9 20.2 3.05 48 0.580	292 8.4 2.4 4.0 2.4 71.4 19.3 2.80 43 0.080	7 350 8.6 3.1 1.8 1.4 88.4 21.4 3.06 45 0.510 2.29		6 6 6 6 6 6	6 327 8.8 2.5 7.8 3.1 81.4 20.8 3.06 47 0.887	3 290 7.8 1.5 3.2 1.8 71.4 19.3 2.80 43 0.080 2	1 360 9.9 3.5 12.4 4.8 89.9 21.6 3.22 50 1.790		3 3 3 3 3 3 3 3 3	6 338 8.9	5 332 8.4 2.3 6.2 2.6 74.8 20.8 3.07 44 1.080 2	7 345 9.2 3.5 8.8 2.8 85.1 21.3 3.22 47 1.350 3		7 7 7 7 7 7 7 7 7 7	4 338 9.1 2.2 8.6 3.7 84.7 21.1 3.08 49 0.940 3	3 325 7.8 1.5 3.2 1.8 80.0 20.1 3.00 47 0.280 3	6 360 9.9 2.8 12.4 4.8 89.9 21.6 3.13 50 1.790 3.96		2 2 2 2 2 2 2 2	291 8.3 2.3 7.5 2.4 75.2 19.8 2.93 46 0.330	4 290 8.1 2.2 4.0 2.4 71.4 19.3 2.80 43 0.080 2	292 8.4 2.4 11.0 2.4 78.9 20.2 3.05 48 0.580		NS= No Sample NA = Not Analyzed (*) Geometric mean for Fecal Coliform and
Date Time Wol7 Temperature	O gəb	107.0 20.5	9/22/92 130 95.0 21.0	9/23/92 415 99.0 20.8	9/23/92 715 101.0 19.5	9/23/92 1040 103.0 19.2	9/23/92 1405 104.0 19.8	1640 111.0	9/23/92 55 123.0 18.5	9/24/92 850 120.0 16.5	9/24/92 1735 123.0 17.3	DRY WEATHER (1 sample) 107.0 20.5 6.7	WET WEATHER (All data: Rain, Days 1 and 2 after rain)	<u>.</u>	19.2 6.	95.0 16.5 6.	21.0	WET WEATHER (during rain)	င	98.3 20.4 6.6	95.0 19.5 6.	101.0 21.0 6.	WET WEATHER (Day 1 after rain)	4 4	110.3 19.4 6.	18.5 6	123.0 20.0 6.6	1 1	2 2	5 16.9 6	120.0 16.5 6.4	123.0 17.3 7	WET WEATHER (Dav 3)	ND = Not Detected NM= Not Measured

la	
190	
unim	
<u> </u>	
muin	
d·	
N-EON+	
N·	
wn	-
muisən	SICK
wni	ta For
əbin	Water Quality Data For STORM
	ater u
	5
olved Oxygen	
ductivity	
perature	,
,	
•	
,	

		9	5	9 1	130	3 %	2 0	2 6	8 8	9 4	0 0	9] [To	3	σ	130	Ιſ	٣	3	1 0	3 8]		4	53	19	8	Γ	T	1 0	2 0	ה י	<u>@</u>
E. coli	JM001/U30				ľ																													
Fecal Coliform	DEU/100mL	110	240	230	230	8	300	200	200	240	200	110		Ö	180	9	300		ď	222	300	240	; !		4	151	9	300		2	475	3 52	25	200
2niZ	qdc	33	42	46	64	46	2,5	2 5	5 6	200	47 28	33		o	42	. i	64		~	7	, ,	44			4	38	31	46		,	200	2 2 3	8	42
pead	qdc	0.6	16.1	14.8	23.7	12.5	1 1	- ע ע		- 1	7.7. 8.8.	9.0		ā	12 0	r.	23.7		6	10.0	, c	23.7			4	10.2	5.5	12.2		2		ე ¤		
Nickel	qdc	15.3	16.3	16.8	0	2 4	0 7	1 4 2 4	5 6	4.	18 2 2 2	15.3		ä	16.4	13.5	19.3			17.5	5 6	9 6			4	15.4	13.5	17.4			1 0	5 6	ا ا	18.1
Соррег	qdo	23.9	29.4	32.1	45.8	27.5	22.00	10.0	2000	23.0	20.7	23.9		ö	28.0	19.2	45.8		ď	35.0	200	45.8			4	24.7	19.2	29.3		,	27.0	22.0	23.0	30.1
Сһготіит	qdc	5.70	11 90	06 6	16.10	7 10	200	, 4 5 5 7	3 6	0 0	9.00	5.70		ō	8 67	3.50	16.10	.	ď	12 62	8 6	16.10			4			8.70		0	0 0	9 6	3	9.00
muimbsO	qdc	0.83	141	1 23	2 18	900	2 2	20.0	3 6	3 9	20.0	0.83		ō	1 13	0.65	2.18			7 64	2 6	2.18			4	0.88	0.65	1.03			200	0.92	0.02	1.02
d-1/0d	7/6ա	0.65	0.48	0.67	0.67	0 0	0.80	0.02	2 0	0.0	0 0	0.65		0	0 63	0.48	0.70		8	2	2 0	0.67			4	0.64	0.61	0.67			1 0	200	8	0.70
N-SON+SON	7/6ա	2.62	2 08	2.32	2 42	2 62	2 62	2000	200	3.02	2.68	2.62		ö	2 54	208	3.02			200	, c	2.42			4	2.79	2.62	3.02		٥	2 42	3 17	7.17	2.69
N-EHN	7/6u	0.460	1 520	1,600	1 640	1 270	190	0 720	2 2	2 6	0.080			ä	043	080	1.640			587	200	640			3	090.	720	1.270		2	000		000	.080
muiboS	7/6u.	2	ļ	<u></u>	<u>. L.</u>	<u>.</u>	.i	.i	.i	İ	84 84	J L		ij	Ĺ.,	<u>.</u>	20					44						20		,		1 2	-	
muisəngeM 		l g	2	55	<u>.</u>) <u>(</u>	· ·	2 g	2 4	2 5	Q 5			ö	56	70	3.16			000	70	02			4			.16		ı	1 2	3 6	200	96
muiolaS		ļ	2		ı.		ά	 		, İ.,	- 6			σ) LC		20.6				,	19.5]]		4	0.2 3	80				1.0	101		<u>ო</u>
Chloride		8		2	α	, -	ë			t c	0 0	90.3		σ	-		90.4								4	82.2	7	4		,	, ,	828	0 0	
	-													σ	4	4	6.0			7	α							4.6		2	1 6	2 -		4
SSA		1	į	1	ļ		1		1			1		ő		œ	8.2		33		. «	3.2			4		4			2	1 6	3 0	0 0	
SST			:	:	:	:	:		•	•				ō	Τ.		5.2 18					5.2 18	1 1					2.5 12		2	1	2 1 0	- 1	•
BOD Dissolved Oxygen		ļ	<u></u>	<u></u>	<u>.</u>	<u>.</u>	<u>l</u>	Ĺ.,	.İ		<u>. i.</u>	9.9		1	1	L	9.3		33	<u>. </u>	1	7.7 5						9.3		ı		7 0 7	1	
Conductivity		l .		1	1	1		1	1			338				•	330					322				322						200	İ	
Hq		l	<u> </u>	İ	Ĺ	.i	İ	1	L		4.0	6.7		l	99	<u> </u>	<u> </u>		I	.L	.i	8.9	IJ					6.5		L	<u>. </u>	4 9	İ.	
Temperature		1										21.0	(ujt			<u> </u>	20.5				1	20.5	1			19.1					į	18.0	1	
			:	:	:	1	1				136.0		2 affer rain				136.0		I	ı	1	129.0			4			0		1	:	136.0	•	
Wol	. sto				•		1	1		1	1	1	f and 2		⊥	<u>!</u>			L	L		<u> </u>		1		118.				_	13	13	7	2 -
Time								į	1		1725		Davs 1											2					15					,
Date		9/22/92	9/22/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	0/24/02	9/24/92	(əlc	ta: Rain.					(nier)	,,,,,,					after rail					after rair.					
Вип		<u>م</u>		က	9	6	12	1 9	24	200	, 4 4	1 samp	All day					during						Day 1					Day 2					
Weather (Dry, rain, days after rain)		Dry	Rain	Rain	Rain	24h	24h	24h	24h	487	48h	HER (HER (HEP /						HER					HER (İ
Station	-			1		ŀ	1	1		•	BWW08	DRY WEATHER (1 sample)	WEATHER (All data: Rain. Days 1 and	Count	€		Maximum	WET WEATHER (during rain	Count	Mean (*)	:	:		WET WEATHER (Day 1 after rain)	Count	Mean (*)	inimum	Maximum	WET WEATHER (Day 2 after rain	Count	ean (*)	Minimum		Maximum

(*) Geometric mean for Fecal Coliform and E. Coli

NA = Not Analyzed

NS= No Sample

NM= Not Measured

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS
Water Quality Data For STORM I

E. coli	CFU/100mL		22	100	54	130	50	30	38	300	58	3	3		0	20	22	130		3	49	22	100		4	52	30	130		2	47	39	56		_
Fecal Coliform	CEU/100mL	8	96	350	200	360	290	120	25	79	4	8	3		6	120	14	360		3	189	96	350		4	161	54	360		2	33	14	79		
Zinc	qdd	2	S	N	Q	QN	2	Š	S	Ş	S				ļ											-								-	
реәд	qdd	6.0	0.8	2.3	2.0	23	10	1.3	о С	4 0	6.0		2		6	1.5	0.8	2.3		33	1.7	0.8	2.3		4			2.3		2	14	0.9	1.9	-	•••
Nickel	qdd							1	S				5					.,									-	Ť		••••	1	1		-	•••
Copper	qdd	2.9	2.0	2.6	1.1	12	16	-		7	- 00	<u> </u>	2.5		Ĺ		1.1			3	1.9	1.1	2.6		4	1.3	1	1.6		2	1 12	7	1.8 8.		•••
Сһготіит	qdd	0.80	0.60	0.70	0.90	0.70	0.70	0 70	090	0 70	0 60		20.0		9	0.69	0.60	0.90		3	0.73	0.60	06.0		4	99.0	09 0	0.70		2	0 65	0.60	0.70		
muimbsD	qdd	0.05	0.24	0.19	S	QN	2	Š	S	CNN	0 0		3		3	0.17	0.08	0.24		2	0.22	0.19	0.24			ļ				+	0 08				••••
d-40d	ე /6ⴍ	0.02	0.02	0.02	0.02	0.02	0.02	S	Ę	000	0 0		70.0				0.02			3	0.02	0.02	0.02		2	0.02	0.02	0.02		2	000	0.02	0.02		••••
N-£ON+ZON	-	9	4	4	8	4	0	7	0.86	0.65	0.48	7 6	2		6	0.38	0.10	0.86		3	0.15	0.14			4	0.46	0.10	0.86		2		0.48			
N-EHN		090	020	090	090	090	.i	CZ	S		. I	.1 L	200		5	0.060	0.050	0.070		33	0.057	0.050	090.0		2	0.065	0.060	0.070			-	<u></u>			
muiboð	7/6w	 	<u>.</u>		<u> </u>	l	ļ	_	9 0	7 2	10				. <u></u> 6		- О			3	1				4			10			11	9	11	-	
muisəngsiM	_	ı	•	i					171			1 1	2		6	7	1.65	.78		3	.73	99:	.78		ļ	<u> </u>	<u>L</u> ,	1.75		2	72	1,65	.78		
Calcium		 	5		ļ	ω		4	i	α	4	: ;			1	9	6.4				6.7	2			1	9	4	6.8		ļ		6.4	8	-	.
Chloride	_	4	0	0	4	5	3		1 6	1 /	- 7	<u>, </u>	-				21.2			3	31.8	4.4	12.0		4	5.1	71.2	27.2	!	2	5 5	25.7	7.2	-	,
												1	Ė			4	ဖ	7		5	4		0		14	7	9	0		2		1.0			
SSA		ω.		İ	Ĺ	<u>l</u>	<u>l</u>	<u>.</u>	4	Ĺ	<u>.l</u>	J L	<u>.</u>		l	<u> </u>	0.8.0				1.4				l			2.0 2		<u> </u>	-	0	7	-	
			4			ļ	-	_					<u>.</u>			<u>س</u>	0	4		2		 O	4			4	ļ		٠			2	4	-	
BOD									N 2						9	1 9.	7	1		3	.5	4	1		4	.2	5	.5		2		7	2	-	••••
negyxO bevlossiO		08 10	05 6	10	05 8	95	95 10	00	95 10	90	82	100			6		82 7.				107 9.					96 10.	i	100 10		2	İ	82 7.			•••
Conductivity		<u>س</u>	<u>ი</u>		5	7			Ϋ́	-	. 6	; ;	.]		 8	4	6	6		3	4	တ			3	4	~	7		<u> </u>		7	6	.	•••
Hq									18.0				l	<u>1</u>	<u> </u>		5.0 5.			3	1.0	œ	0			5	0	0.5 6.		2	1 2	3.0	0	-	•••
Temperature	O geb					1		1	1	1	•	1 1		and 2 after rain	6	3	9.3 16.0	l			3.7 21.				4		į	3 6 20		2	2	3 16.		-	•••
Wol						•			115	•	1			and 2 a		12	6	17			13.		14		L	<u> </u>	1	13.6			10	6	7		
9miT		1415	55	330	930	1025	1330	1600	22		1655	1 1		1																					
Date		3/22/92	3/22/92	3/23/92	3/23/92	3/23/92	3/23/92	1/23/92	9/23/92	3/24/92	3/24/92			: Rain, L					rain)					after rain					ter rain						
Вun	-	٥ ط				ļ	ļ	ļ	24	ļ	. ļ	olumes		II data					(during r					av 1 at					av 2 af					6	ay 3)
Weather (Dry, rain, days after rain)		Dry	Rain	Rain	Rain	24h	24h	24h	24h	48h	18h	7 037		HER (A					HER (a					HER (D					HER (D					(/ dai	711
noitst	-	1 60WW8				····	į	ı				l la		WET WEATHER (All data: Rain, Days	Count	Mean (*)	nimum	Maximum	WET WEATHER	unt	an (*)	Minimum	Maximum	WET WEATHER (Day 1	Count	an (*)	mnmir	Maximum	WET WEATHER (Day 2 after rain	Count	an (*)	Minimum	ximum	WET WEATUED (Day 3)	T WEAL

E. coli	CENVIOONE		NA NA			Ž Ž																	,			-				-						
Fecal Coliform																							ļ													
Zinc				1	ļ	1	-	- 1	-		- 1					_							ļ.,													
ге э q			1	1	i	1	- 1		- 1		- 1	- 1				0.9	o	-		l	Ĺ		1 4			٩	5	5 -			- 6	9.0				
ИіскеІ	:															0.7	Ö				- 1) 	ļ				j									 -
Copper			:		•			:	:	:	:	- 1	2.0			1.9					٢	7.7	4.3		_	1	5	3.0		ľ	7	1.3	1.1	1.5		L
Сһготіит	qdc	0.30	0.40	0 30	0 0	2 6	0.20	0.30	0.20	2	0.20	9	0.30		7	0.27	8	윙		0	, 5	3 8	0.40		c			0.30		;		0.20				
Cadmium	qdo	0.05	0.14	0.05	2	2 2	ב צ	2	2	2	2	2	0.05		2	0.10	0.05			c			0 14					<u> </u>		ľ				****		
d-†0d	7/6ա	Q	Q	CZ			0.02	2	2	2	2	2			-	0.05										- 6	20.0		•	ľ		1				
N-\$ON+SON	7/6w	0.02	0.02	0 0	5	70.0	0.0	2	2	2	2	2	0.02		4	0.03	0.02				0	200	0.02		-		20.0			-						
N-SHN	7/6ա	¥	Ϋ́	NA	ΥN.	¥ \$	Ž	₹	₹	≨	≨	¥																		-						
muiboS	7/6 w	25	24	22	1 5	4 6	77	23	22	25	23	21	25		6	23	21	25		2	23	3 %	24				3 8	22		Ċ	7 5	77	21	23		- *
muisəngsM	٦/6w	1.96	1.93	1 85	1 0 0	1 92	70.	1.93	1.86	2.06	1.96	1.95	1.96		6	1.92	1.82	2.06		2	9	28.5	1.93			2	70.	2 06		ï	7	1.96	1.95	1.96		-
muiolsO	7/6w	╁╦			::::		÷.		<u>. </u>	i	i	h:::	8.2			8.0				L		ο	8.0		Ę	r 0	0.7	 	$\mid \mid$	7			8.2			-
Chloride	7/6w	62.4	47.0	55.5	77.0	0.74	0.74	51.6	45.6	51.7	47.9	58.0	62.4		6	50.1	45.6	58.0			700	47.0	55.5			7 07) (51.7	.		7 6	53.0	47.9	58.0		:: :: :: :: :: :: :: :: :: :: :: :: ::
SSA	7/6w	1.9	3.5	1 8	٥	0 2	2	2.2	2	2.8	0.	1.5	1.9			1.9	0.8	3.5					3.5		ï			2.8		ï	7 ,	1.3	0	1.5		VIV
SST	7 /6w	2.3	4 0	2.8	i	0 2	2	3.8	1.2	9.5	3.2	1.5	2.3			3.3				1,1			4.0			7 0	,	9.2		ï	7 .	2.4	1.5	3.2		2
ВОВ	- 7/6ա	₹	¥	¥	ź	<u> </u>	<u> </u>	Š	Ϋ́	₹	≨	Š Š																								1
nagyxO bavlossiO	7/6 w	9.6	8.9	8 9	σ	D 0	0	9.5	10.0	9.3	9.4	7.0	9.6		6	9.0	7.0	10.0		2			8.9		ļ,		į	10.0		ï	7 0	8.2	0.7	9.4		Signal - Sid
Conductivity	шэүзоүшш	170	170	160	150	200	5	160	150	155	150	145	170			153	:	- 1			160	150	170		K	454	2 5	160	$ \ $	ï	N Ç	148	145	120		
Hq		i i	:	1		0 0	- 1	- 1	•		•		6.3		8	6.4	0.9	6.9			8.4	9 6	6.8		,			6.7					6.2			- 2
Temperature	O gəb	19.5	20.0	19.0	α,	10.0	0.0	18.0	18.0	16.0	14.8	16.1	19.5	rain)	6	17.5	14.8	20.0			100	2 0	20.0		Ę	17.4	1 0	180			7	15.5	14.8	16.1		
Flow	ets	7.6	7.9	9.4	0	» c	- G	9.2	9.5	9.2	8 7	8.9	9.7	2 after	6	9.0	7 9	9.4				0	9.4		ļ		ų ,	9.5	.				8.7			
						200	1	-	-	ı			\mathbb{H}	1 and			-	\dashv		F					F	<u> </u>	-		$\left \ \right $	-	1		$\frac{\parallel}{+}$	-	_	AIRd- Nict Recognition
——————————————————————————————————————		ı	1	1	1		1	- 1	-	- 1	- 1			, Days										 - -			***************************************			اي		***************************************				A I R A C.
Date		9/22/92	9/22/9;	<u></u>	<u>.i</u>	3/23/32	L.	<u>i</u> .	i .	i.	<u>i</u>		(əldı	WET WEATHER (All data: Rain, Days 1 and 2 after rain)					(aier pi	in S				1 offer rain	arrer ra					after rai					2	
gree (all)		۵	ļ	•	·	0 0	·					1	(1 sample)	(All d			***************************************		(durin) ye	700					(Day					/Day 3	, ,
Weather (Dry, rain, days after rain)		DΛ	Rain	Rain	Do	4 FC	147	24h	24h	24h	48h	48h	THER	THER					THED		-							•		표					THER	
Station		3WW10S	3WW10S	3WW10S	31/1/1/10	BYAAAAOO	201 222	3WW10S	3WW10S	3WW10S	3WW10S	3WW10S	DRY WEATHER	VET WEA	ount	Mean (*)	Minimum	laximum	WET WEATHER (during rain	1	Mean (*)	dinim m	Maximum	WET WEATHED (Day	1	* 460	Minim	Maximum		WET WEATHER (Day 2 after rain	ount *	lean ()	Minimum	Maximum	WET WEATHER (Day 3)	ND - Not Detected

²age 11

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS
Water Quality Data For STORM I

Station Weather (Dry, rain, days after rain) Run	Date Time	Flow	Тетрегаture	Hq	Conductivity	nagyxO bavlossiO	BOD	TSS	Chloride	muiolsO	muisəngsM	muiboS	N-EHN	NOS+NO3-N	q-40q	muimbsO	Сһготіит	Copper	ИіскеІ	реәд	Zinc	Fecal Coliform	E. coli
		cfs			wo/soyww	უ/6ⴍ			_					7/6ш		qdd	qdd	qdd	qdd		qdd	CFU/100mL	CEU/100mL
Dry			. :		285	10.4	-			~	4				0	0.63	3.80	15.5	11.4	4.8	22	6	10
Rain			:		252	8.7	3			0		l	ļ		O	0.74	5.30	17.2	11.6	9.9	26	270	140
က	9/23/92 315	5 173.0	: :	6.6	265	8.6	7			 O	0	38	8 0.190			0.80	6.30	18.7	11.6	8.6	30	200	310
Rain 6			:		265	8.5	0								o	0.79	6.10	21.8	1.3	12.7	35	510	230
24h 9			: :		245	8.7	_			က					o	0.67	3.90	15.0	9.9	5.9	28	160	190
24h 12		i	:		260	9.7	2			ဖွ					O	0.62	3.40	13.7	10.1	4.8	23	280	26
24h 16			; ;		255	9.7	8			ဖ					0	0.60	3.40	13.8	11	6.4	23	120	59
24h 24			: :		255	9.1	9			0			ļ		0	0.82	6.20	19.0	11.7	9.6	31	80	49
48h 32	•		:		260	9.2	7	ļ		33	=	<u> </u>	<u>[</u>		O	0.76	5.60	18.4	12.2	6.9	23	9	28
48h 40	:		:		288	6.5	0			-	9			:	0	0.69	4.70	17.4	12.4	6.1	26	130	21
DRY WEATHER (1 sample)		1330	20.2	9 9	285	40.4	6.4	, 86	1 8 87	87.7 17	0 2 2	75 [0	0000	2 32	98 0	0.63	3 80	15.5	14 4		32	6	Ę
				П]]] [ΙI	1 1							
WET WEATHER (All data: Rain,	Rain, Days 1	and 2 after rain	er rain)		ŀ									١						٠			
Count		б		80	6	6		6		6	6			ı		6			6	6	6	6	6
Mean (*)	***************************************			6.5	261	8.7			I	œ	5		0	٦,	o	0.72	4	4	113	7.3	27	194	2
Minimum		142.0	16.0	6.2	245	6.5	- C	3.6	1.0 59	9.1	7	57 36	0.080	1.22	0.34	0.60	3.40	13.7	6.6	4 ¢	23	8	21
Maximum		1//.0		0.9	788	9.7		7			6		0	1	o	0.82	اف	2	12.4	12.7 [35	510	310
WET WEATHER (during rain,	<u>η</u>																						Γ
Count		_	ļ	3	3			က		3	33			<u> </u>				3	3	3	3	3	က
Mean (*)		158	20	9.9	261		7	က	6.	0	9 2		٥	-	0			19.2	11.5	9.3	30	410	215
Minimum		142.0	20.0	6.6	252	8.5	2.0	0.9	2.2 59.	9.1 15.	7	60 36	5 0.150	1.85	0.34	0.74	5.30	17.2	11.3	9.9	56	270	140
Maximum		1/3.0	7	0.0				N.	٥		ν O		7		⊃ 			21.8	11.6	12.7	32	510	310
WET WEATHER (Day 1 after	after rain)																						
Count		4	L	3:	1 3	4	1	l	4	4	4					4		4	4	4	4	4	4
Mean (*)		155.0	19.3	6.4	254	9.3	æ	4.7	3.1 65.	5.9 16.	.5 2.68	38	8 0.458	3 1.62	0.36	0.68	4.23	15.4	10.7	6.3	26	4	51
Minimum		148.0	į	6.2		8.7	•		0	9	3		l	`	o	09.0		13.7	6.6	4.8	23	80	56
Maximum		162.0		6.5		9.7	2:			0	8				이	0.82		19.0		9.6	31	280	190
WET WEATHER (Day 2 after rain)	r rain)										Ш												
Count		2		2	5		5			2						2	2		2	2	2	2	2
Mean (*)		171	9		274		1.9			7	7		٥	1.60	0	0.73	5.15		12.3	6.5	25	114	24
Minimum		166.0	16.0	6.3	260	6.5	1.7	3.8	1.0 69.	n	17.1 2.82	2 40	0.080	1	0.42	0.69	4.70	17.4	12.2	6.1	23	100	21
Maximum		177.0	17.		288		2.0	5			٥İ				0.45	0.76	5.60		12.4	6.9	26	130	28
WET WEATHER (Day 3)					ļ,		ļ]									 .	
ND = Not Detected	NM= N	NM= Not Measured	g		NS= No Sample	Sample		¥	= Not Analyzed	alyzed			(*)	metric m	ean for F	ecal Co	liform ar	Geometric mean for Fecal Coliform and E. Col	·=				

· · · · · · · · · · · · · · · · · · ·		25	8	390	80	00	9	64	75	47	30	1	2
E. coli	CEU/100mL		ļ										
Fecal Coliform	CEU\100mL	270	900	740	1,900	460	710	520	390	150	90	070	2/0
Zinc		ĺ		23								7	1/1
реәд		ı										7	4.U
Nickel	qdd	8.9	8.1	8.7	8.1	8.3	7.8	9.4	7.6	7.0	8.9	0	φ D
Copper	qdd	13.0	10.4	11.7	10.5	11.0	10.4	10.8	10.3	10.0	12.0	10.04	13.0
Chromium	qdd	3.50	2.80	3.00	3.00	2.60	2.80	2.50	2.60	2.60	3.20	03 6	3.50
Cadmium	qdd	0.47	0.37	0.53	0.42	0.55	0.42	0.43	0.40	0.39	0.47	74	0.47
d-40d	უ /6ⴍ	0.33	0.27	0.28	0.25	0.30	0.28	0.28	0.28	0.25	0.31	66.0	U.33
N-EON+ZON	7/6ш	1.79	1.63	1.58	1.40	1.32	1.18	1.15	1.07	0.71	1.10	4 70	1./3
N-EHN	- /6ա	2	2	0.040	2	0.240	2	0.020	0.050	2	0.100		
muiboS	⊤/6w	38	35	36	34	33	33	35	31	30	37	106	S S
muisəngsM	ша\ך	2.53	2.28	2.42	2.43	2.42	2.46	2.42	2.38	2.24	2.62	2 53	7.23
muiɔlsɔ	7/6ш	15.2	13.8	14.3	13.8	14.2	13.4	13.8	13.2	12.6	15.9	75.2	72.0
Chloride	7/6ш	72.0	62.9	68.1	56.7	59.0	60.4	55.2	56.6	50.6	68.0	10.07	(2.0
SSA		ı	i	i								00	γ.ν
SST	¬/ɓw	2.6	3.2	4.4	2.8	2.6	5.2	3.4	4.2	4.0	4.0	9 6	7.0
BOD	J/6w	5.3	1.8	1.8	1.3	1.3	1.8	1.3	1.2	1.3	1.3	10.4	
Dissolved Oxygen	¬/6w	11.0	10.0	6.6	10.2	10.2	10.5	10.8	10.1	10.6	8.6		2
Conductivity	шэ/ѕочшш	260	230	255	245	220	215	235	220	190	258	1000	707
Hq		<u> </u>	<u> </u>	6.8								0 2	0.0
Temperature													C.U2
Flow	efs	169.0	188.0	232.0	214.0	205.0	209.0	200.0	192.0	210.0	218.0	0 001	109.0
9miT		1340	15	300	550	930	1250	1525	2358	850	1625		
əfeO		9/22/92	9/22/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/24/92	9/24/92		
иnУ		<u>-</u>		က	ဖ	တ	12	16	24	32	40	1	Ša
Weather (Dry, rain, days after rain)		Jry	Sain	Rain	Rain	4h	4h	4h	4h	8h	æ	FD /4	ב צ
Station		_										ODV WEATURD /1 sounds	MEALL
2011012		BWW13	BWW13	BW.	BWW13	BWW13	BWW	BWY	BWW13	BWW13	BWW13	Ž	5

WET WEATHER (All data: Rain, Days 1 and 2 after rain)	1 and 2 after I	rain)																					
Count	6	6	8	6	6								1	ı	l	l	l					6	6
Mean (*)	207.6	19.0	6.5	230	10.1	1.5	3.8	2.0	59.7	13.9 2.	2.41	34 0.	0.090	1.24 0	0.28 0.	0.44 2.	2.79 1(10.8	8.2 4	4.3	17	450	13
Minimum	188.0	16.5	6.2	190	8.6																	8	93
Maximum	232.0	20.5	6.8	258	10.8				i I	i I			: 1	i l								900	400
WET WEATHER (during rain)																							
Count	8	3	3	3	3																	ဗ	က
Mean (*)	211.3	20.0	9.9	243	10.0	1.6	3.5	1.5	62.6	14.0 2.	2.38	35 0.	0.040	1.54 0	0.27 0.	0.44	2.93 10	10.9	8.3	4.4	20	945	232
Minimum	188.0	19.5	6.5	230	9.9								İ		İ							900	8
Maximum	232.0	20.5	6.8	255	10.2							36	_					Ĺ	<u>.</u>		Ψ.	900	400
WET WEATHER (Day 1 after rain)																							
Count	4	4	က	4	4																	4	4
Mean (*)	201.5 19.1	19.1	6.3	223	10.4	1.4	3.9	2.3	57.8 1	13.7 2.	2.42	33 0.	0.103 1	1.18 0	0.29 0.	0.45 2.	2.63 10	10.6	8.3 4	4.6	17	507	8
Minimum	192.0	18.0	6.3																			390	49
Maximum	209.0	20.2	6.4	235	10.8	8									.							710	160
WET WEATHER (Day 2 after rain)																							
Count	2	5	7	2	2								l	l			<u></u>	L				2	2
Mean (*)		17.3	6.5	224	9.6	1.3	4.0	2.3	59.3	14.3 2.	2.43	34 0.	0.100 0	0.91	0.28 0.	0.43 2.	2.90 1	11.0	8.0	3.6	16	116	38
Minimum	210.0	16.5	6.2	190																		90	30
Maximum	218.0	18.0	6.7	728	10.6							37	·									20	47
<i>}</i>																							

Page 12

(*) Geometric mean for Fecal Coliform and E. Coli

NA = Not Analyzed

NS= No Sample

NM= Not Measured

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM I

5-56	aysb ,ni							uə															-		
Station	Weather (Dry, ra after rain)	иnы	Date Time	Wol	Temperature	Hq	Conductivity	Dissolved Oxyg	BOD	SST SSV	Chloride	muiolsO	muisəngeM	muiboS	N-EHN	N-£ON+ZON	d-‡0d	muimbsO	Chromium	Copper	Nickel	Lead Zinc		Fecal Coliform	E. coli
				sto			шровусш	_			_	7/6w 7/6w		უ/ 6ⴍ	¬/6ա	უ/ 6ⴍ	၂ /6ພ	qdd	qdd	qdd				CEN/100WF	CEN/100WF
BWW14	ρίλ	/6	22/92 1530	32.8	2		2	li	li	1 1		4	4		QN	0	0.03	0.06	0.80	2.9			<u> </u>	1,100	100
BWW14	[.		- 1	- 1	2		i.	- 1		1		4	0	- 1	2	0	0.03	0.13	140	3.8				000'9	1,200
BWW14	Rain	3 8	9/23/92 44			6.7	95	9.6	•	1		4 4	0 0	13	0.360	<u>l</u>	0.02	0.07	8 8	2.8	0.5		11	2,100	1,400
EVVVV1		<u>ļ</u>	•	1	9 5	.∐	i	1	1	1		1 7	u c	1	0.00	5 0	0.00	2 2	0 0	, c				2,000	200
BWW14		.			<u>0</u>	<u>.l</u>	i	1		1		1 4	- L	1	OS C		0.07	2 2	0 20	2.0		İ		2 200	250
BWW14	·	ļ		1	20	<u>.</u>	.i	1	1	1		4	-			C	000	0 08	1 10	2 1				890	260
BWW14		ļ		1	<u>e</u>	<u> </u>	l	1	•	1		4	-	1	0.090	0	0.02	0.07	10	2.9				280	110
BWW14		ļ	1	1	9	<u>.</u>	.i			1		4		1		0	0 02	0 14	1 00	23				2.400	66
BWW14		ļ		1	17.	<u>. </u>	.i	•	:	1		4				0	0.02	S	1.10	1.9				330	110
DRY WEATHER (1 sample)	THER (1	sample)		32.8	8 21.8	9.9	102	l I	ļ		29.	4	1.21	1		0.45	0.03	0.0	0.80	2.9	1.3	ļ	9	1,100	100
A 11.01 T-11.01	1	,																							
WEI WEATHER	HEK	(All data:)	data: Kain, Days 1	and	rair			ļ					-	1			ï	ï							T
*/ #GOM				2 67	ç	<u>l</u>	:	7 C	7 L	D 4	0 4	D 6	<u>l</u>		, 177	9 6	9	o e	D 6		0 0	D (D 0	o 6
Minimum				36.4	16.5	9 6	8 6	8.2		10	18 18	ο Δ 4 Φ	100	1 7	0.050	32	0.00	800	202	0 7	. C	n o	V C	280	3 66
Maximum				Ш	7		: 1	10.6	1.8	0		8	.i		0.360	0.46	0.03	0.14	1.40	3.8	1.5	6.3	16	6,200	1,400
WET WEATHER (during rain,	THER (d	uring ra	in)																						
Count							3	3	7	<u>က</u>	 		l		2	က	3	2	3	3		3	33	က	ဗ
						ဖ	92	9.4	1.7	S.	0	_	ļ		0.240	0.42	0.02	0.10	1.10	3.1		3.0	13	2,932	974
				42.0	19.5	6.4	6	6.8	1.6	1.6	1.0 22.	2.0 4.0	1.09	11	0.120	0.38	0.02	0.07	0.90	2.7	0.5	1.1	11	2,000	550
Maximum				54.7	- 1	9	100	9.7	1.8	0	2				0.360	0.46	0.03	0.13	1.40	3.8		6.3	15	000'9	1,400
WET WEATHER (Day	THER (I)	7	affer rain					i																	
Count		١.	,,,,,				4	4	l	4	3:					4	4		4	4		4	4	4	4
Mean (*)				42.8	3 19.5		98	10.2	1.1	1.7		2 4	1 1.12	13			1	0.07	0.90	2.5	0	1.4	13	1.358	231
₫Ę				•	18	9	.	9.8	L		0.8 18	4	į		0	0.33	0.02	90.0	0.70	2.1		6.0	12	280	110
				_	8	9	l	10.6			5	4			9	0	8	0.07	1.10	2.9	4	2.1	16	6,200	400
WET WEATHER	THER (D	(Day 2 afte	after rain)																						
Count				``			2	2				2		<u> </u>	2		2	1	2		1	2	2	2	2
Mean (*)				38	9	ø	83	9.3				8	Έ.		0.050	0	0	0.14	1.05		1.1	1.1	11	830	104
Minimum				36.4	16.5	6.2	82 84	8.2 10.3		0.1	1.0 20.	4 4	3 1.15	7 7	0.050	0.32	0.02		- 18 18 19	1.9 2.3		0 6	2 2	330	110
				<u>}</u>	-		 5	2	-			†	-		3				<u>-</u>			<u> 1</u>	=	2,400:	-
WET WEATHER (Day 3)	THER (D	ay 3)																							
ND = Not D	= Not Detected		- EN	NM= Not Measured	red	<u>-</u>	NS= No	Sample		¥	= Not Analyzed	alyzed			(*) Geon	Geometric mean for Fecal	ean for F		Coliform and	d E. Col					

	¥	Ž	ž	Ž	ž	₹	≨	Ź	¥	₹		٦
CEN\100WF												
CEN\100WL	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž	Ž		
	ı									•	-	••••
qdd	7.4	5.6	1.3	1.8	1.9	1.4	1.6	Ϋ́	2.9	1.7		7.4
qdd	2.0	1.1	0.7	1.0	1.1	0.8	1.0	2.8	2.4	2.6		2.0
qdd	1.6	2.2	1.3	1.7	1. 4.	1.3	1.4	2.8	<u>6</u>	8	,	9.
qdd	0.80	0.80	0.50	09.0	09.0	0.60	0.40	Ϋ́	0.50	0.50		0.80
qdd	0.23	0.41	0.05	0.07	0.07	2	9	2	2	2		0.23
7/6ш	0.02	2	2	Q	2	N	Q	Q	Q	2		0.02
7/6ш	0.47	0.46	0.43	0.41	0.43	0.43	0.41	0.41	0.41	0.34	֧֓֞֟֟֝֟֓֓֓֓֓֓֓֓֓֓֓֓֓֟֜֟֓֓֓֓֓֓֓֓֓֓֡֜֟֝֓֓֓֓֡֓֜֝֡֓֡֓֜֡֡֓֓֡֡֡֡֓֜֡֡֓֜֡֡֡֡֓֜֝֡֡֡֓֜֡֡֡֡֡֡֡֡	0.47
უ/ 6ⴍ	¥	¥	Ā	ΑĀ	¥	ΑĀ	Ν	ΑĀ	Ϋ́	¥	.	
	22	20	20	19	19	19:	20	19	20	20		22
	19	.02	.82	.85	.86	.86	.91	.88	906	98		2.19
	l											7.7 3 2
	l											44.6
•	l											
	ı										1	2.0 2.4
	'											7
7/6ա										<u></u>		<u></u>
											<u> </u>	8.4
шэ/ѕоүшш												165
-					0					9 0		0 6.8
	22	21	8	2	19	•			7.	19		3 22.0
cfs	6.	5.	12.	12.	12.	10.	ω	16.	16.	15.0		6.3
-												
	9/22/92	9/22/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/24/92	9/24/92		9)
	<u>.</u>											Sample
	Dry	Rain	Rain	Rain	24h	24h	24h	24h	48h	48h	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	۳ ۲
				WW15S	WW15S	WW15S					T & Link Act	KY WEAL
	CEU/100mL bbb bbb bbb bbb bbb mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	CEU/100mL CEU/100mL	CET CET	Character Char	Dy P 9/22/92 6.3 22.0 6.8 165 8.4 NA 2.0 2.4 4.6 7.7 2.19 22 NA 0.47 0.02 0.23 0.80 1.6 2.0 7.4 ND NA Rain 3 9/23/92 12.4 2.0 6.7 150 8.5 NA 2.2 1.8 2.0 NA 0.41 ND 0.07 0.05 0.50 1.3 ND NA Rain 6 9/23/92 12.4 2.10 6.1 150 8.7 NA 2.2 1.8 1.8 10 NA 0.41 ND 0.07 0.07 0.07 0.07 1.8 ND NA NA Rain 6 9/23/92 12.4 2.10 6.1 150 8.7 NA 2.2 1.8 1.8 10 NA 0.41 ND 0.07 0.07 0.07 1.8 ND NA NA NA NA NA NA NA NA NA NA NA NA NA	Color Colo	Color Colo	Figure F	Hamile H	Handel Handel	Harmon H	DY P 9/22/92

Count Coun	THE THE THE CARE WATER, Days I and E alice I am	i, Days I and & alter	lann																		
12.3 6.6 150 8.5 3.7 2.6 34.8 7.4 188 20 0.41 0.45 0.45 17 1.5 23 5.8 16.7 2.0 1.2 1.4 30.4 7.2 1.82 19 0.34 0.46 0.40 1.3 0.7 1.3 16.7 2.0 1.0 5.0 3.2 1.2 7.3 1.90 20 0.43 0.41 0.80 2.8 5.8 5.7 1.8 20 0.43 0.41 0.80 2.8 5.8 5.7 1.8 20 0.43 0.41 0.80 2.8 5.8 5.7 1.8 1.9 0.43 0.41 0.80 2.8 1.1 1.8 1.0 0.43 0.41 0.6 1.1 0.6 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8 1.1 1.8	Count		<u>ග</u>	 80	 ත	 O								 6							
167 150 69 162 94 64 40 304 75 182 19 034 005 040 13 07 13 16 10 10 10 10 10 10 10	Mean (*)		19.3	9.9	150	8.5	n	<u> </u>			<u> </u>		į	0.41	ò	Ĺ			Ĺ	ļ	
16.7 21.0 6.9 162 9.4 9.4 9.4 9.4 7.5 2.02 20 9.4 9.4 9.6 9.4 9.8 2.8 2.8 5.6 9.4 9.	Minimum [.]		15.8	6.1	135	7.4	2	<u>.</u>			<u></u>			0.34	Ö	İ			Ĺ		
10.2 20.7 6.4 15.3 8.4 3.0 2.0 35.5 7.3 1.90 20 0.43 0.18 0.63 1.7 0.9 2.9 1.2 2.2 1.4 3.5 7.5 1.90 20 0.43 0.43 0.63 1.7 0.9 2.9 2.9 1.2 2.2 1.4 3.5 7.5 1.90 2.0 0.44 0.45 0.41 0.05 0.50 1.3 0.7 1.3	Maximum	16.7	21.0	6.9	162	9.4	5							0.46	7.0	il					
3 1 1 0 1 3 1 0 0 1 0 1 0 0 0 1 3 2 1 1 3 4	(-)																				
3 3	WEI WEALDER (OUTING FAIT)																				
10.2 20.7 6.4 15.3 8.4 3.0 2.0 3.5 7.3 1.90 20 0.43 0.43 0.63 1.7 0.9 2.9 5.8 2.0.0 6.1 150 7.9 2.2 1.4 33.5 7.2 182 19 0.41 0.05 0.50 1.3 0.7 1.3 12.4 2.0 8.7 1.6 3.4 7.5 2.02 20 0.42 0.41 0.05 0.5 1.1 5.6 1.2.0 1.2 1.2 2.2 2.2 2.2 2.0 0.42 0.42 0.0 1.4 4 <td>Sount</td> <td></td> <td> က</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td> <td>L</td> <td></td> <td></td> <td>3::</td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td></td> <td></td>	Sount		 က						ļ		L			3::					<u> </u>		
5.8 20.0 6.1 150 7.9 2.2 1.4 33.5 7.2 1.82 19 0.41 0.05 0.50 1.3 0.7 12.4 21.0 6.7 160 8.7 4.2 2.6 39.4 7.5 2.02 20 0.46 0.41 0.05 0.50 1.3 0.7 4 4 3 4	flean (*)		20.7	6.4	153	8.4					Ĺ			0.43	Ö	•			<u> </u>		
4 4 3 3 4	dinimum		20.0	6.1	150	7.9	2				Ĺ			0.41	0				<u> </u>		
4 4	laximum		21.0	6.7	160	8.7	4				İ			0.46	0	: 1					
4 1.88 19 0.43 0.07 0.53 17 1.4 4 4 1.88 19 0.43 0.60 2.8 17 1.4 1.88 10 0.43 0.60 2.8 2.9 2.8 2.9 2.8 2.9 2.8 2.9<	JET WEATHER (Day 1 after ra	(uir																			
12.0 19.2 6.5 15.3 8.6 4.1 2.6 34.1 7.4 1.88 19 0.42 0.07 0.53 1.7 1.4 8.7 17.9 6.2 150 7.9 2.8 1.6 30.4 7.4 1.86 19 0.41 0.07 0.53 1.3 0.8 16.7 20.5 6.7 16.2 9.4 4.0 39.1 7.5 1.91 20 0.43 0.60 2.8 2.8 15.9 17.4 6.9 14.0 8.4 4.1 3.7 1.88 20 0.38 0.50 1.8 2.5 15.0 15.8 6.8 135 7.4 1.88 20 0.34 0.50 1.8 2.5 16.7 19.0 6.9 14.5 9.4 4.6 3.8 36.9 7.5 1.90 20 0.41 0.50 1.8 2.6 16.7 19.0 6.9 14.5 9.4<	ount		4	3	4	4			ļ	l	ļ	<u></u>		4				ł	l		
8.7 17.9 6.2 150 7.9 16.7 20.6 7.9 1.86 19 0.41 0.43 0.80 1.3 0.8 16.7 20.5 6.7 162 9.4 4.0 39.1 7.5 1.91 20 0.43 0.60 2.8 2.8 16.7 17.4 6.9 140 8.4 4.1 3.7 34.9 7.4 1.88 20 0.38 0.50 1.8 2.5 15.9 17.4 6.9 145 9.4 4.1 3.7 34.9 7.4 1.88 20 0.34 0.50 1.8 2.4 16.7 19.0 6.9 145 9.4 4.6 3.8 36.9 7.5 1.90 20 0.41 0.50 1.8 2.6 16.7 19.0 6.9 145 9.4 4.6 3.8 36.9 7.5 1.90 20 0.41 0.50 1.8 2.6 16.7	lean (*)		19.2	6.5	153	9.6	4			<u> </u>	Ĺ.,			0.42	9	į					
16.7 20.5 6.7 162 9.4 4.0 39.1 7.5 1.91 20 0.43 0.60 2.8 2.8 2.8	inimum		17.9	6.2	150	7.9	2		<u> </u>	<u> </u>	Ĺ			0.41		į					ļ
2 3 3	aximum		20.5	6.7	162	9.4	5							0.43		0.60					
2 3 3 3 3 7 1 8 2 4 1 8 3 4 4 6 3 3 3 7 1 9 0 3 1 8 3 4 3 3 3 3 7 1 9 0 3 1 8 3 4 3 3 3 3 3 3 3 3 3 3 3 3	IET WEATHER (Day 2 after ra	in)																			
15.9 17.4 6.9 140 8.4 4.1 3.7 34.9 7.4 1.88 20 0.38 0.50 1.8 2.5 15.0 15.8 6.8 135 7.4 3.5 3.9 7.2 1.86 20 0.34 0.50 1.8 2.4 16.7 19.0 6.9 145 9.4 4.6 3.8 36.9 7.5 1.90 20 0.41 0.50 1.8 2.6 16.7 19.0 6.9 145 9.4 4.6 3.8 36.9 7.5 1.90 20 0.41 0.50 1.8 2.6 16.7 19.0 6.9 145 9.4 4.6 3.8 36.9 7.5 1.90 20 0.41 0.50 1.8 2.6 16.7 19.0 6.9 145 9.4 4.6 3.8 36.9 7.5 1.90 20 0.51 1.8 2.6 16.7 19.0	ount	_	2	2	2	2								2		7					••••
15.0 15.8 6.8 135 7.4 3.5 3.5 3.5 3.5 3.5 3.9 7.2 1.86 20 0.34 0.50 1.8 2.4 16.7 19.0 6.9 145 9.4 4.6 3.8 36.9 7.5 1.90 20 0.41 0.50 1.8 2.6 1 <td>lean (*)</td> <td></td> <td>17.4</td> <td>6.9</td> <td>140</td> <td>8.4</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.38</td> <td></td> <td>0.50</td> <td></td> <td></td> <td></td> <td></td> <td></td>	lean (*)		17.4	6.9	140	8.4	4							0.38		0.50					
NTHER (Day 3) 16.7 19.0 6.9 145 9.4 4.6 3.8 36.9 7.5 1.90 20 0.41 0.50 1.8 2.6 NTHER (Day 3)	linimum		15.8	6.8	135	7.4								0.34		0.50					
NM= Not Measured NS= No Sample NA = Not Analyzed (*) Geometric mean for Fecal Coliform and E.	laximum		19.0	6.9	145	9.4	4				ľl			0.41		0.50					
NM= Not Measured NS= No Sample NA = Not Analyzed (*) Geometric mean for Fecal Coliform and E.	VET WEATHER (Day 3)														-						
	D = Not Detected	NM= Not Measured		2	S= No	Sample		NA =	Not Any	hazyle		. * :	Geome	fric mean	for Feca	Coliforn	T Pue	ا ا <u>ج</u>			
				-) - - - -				}		-	,				i 2	5			

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM I

Zinc Fecal Coliform		8	16	37	10	2	10	ND 7,800	2	2	Q	20 2,600		4	18 3		37 39		17	26	40.	37 3,800	•	- (10 13	8	33					1		
реә	qdd qdd	5	0	19	က	4	4		m	ო	2	.9 5.4			9	1.0 2.1	13			7 2	2 0	4 19.0		ن	4 (3.	4		2	0	.0 2.1	3		
Copper Mickel		9	-	9	-	7	0	2.7	<u></u>	7	6	4.6 2.			4	1.7				, a		6.6		4	3.1					Ĺ	1.7 2			
Chromium								0.90				1.10		1	02	0.80	8			1 20		2.00		4	0.93	0.80	1.20		2		0.80			
muimbsD	qdd	1	•	•	1			Q						·	0.25	1					3										<u></u>			
d-t/Od		0.03	0.02	0.04	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03		6	0.02	0.02	0.04			000	3 6	0.04	•	4	0.02	0.02	0.05		2	0.02	0.02	0.02		
N-EON+ZON	7/6w	0	0	0	0	0	0	0.54	0	0	0	0.43			0	0.51	0		ς.	•	5 0	0.88			-					0	0.51	0.51		
N-SHN	- 7/6ա	1	0			0		Q		O				3	0.130	090.0	0.260		-	8	0.400		ľ	-	0.060				1	0.070			[
muiboS			1		1			12				23				12			l			22		4		<u>.</u>					16		-	
тиігэпрьМ												2.58		6	1.89	1.47	2.33			٠	i -	2.33	ı.	4	Į.	į.]		[7	1.96	2		
	7/6ш	<u></u>	ļ	<u>.</u>	<u>. </u>	<u>.</u>						10.4		1	1	1	10.3			α	o s	10.3		4	۱,	9	ω			6	8.8	6		
Chloride	ე/ 6w	45.2	37.0	22.6	29.7	30.7	24.2	20.2	29.2	31.1	39.8	45.2		03	29.4	20.2	39.8		ľ	200	20.00	37.0		4	9	20.2	30.7			35	31.1	33		
SSV	7/6w	4	5	9	_	2	7	0 3.5	7	က	-	4.0			n	1.6	ဖ			_	f	6.2		4	7 (N	<u>س</u>			7	1.6	6		
SST		15	16	17	2	4	က်	Ġ	Ó	5.	-	3 15.0		<u> </u>	Ĺ	0 1.8				+	4 0	7 17.0		1	o (κi i	9			ო	0 1.8	5		
BOD		 	4									.4 3.3		l	6	2 1.0	4			l.	1	73 37		4		7	6		2 2		6.0		-	
Conductivity Dissolved Oxygen								120 6				180 8		6	<u></u>	00 5			L	L	1	180 7		4	87				2	38	38	38	.	
Hq		~	က	5	 -	<u> </u>	0	6.4	⋖	,	8	6.2		, <u></u>	n	6.0	6.8		ļ.,,) (*	۶) <u>-</u>	6.5	I.	<u>ر</u>	<u>l</u> .	0	4		2	6.4	6.1	6.8	.	
Temperature	ე ɓap	20.0	20.0	20.0	18.0	18.0	19.0	18.5	16.0	13.4	16.2	20.0	rain)	-	17.7	13.4	20.0			10 2	ο α Ο α	20.0		4 (17.9	16.0	19.0		2	14.8	13.4	16.2	-	,
Flow		2.4	3.6	13.2	11.0	7.2	10.5	6.3	4.0	4.0	4.0	2.4	2 after	6	7.1	3.6	:			ď	9 0	13.2	;	4 6	9.	4.0	10.5		2	4.0	4.0	4.0	-	
əmiT	<u>!</u>	1400	:	:	•	: :		1830				H	Davs 1 and		•	•					-	T	-				_							-
Date		ı	122/92	/23/92	/23/92	/23/92	/23/92	9/23/92	/23/92	/24/92	/24/92		Rain. De					lej.	(111)	***************************************			1 after rain)					after rain)						
Run	I	<u>а</u>		İ	İ	<u> </u>	<u></u>	16 9				sample	(All data: Rain.					luring v	or filling)				Jay 1 at					(Day 2 aft					ē	1ay 3)
Weather (Dry, rain, days after rain)		2	Rain	!····	·····			24h			•••••	7HER (1	THER (A					אין סבותי	2				THER (C					THER (C					(V)	뒭
noitst		1	1					BWW16				DRY WEATHER (1 sample)	WET WEATHER	Count	E	: -	: 1	WET WEATURD	Collection of the second	Mean /*		Maximum	WET WEATHER (Day	Count	Mean ()	Minimum	Maximum	WET WEATHER	Count	Mean (*)	Minimum	Maximum	T A 27/12 A 7	WET WEATHER (Day 3)

E, coli	CEU/100mL	22	230	2 800	4 400	400	90	8 6	2 2	87	2 6	70	22		6	219	32	4 400			e ;	1,415	250	4,400		4	125	2	400		1	7	4	32	52	ſ			
		420	<u>.</u>	<u>.</u>	İ	. <u>l</u>	380	200	270	410	200	Į Į Į	420		6	1,163			İΙ	I.	ი (4	507	410	810		ï	7	972	720	400				
Fecal Coliform	CEN\100WF			80	-					u	P								Н		ľ	-	•	٥								ľ	-		5				
	qdd	<u> </u>	<u>.</u>	l	<u> </u>	.i	<u></u>	. 1		4 25	<u>l</u>	!	3 18			2 23	İ	<u>l</u>]	-	3	ł	İ						4 25		-	2 2						:	
реәд		5	5	10	σ	, rc		t r	ט ע	Ω <	4 0		5.5			5 6.	4	10			8	20:1	0 (21			S.	4	3 5.4					4	ė.				
Mickel					1	1	1				į		6			2 7.	5	6			3	× (o i	8			7	ιĊ	ω			7	9	ဖ	9			Coli	
Copper	qdd	1	1	1	1	1	1	- 1	- 1	- 1	- 1	- 1	10.0			9	7	12		ŀ	1	֓֡֜֜֜֜֜֜֜֜֞֜֜֜֜֡֡	2 !	12	- 1				11.8		1	- 1	2	တ	5		-	ш	
тиітот4Э	qdd	~	7	4	۳.		10	4.0	N (i	N C	<u> </u>	2.60			2.97	2	4			[.		7	4			7	α	3.40				7	2	2			Coliform and	
Cadmium	qdd	0.34	0.35	0.51	0.49	0 39	0000	2 0	2 6	44.0	9 6	0.50	0.34		6	0.39	0.28	0.51			8	0.45	0.35	U.5.1					0.44			7	0.38					Fecal C	
d-†0d	7/6w	0.27	0.30	0.26	0 24	0 23	ΔN	2 2	7.0	12.0	77.0	0.70	0.27			0.24					0	0.27	0.24	0.30					0.23		ľ	2	0.24			ľ		an for l	
N-SON+SON	η/βιμ	1	•	1	1			•	- 1	1.44	-	- 1	1.57			1.36	1	•	1 1	ľ	8	1.43	8	1.54			- 1		1.44			- 1	۳	_	-	ľ		Geometric mean for	
N-EHN	7/6w	2	9	S	S	080	0 050	2	2 2	25	0 0	0.080			4	0.085	0.050	0.120								7	0.065	0.050	0.080		;	2	0.105	0.090	0.120	ľ			
muibo2	7/6ш	15	36	28	200	34	5	2 8	9 6		- მ	23	40		6	30	28	36		ŀ	3	31	78	30:		4	30	28	31		ŀ	2	20	59	31	ŀ		*)	
muisəngaM	7/6ш	3.25	2.94	2 44	2 46	2 64	200	2 50	200	27.7	30.7	2.40	3.25		6	2.61	2.44	2 94		ŀ	e ;	2.61	2.44	2.94		4	2.63	2.50	2.72		;	7	2.56	2.48	2.63				
muiolsD	, ¬/6w	15.4	14.9	12.0	120	13.5	7	10.0	4 6	13.9	0 0	13.0	15.4		6	13.2	12.0	14.9		-	8	13.0	12.0	9.4.		4	13.3	12.4	13.9		ŀ	2	13.3	13.0	13.6	ŀ		ō	
Sploride	7/6w	99.2	67.9	54.2	48.5	55.5	200	27.0	2.74	62.3	0.00	90.4	99.2		6	56.3	47.2	67.9		ŀ	e (56.9	φ υ	67.9	ŀ	4	55.3	47.2	62.3		;	2	57.4	56.3	58.4	-		Not Analyzed	
SSA	7/6w	9.0	1.6	4 0	9 8	0 0	iτ	0 7	4 0	o c	7.7	0.0	9.0		<u></u> б	2.5	0.8	5.0			က	7.8	0	4.U		4	2.8	6 .	5.0			7	1.5	0.8	2.2	ŀ		II	
SST .	7/6w	4.1	3.8	86	4	300	2 0	t (1 0	ς. γ	0 4	 4.	1.4		6	5.2	1.4	9.8		ŀ	ကျ	6.7	χ 0 (9. 8.	ļ	4	5.3	3.0	7.5			2	3.0	4.	4.6	ŀ		٩V	
ВОВ	7/6w	0.	1.6		9 6	S		- -		4 0	o 4	0.	1.0		ω	1.8		3.1			e (7.5	0.	3.1		က			1.4		;	7	1.7	:	1.8	ŀ			
nagyxO bavlossiO		1		1	•		•	•	•	•	•	- 1	9.8		6	2		i	1 I		i	•	: 			4			10.6			7		7	2			Sample	
Conductivity	шровусш	280	280	220	215	235	278	232	207	218	2 7 6		280		6	230	210	280		ŀ	3	238	212	780		4	233	218	248		;	7	211	210	211	ŀ		NS= No	
Hq		7.0	6.7	6.7	6 7	9	1 0	0 U	0 2	Z 7	0 0	0.0	7.0		8	6.7	6.2	6.9		ŀ	ကျ	6.7	١٥	0.7		က	9.9	6.2	6.9		;	2	9 .9	6.7	6.9	ŀ		z	
Temperature	O geb	23.0	22.0	20 0	19.5	190	0 0	2 0	, C	17.5	9 9	0.0	23.0	rain)	6	18.9	16.0	22.0		ŀ	3	20.5	3.5	22.U:		4	18.8	17.5	19.5		;	2	17.0	16.0	18.0	-			
Wol			•	•	•	•	•	•	•	•		- 1	161.7	and 2 after rain,	6	227.3	162.7	291.9			8	234.9	107	291.9		4	210.6	205.3	215.2		;	2	249.4	209.3	89.4	-		sasured	
	-		:	:	:	:	:		•	7345	- 1	- 1		1					$\left\{ \right $	-		1					•••	.,1			-		_	_	Ш		-	NM= Not Measured	
	<u> </u>					930			1					i, Days											in)						(in)							NM≡	
Date		9/22/9	9/22/9	9/23/9	9/23/9	9/23/9	0/22/0	9/23/8	2/22/2	28/23/82	3/24/8	312418	(əld	ta: Rain						g raın)					after rain,						after rain								
Вun		<u>-</u>	 	ļ	·ţ····	٠٠٠٠	٠٠٠٠٠		···••	24	••••		(1 sample)	(All da					:	anını					(Day 1					l 1	N						(Day 3,	Ö	
Weather (Dry, rain, days after rain)		٥	Rain	Rain	22.5	24h	245	177	147	74n	104	104	THER	THER						Ä					THER						HER						THE	Jetecte	
Station		BWW17	BWW17	BWW17	BWW17	BWW17	BWW17	DVVVV /	DVVVV I	BWW17	DVVVV I	210000	DRY WEATHER	WET WEATHER (All data: Rain, Days	Count	Mean (*)	Minimum	Maximum		WEI WEATHER (during	Count	Mean ()	Minimum	Maximum	WET WEATHER	Count	Mean (*)	Minimum	Maximum		WET WEATHER (Day	Count	Mean (*)	Minimum	Maximum		WET WEATHER (Day 3)	ND = Not Detected	

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS
Water Quality Data For STORM I

E. COII	CEN\100WF	12	ω	18	54	47	8	190	110	3	4	12		7	ויי	77	190			က	20	œ	54		T	9	5 -	196			7	က	က	4		
																		l		က	2	29	5			2	¥ 5	2 8			2	82	14	 		
Fecal Coliform	CFU/100mL		12	99	17	3,	42	1,70	1,30		4,		i			֝֟֟֝֟֝ <u>֟</u>	1,700				Į	u,	14			7.	3 6	1,700						"		
Sinc	qdd	33	34	30	32	39	33	35	40	40	34	33		ï	מ	ဂ္ဂ	8 4			က	32	8	34		Ę	42	2 66	8 4			7	37	34	40		
рева	qdd			2.9								4.2		ļ			9.6					2.9			Ï	4	9 0	9			7	6.5	3.4	9.6		
Nickel	qdd	7.0	7.1	6.1	7.3	7.0	6.2	4.0	5.4	5.2	4.0	0.7		Ġ			7.3			က	6.8	6.1	7.3		٦	5.7	5 <	7.0		1	2	4.6	0 1	5.2		-
Соррег	qdd	12.5	11.3	10.1	12.3	15.3	12.9	12.3	11.1	11.0	10.0	12.5			ה י	2 0	15.0			က	₹:	10.1	N			120	, , ,	15.3			2	10.5	10.0	11.0		d E. Col
тиітол4Э	qdd	2.00	2.70	2.00	2.20	2.40	1.90	2.20	1.90	2.50	1.90	2.00		ï	2	7.19	2 70			က	2.30	2.00	2.70		-	2 10	0	2.40			7	2.20	1.90	2.50		Coliform and
muimbsD	qdd	0.47	0.64	0.50	0.40	0.45	0.40	0.38	0.39	0.39	0.35	0.47		ï	» (0.43	0.64			က	0.51	0.40	0.64		Ä	0.41	, «	0.45			7	0.37	0.35	0.39		Fecal Co
d-†0d	7/6ш	0.48	0.36	0.36	0.41	0.55	0.56	0.38	0.36	0.36	0.30	0.48			2 6	0.40 0.40	0.56			က	0.38	0.36	0.41		 	0.46	38	0.56		ŀ	5	0.33	0.30	0.36		in for Fe
N-EON+SON	7/6ա	1.38	1.41	1.36	1.36	1.41	1.46	1.25	1.20	1.20	1.31	1.38			D 6	1.53	146			က	1.38	1.36	1.41		Ψ	1 33	3 6	1.46		ŀ	7	1.26	1.20	1.31		tric mea
N-EHN	7/6ш	4.200	1.600	2.400	3.200	2.120	1.960	3.500	1.760	1.970	2.130	4.200			200	2.233	3.500			က	2.400	1.600	3.200		Į	235	760	3.500		ŀ	7	2.050	1.970	130		Geometric mean for
muiboS	7/6 w			51	i									ï			55		ļ			51			L.		1	25		ŀ			, 1		ļ	£
muisəngsM		23	စ်	ဖွ	7	4	o	φ	υ	Ξ	-	E			n 6	00.2	2.77			က	.76	2.76	77.		4	27	35	20			5	46	2.41	2		
muioleO		J	l		i					İ	<u>L</u>	l I					15.9		,		9	15.4			4	-	٠.	15.9					13.3			
Chloride		L			1		- 1				1	I I			D 6	, ,	91.5			က	က	80.8	4		4	er.) V	91.5		ŀ	7	ဖ	78.6	<u>.</u>	ļ	Not Analyzed
		<u> </u>	0	6	m		, C		···	<u></u>		,					7.0					1.0			4	<u> </u>	<u> </u>	7.0			2	4	0 0			= Not A
SSA		2		ω.					2		6			ļ	D 6	0 0	5			က	က	7			ļ	•	2 (0	2 6			7	œ,	8 6	o		Ϋ́
SST		L		7 4.	- 1							1		ä		0 0	3 10			9	7	7			4	œ	, m	9			7	9	2 .	ö		
BOD		6	S	က	က	ø	7	က		7	_	6	ľ		i	- -						6.5			4	σ		7					7.1			Sample
Conductivity	"			15 7	- 1							380 6.		- 1	:	•	390 7.7]		345 6]		4	<u> </u>	<u> </u>	390 7		I.		1				S= No Sar
		li		6.5 34		i	i					5		I	5 4	0 6	0 00	$ \ $	١.	ლ	9	2			ļ	4	c.	2		.	7	_	255			=SN
Hq				•			i	1				9 0		وا	ŀ		9	1		i	i	20.0	-		4			5.6			1	Ì	о c			
Temperature	O peb	ļ!			₩,	<u></u>	-	_				.0 22.	10,3	ner ran			0 21.0	ıı	- 1	- :			- 1		4		1	0 20					17.9			nred
Wol	cfs			250.								181.0	2	and z arter rain	ć		315.0				221	205.0	250			216	186	226.0				270	226.0	200		t Meas
этіТ	i	1450	35	325	8	1055	1442	1910	25	820	1645		- 1×	Days 1																						NM= Not Measured
Date		/22/92	122/92	9/23/92	/23/92	123/92	/23/92	/23/92	/23/92	24/92	/24/92		rica	Kallı, L					rain)					affer rain					laior 10	Ci Idili						
цпи		Ь		ත හ	ļ	ļ	‡					sample)	" doto:	n data.					(during ra					1	٠ ا				2040 6 710	٧l			***************************************		ау 3)	
Weather (Dry, rain, days after rain)		Dry	······•	Rain	···••	••••	••••••	·····	••••••	•••••		DRY WEATHER (1 sample)	WET WEATUED (All dots: Bein	אבן אבן					IER (d)			***************************************		IER /Dav					(V)	IER Day					WET WEATHER (Day	ected
		_	m	<u></u>	_	m	_	_	_	_	_	NEATH	AVEATL	MCAIL	¥				WET WEATHER				E	WET WEATHER		(¥)) E	Ε	MET WEATURE	4		C	<u></u>		VEATH	= Not Detected
noitst8		BWW18	BWW	M M M	8	M M M	88	BWW	BWW	BWW	BWW	DRY V	WET	֓֞֞֜֜֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֓֡֓֡֓֡֓֡	¥ 100M	Minimim	Maximum		WET	Sort	Mean	Minimum	Maximum	WET	Count	Mean (*)	Minimin	Maximum	WET		5	Mean ()	Minimum	Maximum	WET.	ND = N

noitst2		BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BVVVVZU	DRY WEATHER (1 sample)	WET WEATHER	Mean (*)	Minimi	Movim		WET WEATHER (during rain,	Count	Mean ()	Maximum	WET WEATHER (Day	Count	Mean (*)	Minimum	INIGALITALI	WET WEATHER (Day 2	Count	Minimim		Page	WET WEATHER (Day 3)
Weather (Dry, rain, days after rain)	_	Dry	Rain	Rain	Rain	24h	24h	24h	24h	48h	.49H	ATHER (ATHER (ATHER (ATHER (ATHER (THEK
Run		Ь				တ	12	16		32		1 samp	(All data					during				-					Day 2 :					Day 3)
Date		9/22/92	9/22/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/23/92	9/24/92	9/24/92	(e)	data: Rain, D	***************************************				rain)				after rain)					after rain)					
əmiT		1520	100	345	720	1120	1515		45	845	ii - -	П	Days 1 ar	T																		7
Flow							1	i	247.0	271.0	253.0	210.0	and 2 after rain)	247 8	246.0	274.0	0.112		e (0.047	253.0		4	246.5	215.0	0.002		2	253.0	271.0		
Temperature	O gəb	1 :		:	: :		•		•	: :		22.0	r rain)	1	7.0 2.4	1	1 1		i	3	21.0			6	18.0	707			- 6	2 80		
Hd		Ø	Ġ.	Ø	9	9	9	9	Z	6.6	اه	9.9			0 C			ŀ			6.5				6.2			2 2	9	6.7		
Conductivity	шэ/ѕочшш	325	355	335	315	315	345	351	391	290	27/2	325	l li	225	200	204	 65	ŀ	က	333	355		4	351	315	381		202	290	317		
Dissolved Oxygen	J/gm						<u> </u>	<u> </u>	<u> </u>			9.1	ä	2 7	1 0	0 0	0.0		က္ပါ	o .	6.7		4	0	2.0	;;·		(V) (d	σα			
вор	 ე/6w									1.6		1.2	l li	7		- c	ul I		က	9.	2.0				1.5		;	7 5		2.2		
22T	 7/6ш	က	.			<u> </u>	<u> </u>	İ	<u>. </u>	4.6]	1.3		0 0	, to	7 0	+ 0	I.	l	<u>l</u> .	2.8				2.0			2 2	<u>.</u>	. <u>.</u>		
SSA	7/6w	Ì	<u> </u>			<u> </u>	<u> </u>	<u> </u>	<u> </u>			0.7	j					-	ε,	7.7	1.2		4	2.4	1.6	9.0		2 5		2.6		
Chloride	J/bw	I				l	İ	i	i		-	101.0	ä		0.00			-	e (2	92.8		4	6	77.9		;	7 4	n c	<u></u>		
muiolsO	 7/6w	l . :	į				1	1	1	1 1		16.1	ä		0.01			-	က	וֹמ	16.1		4	ω.	15.5		I I.	~ ·		<u></u>		
muisəngeM	7/6w	82		75	7	22	37	66	35	<u></u>	Z	2.78	C	200	00.0	2.02:	7.70		3	2./4	2.76		4	2.66	2.62	2.03		2 2	2.50	2.58		
muibo		5	<u></u>	<u> </u>		<u>.</u>	<u> </u>	<u>. </u>	<u>.</u>	51 0.		45 0		1	20 00	ì				ı	48 0.				46 0.			2 2				
N-EHN		320	540	420	580	720	920	410	620	210	/40 ii	0.320		573	2 0		920;		က	513	580 580		4	899	410	370		2	0 0	740		
N-EON+ZON	7/6w	ĺ	8	38	က္က	32	35		9	9	l	1.80	i i	٥ د	20.7	2 6	 S		ကျ	200	1.90		4	66	1.85	=		3 5	3 5	2.36		
d-40d	qdd ———————————————————————————————————	<u>~</u>	6	7	ဖွ	7	 	2	 0		<u></u>	0.21 0.		٥ ر	0.27		9		က	77	0.26 0		Lj	27	0.21	ار او		2 5	3 8			:
Съвстин	qdd	<u> </u>	28	35	ရွ	Š	8	13	98	80	2	32 1			4 6	0 0	2		က	بر ا	32 78		4	35	9	5		2 2	2000	38 2		
Copper	qdd ———	l	•	•	:	•	:		1	2.30 11	- 1	.20			2	1	1				1.40			- 1	1.30 10.	- 1		7 5	3 8	30		
Nickel	qdd									11.4 5	- 1	9.4 4.		D 4	4 0	1 1		,	က		3 4		4	6	4			7	n <	9		
	qdd	2 3	5 4	0.5	6 3	7 3	2 4	4	8	3	7	2 3.4		۰ د د	0 1	0 1	0 1/		3	4 0	6 0		4	3.	7 8	4		2 5	4 0	3 6		
Sinc	qdd 	ļ	ļ	<u></u>	<u> </u>	ļ	<u>į</u>	ļ	<u>.</u>	.1 27		7		Ĺ	200				[7 38				23		Ш	2 2			$ \ $	
Fecal Coliform	CEN\100WF		:	:				:		72	- 1	61			5 *						270				77			2				
		ļ <u></u> .																		_								- -	_ _			

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM I

Station Weather (Dry, rain, days after rain) Run		Dry P	Rain	Rain 3	Rain 6	24h 9	24h 12	9 5	24n 24	BWWW21 48h 32 9/24/92	14011 : 40 :	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Mean (*)	Minimum	Maximum	WET WEATHER (during rain)		Mean (*)	Minimum	Maximum	WET WEATHER (Day 1 after rain		Mean (*)		Maximum	WET WEATHER (Day 2 after rain	()		Minimum	Maximum	3 GL 141 L	WE! WEATHER (Day 3)
əmiT		92 1540	92 125	/92 42C	/92: 74£	92 115	/92 154	/92 2005	/92 145	92 900	1/36		1	l									ain)					ain)						
Flow	sio	1 :	: :	: :	: :					271.0	- 1	239.0	and 2 after	6			271.0		3		241.0	253.0		4	246.5	215.0	265.0		2	262.0	253.0	271.0		
Тетрегаtиге	ე gəp	1					- 1	- 1	•	•	1	23.0	er rain)		.	16.9	22.		ı	1	19.0				19	18.7	27			17	16.9	17		
Hq		9	ဖ	Ø	ဖ	Ø	ဖ	6	Z	9.9	ó	9.9		8		6.2				œ.	6.5	9			9	6.2	ဖ			9	9.9	9		•••
Conductivity	шэ/ѕочшш	320	310	320	280	310	323	313	318	290	9000	320		 6	307	280	323		 	303	280	320		4	316	310	323		2	295	290	300		
nagyxO bavlossiO	ე/6 ⴍ	9.1	8.8	8.1	9.1	9.6	9.8	8.9	8.1	တ င	 	9.1		6	6.8	8.1	8		3	8.7	8.1	9.1			-	8.1	8		2	0.6	8	9.0	-	
BOD	7/6ա	2	1.9	2.1	1.6	Q	<u>+</u>	1.7	1.5	4.	4			8	1.6	1.1	2.1		3	1.9	1.6	2.1		3	4.	1.1	1.7		2	1.4	4	1.4		
881			က	ထ		co.				00 0	5	5.0				1.3				<u> </u>				4	7	9	3.0		2	1.9	80	2.0	-	
SSA	_						i		i			4.5		9:	ς,	0.7			3		0.7			4			2.0		2	1 (7)	1.2	4		- 1
Chloride		:					į			•	- 1	76.0 1		6	7	68.6			8	∞	68.6 1	7		1.14	4	<u> </u>	0		2	1 00	86.1	2	-	
Calcium Magnesium		2	7	2	7	7	7	7	2	16.3	١	15.6 2.		6	7 2	15.2 2	2			8	15.3 2.	2			5	2	15.8 2.			2	16.1	2	-	
muibos		<u>4</u>	7	۲,	ဖွ	ထွ	6	0	6	72 49		64		6	2	29	87		L	<u> </u>	66 4				L	<u>.</u>	70 4			69	65	72		
N-SHN		0	0	0	0	0	0	0	0	010]	44 0.4			0	40 0.0				0	40 0.4				0	O	Ö			0	49 0.0	0		
MO2+MO3-M	7/6ա						i		ı	080 2.28		420 1.60	Ī	J	<u> </u>	080 1.42			ļ	٢	410 1.4		į	1	٦		580 1.8			2	080 2.1	12		
d-†0d	7/6w	/ o	o	o	o	O	o	0	o i	o c	⊃ 	0.21			0	2 0.10	0			0	.42 0.10	9		ļ	Ö	o	.88 0.18			0	13 0.23	0		
muimbeO	qdd	<u>'</u>	-	0	O	0	0	0	0	23 0.35	5	0.30		ļ	0	0.20	_			0	0.26	-			0	0	3 0.27		l	_	3.0.35			
muimordO	qdd	J!	į		<u>.</u>	L		l.	İ	2.20]	1.70		1		1.70	- 1			~	2.00	7			1	1	2.10		l	~	2.20	7		
Copper	qdc	1	1		1			- 1		11.1		8.8			9	8.6	19		3		9.1				6	0	10.5			13	11.	16	ľ	
Vickel	qdc	الا	က	4	5.	က်	4	ro i	.57	5.7	4	3.8		6		3.6	 		3		3.9			4			5.5		2		8 4		}	
peə-		3.1	5.0	20.2	16.8	4.3	3.9	3.1	3.8	4.0	3.0	3.1		6	7.2	3.0	20.2		3	14.0	5.0	20.2		4	3.8	3.1	4.3				3.0			••••
Zinc	qdo	<u> </u>							-	25		19		6	26	21	42		3	30	22			4	24	21	25		2	25	25	25		
Fecal Coliform	CFU/100mL	270	180	1,000	8,000	400	580	009	1,700	210	ii.	270		6	735	80	-1		3	2,511	180	11,000		4	269	400	1,700		2	130	8 8	210	ŀ	
ilos.Ξ	CFU/100mL	7	110	1,100	1,800	56	36	44	38	22	53	7		6	6	22	1,800		6	602	110	1,800		4	43	36	56		2	22	2 22	23		

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM I BWW23 is the UBWPAD wastewater treatment facility in Worcester.

E. coli	DEU/100mL		٧	36	3 7	7 7	7	-	٧	-	٧	٧	,	٧			ത	-	٧	-] [3	٣	V	36			4	-	۷	\	-		r	1 7	7	V 1	√	ſ					
			7	2		3 5	2;	4	97	10	36	43	2	20		,	6	2	7	8				1	7	1			4		Ĺ	10	2		2	g	2 9	g,	22						
Fecal Coliform	DEU/100mL		7					. !					1	1;				• -		2,0						2 00					ľ	2	1			ľ	1		1	į					
Zinc	qdo	47	09	90	3 2	5 4	0	20	29	56	61	99	3	47		Ī	6	28	20	99			3	28	54	909			4	26	50	505	8		100	6.4	5 2	6	90	ŀ					
реэд	qdc	3.9	4.3	3.3	5 6	7 4	0	2.3	2.3	2.7	2.0	2.4	7	3.9		ľ		3.0					3	3.3	24	4 3						5.7			,	2,0	1 0	O V	2.4	ľ					
ИіскеI	1	15	:	46	2	2 6	3 8	8	27	8	38	39	3	45.4		ľ	6	37.5	27.7	46.7				4	1	46			4	31.6	27.7	346	5		100	30.2	9 0	20.00	39.4			Coli			
Copper	qdo		:	:			:				1			68.2				57.8	47	7			က	۱,	.; ₹	74.1			4	52.5	47.5	586	3		100	523) (200	35.7			ш			
Chromium	qdo	9.00	9.70	20 90	12 30	100	2 0	8.60	8.40	21.90	10 60	7.40	2	9.00		ľ	6	12.28	7.40	21.90			3	30	9 70	20 90			4	12.40	8 40	21 90	1.30		1	٦	ין נ	04.7	2	ľ		Coliform and			
Cadmium	qdo	2.22	2.49	241	200	200	7	1.46	1.64	1.93	2 11	237	5	2.22		i	6	2.08	1.46	2.49			3	38	3	2 49	-		4	78	46	2.07			2	204	4 6	7 2	2.3/	ŀ		Fecal Co			
d-†0d	7/6u	1.97	2.04	2 09	1 97	27	7	1.40	1.40	1.54	0.68	0.54		1.97		j	တ	1.47	54	60			3	2.03	1 97	2 09			4	47	40	1 54	ij		2			4 6		ľ		an for Fe			
N-SON+ZON	7/6u	4.75	18	122	2 87	: ! 🛎	2!!	∷∷	ဖွ	Ά.	4 42	4.18	- -	4.75		ļ	6	4.20	2.87	5.64	!		 (C)	4.16	2 87	5.09			4	4.18	3.37	5.64	5		2	4 30	9 0	4, 4 0 (4.47	ŀ		Geometric mean for			
N-SHN	7/6w	1.340	4.320	3.460	4 120	1 800	000	1.500	2.100	1.140	0.460	1.860	2	1.340		ļ	6	2.307	0.460	4.320						4 320			4	1.635	1 140	2 100			2	1 160	9 0	0.400			- 1				
muiboS	7/6w	89	68	99	20	23	3 5	40	43	65	75	69	3	89		ï	6	09	43	75			က	49	59	68			4	25	43	65			2	72	1 0	200	(2)			€			
muisəngsM	7/6w	2.57	2.42	2.50	2.45	204	7.7	98.	2.02	2.15	2.37	2 64		2.57			ກຸ	2.31	66		i					2 50		ľ				2 24			2	2.51	0 0	70.7	2.04	ŀ					
muioleO	უ/6ⴍ	19.5	19.0	19.9	10.6	18.0	, t	υ 0 (15.9	15.7	19.7	22.5		19.5		ï	S	18.5	15.7	22.5						19.9			4	ø.	15.7	18.2			2	21.1	10.7	2 6	22.3	-		0			
Chloride	7/6ա	118.0	108.0	100 0	813	80.7	27.7	0.70	6.4	88.3	94.0	100.0		118.0		i	o.	88.5	67.5	108.0			က	96.4	813	108.0		ŀ				88.3			5	97.0) : C	2 6	0.00	-		Not Analyzed			
SSA	J/ɓw	6.2	Α	9.4	9	9 6	2 4	0 0	2.0	5.8	3.2	7.4		6.2	ļ		ο	2.8	3.2	9.4						9.4		ŀ				5.8						2.6			- 1	П			
SST	. ¬/6w	6.2	Ϋ́	9.8	8.2	84	0	0 0	9.9	6.8	4.8	8.8		6.2	į		o i	7.3	8	9.8						9.8		ŀ				8 9						, a		-		₹			
BOD	7/6w	6.5	12.0	13.4	9	4 8) (4	0.1	4.7	5.9	2.4	2.6		6.5		ï	9	6.1	2.4	13.4			က	10.1	4	13.4		ŀ	4	2.0	4.6	5.9			7	2.5	7 7	1 0	20.0	-					
nagyxO bavlossiO	7/6w	ΝA	Ž	6.4	69	Ϋ́	Ž	<u> </u>	œ.	¥	Ā	Ϋ́					ر د	7.0	6.4	7.8			7	6.7	6.4	6.9	!		=	7.8						ļ	<u></u>			-		Sample			
Conductivity	шэүгочшш	480	371	398	358	322	787	707	312	368	402	435		480		ï	n (329	267	435			က	376	358	398		ŀ	4	317	267	368			2	<u> </u>	İ	135	22	-	-	NS= No Sample			
Hq		6.2	6.2	6.1	6.4	5.9	9 0	o 1	o o	ž	6.1	6.1		6.2			ö	6.1	5.8	6.4			က	6.3	6.1	6.4		ŀ	က	5.9	5.8	9.0			2	6.1	9	, d	5		-	Z			
Temperature	O geb	Ž	Ϋ́	22.5	21.0	Ϋ́	V	2	7.0	ž	20.0	Ϋ́			1	rain	4	21.1	20.0	22.5			7	21.8	21.0	22.5		;	-	21.0		<u> </u>				20.0	-	<u> </u>				_			
wola	sto											·····			10.0	z arrei	-							••••		 ,		ŀ								ļ	ļ			-		easured			
-Time		1119	2337	200	515	802	100	2 6	200	304		•		\exists	١,	s i and	-		_÷	-			_		<u>. </u>			-	-				<u> </u> 		\vdash			-		-	-	NM= Not Measured			
		/92	, 26/	/92	/92	/92	60	7 0 0	37	/92	192	1	ı		1	in, Day	***************************************											alti						ain)								Ë			
Date		9/22	9/22/92	9/23,	9/23	9/23	9/23	000	8/23	9/23,	9/24	9/24		(aldı	9	ala. Ka			***************************************			grann	***************************************					allel falli						after				***************************************		-					
grer rain)		Ь			9									(1 san	1011	W					1	2000					į	79						(Day 2						(0,00)		D.			
Weather (Dry, rain, days		Dry	3 Rain	Rain	Rain	24h	24h	470	7	24h	48h	48h		THER	125	ADD I					E L					İ	i.	ובא						THER						77000		Jetecte			
noitst		BWW23	BWW23	BWW23	BWW23	BWW23	RWW23	STANAS	274440	BWW23	BWW23	9WW23		DRY WEATHER (1 sample)	AVET INEA	Count	* * * * * * * * * * * * * * * * * * *	Mean (?)		Maximum	MAKET MAKE A TURE / 4	VE! WEA	Count	Mean (*)	Minimum	Maximum	ALT TATE OF THE A	MEI WEA	Juno	Mean (")	dinimum	Maximum		WET WEATHER (Day 2 after rain)	Count	lean (*)	Ainimum	Maximim		WET WEATUED D	VE 1 WCA	ND = Not Detected			
	,	<u>—</u> i	<u>=</u> :		<u>, </u>	<u>—</u>	<u>.=</u>	<u>- 1</u>	<u>-: </u>	 :			1	ىك	2	-10	<u>- ; ≤</u>	<u>-;·</u>	<u>-:</u>		Ľ	<u>- 1'</u>	<u></u>	=	_		12	<u>-10</u>	<u>:</u> ا	<u>= </u>	<u>~</u>		J	ے	ا	2	2	<u> </u>	_	_	_		5-6	53	

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM I

qdd ouiZ 21.6 21.3 6.7 5.8 6.8 5.3 9.0 qdd -esq Nickel 33.2 68.9 77.1.2 22.2 22.2 27.4 32.4 49.7 Copper 4.80 7.40 7.40 4.90 3.90 5.90 5.20 6.40 Сһготіцт 1.66 2.89 2.91 1.16 1.87 1.65 2.41 Cadmium 4 21 5 97 5 89 5 27 2 45 2 45 d-40d 0.43 0.32 0.63 0.36 0.45 0.88 N-EON+ZON 34.3 23.7 25.3 20.3 20.3 31.0 16.3 BWW24 is the Woonsocket wastewater treatment facility. N-EHN 343 320 321 325 330 332 318 muibos 1.50 1.30 1.40 1.58 1.60 1.65 Magnesium η/βw 8.6 8.5 8.1 11.5 16.2 16.3 Calcium Chloride Mg/L 23.0 6.5 3.0 23.0 3.0 3.0 3.0 3.0 3.0 3.0 SSA SST 14.0 5.9 3.7 8.1 BOD **44444444** Dissolved Oxygen 777 777 772 746 746 746 Conductivity 6.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 Hd **\$\$\$\$\$\$\$\$\$\$**\$\$\$\$ O geb Temperature Flow Sìc 1430 145 845 1815 445 100 **9miT** 9/23/92 9/23/92 9/24/92 9/24/92 9/22/92 9/23/92 9/23/92 9/23/92 9/23/92 Date е о о <u>с</u> 6 4 22 4 uny after rain) Rain 24h 24h 24h Weather (Dry, rain, days

CFU/100mLE. coli

CFU/100mL Fecal Coliform

2 2 2 8 2 2 2

⊽⊽

8

9.4

5.2

33.2

4.80

1.66

4.21

0.64

34.300

343

1.50

8.4

520.0

6.2

8.9

9.8

782

6.9

DRY WEATHER (1 sample)

BWWW24 BWWW24 BWWW24 BWWW24 BWWW24 BWWW24 BWWW24 BWWW24

14,000 14,000

WET WEATHER (All data: Rain, Days 1 and 2 after rain)	ain, Days 1 and 2 after rai	(ui																		
Count			6			6	6		l		ı				l		l		0	
Mean (*)		6.7	780	6.9	26.7	20.3	503.3	13.0	1.49	324	23.2	0.51	3.89 2	1	i	l	4.6 11.1	96	3	
Minimum	,,,,,,	6.5	722	3.7		2.6	483.0	l	•				•				<u>i</u>		⊽	V
Maximum		6.9		14.0		52.0	526.0	1	:				1	2.91 8.00	71.2		<u> </u>	ľ	14,000	120
WET WEATHER (during rain)	<i>"</i>																			
Count			8			3::	3	l	l	<u> </u>			l	ı			l	ļ	8	
Mean (*)		9.9	787	10.8	35.9	27.4	502.3	8.3	1.27	326	26.3	0.51	5.42 2	2.28 6.57	57 54.5		5.9 16.	<u>.</u>	₹	v
Minimum		6.5	<u>.</u>	5.9		12.0	483.0	<u> </u>					•	1	l		<u>!</u>	<u> </u>	⊽	٧
	_	6.7	820	14.0	0.99	52.0	526.0	İ		ļ			1	1	L		4 21.6	3 146	⊽	₹
WET WEATHER (Day 1 after rain)	rain)						ļ													
Count			4	4		4	4	ļ		l	1			ı	ı		l		4	
Mean (*)		9.9	774	5.2		16.6	507.8	<u>.</u>		Ĺ	•	<u> </u>			1		<u> </u>	<u> </u>	13	
Minimum		6.7	722	3.7	9.0	6.5	500.0	8.1	1.42	318	16.3	0.32	2.45 1	1.16 3.9	1	2 2.7	ļ	9	\	
		6.9		8.1	:	23.0	518.0	<u>.</u>			:	il		1.87 6.40	10 32.4		9.0		14,000	120
WET WEATHER (Day 2 after rain	rain)				l															
Count			5	2	1	2	2	1	L	<u></u>	ľ	1	1		1		1		2	
Mean (*)		6.7	6//	4.4	23.0	16.8	496.0	20.0	1.72	324	19.5	0.65	2.90 2	2.39 7.25	25 49.3	i	3.7 11.8	91	⊽	⊽
Minimum		6.6		3.9		2.6	492.0		<u>. </u>	<u> </u>		1			1		•		⋝	
Maximum	_	6.7	812	4.8	1	31.0	500.0	i l			: [i	ŀΙ	1 1	: 1	l	: [۲>	
WET WEATHER (Day 3)	-												-							
(a (na))		-					-				-			-						
ND = Not Detected	NM= Not Measured		NS= No Sample	mple		NA = No	NA = Not Analyzed	D		Đ	(*) Geometric mean for Fecal Coliform and E.	c mean	for Feca	l Colifori	n and E	Coli				

Station

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS
Water Quality Data For STORM I

BWW25 is a direct discharge from NBC's Bucklin Point wastewater facility (Seekonk River).

| בי בי וממוווד | | æ | 21 | ٧ | ٧ | 7
 | 4 / | 7 | -[| 4 2 | 7 [
 | ۲ | П | 6 | 7 | V | 2
 | Γ | 3 | 9 | V | 21 |
 | 4 | - | ۲ | 4 | | ,
 | 2 | 1 | 7 | Ŧ | |]
 | |
|---------------|---|--|--|--|--
--|--|--|--
---|--|---|---|--
--|--|--|---
--|--|--|---|--|---
--|---|---|---
--|--|--|---|---
---|--|---|
| [W0000] | | 0 | o | 5 | O | 9 0
 | 0 0 | | 0 | 9 5 | |
 | · <u>/</u> | | 6 | _ | |
 | | 3 | 4 | 5 | 0 |
 | 4 | - | 6 | 0 | | 2
 | 0 | | -10 | | |
 | |
| CEN\100WF | | 21 | 80 | | 00 |) [
 | - 0 | , | 18 | ξ, v |
 | 4 | | | 9 | V (| 8
 | | | 6 | | 8 |
 | | œ | က | 9 | |
 | - | ' | V 20 | 3 | |
 | |
| qdd | 82 | 130 | 85 | 20 | 58 | 9
 | 00 1 | e i | 76 | 78 |
 | 82 | 11 | | ì | ı. | ٦
 | | 3 | 95 | 70 | 130 |
 | 4 | 69 | 58 | 76 | | 9
 | 76 | 2 7 | 4 / | :
0 | |
 | |
| qdd | 5.2 | 9.7 | 6.1 | 7.4 | 6.7 | 10
 | 0 0 | 9. | 7.3 | 7.0 |
 | 5.2 | | 6 | 7.8 | 4.0 | 10.6
 | | 3 | 7.7 | 6.1 | 9.7 |
 | 4 | 8.6 | 6.7 | 10.6 | | Ċ
 | 6.2 | 1 | 4.0 | 2. | |
 | |
| qdd | 97.2 | 128.8 | 118.8 | 95.6 | 78.3 | 000
 | 03.0 | 0 7 | 89.4 | 73.4 |
 | 97.2 | | 6 | 90.4 | 0.69 | 128.8
 | | | 1144 | 95.6 | 128.8 |
 | 4 | 77.8 | 69.0 | 89.4 | |
 | 67 | : 6 | ડ લ | 8 | |
 | ē |
| qdd | 1 | 1 | • | | • |
 | - 1 | • | | - 1 | 1 1
 | 15.7 | | 6 | 19.8 | 16.0 | 26.5
 | | 3 | 21.8 | 19.2 | 26.5 |
 | 4 | 19.5 | 17.4 | 22.5 | | 2
 | 17.5 | 9 | 0 0 | ٥.
د: | | L
 | d E. Col |
| qdd | 5.00 | 6.30 | 4.50 | 4.30 | 3.40 | 8
 | 00.4 | 0.40 | 5.30 | 2.70
80 0 |
 | 5.00 | | o | 4.74 | 3.40 | 6.30
 | | | 5 03 | 4 30 | 6.30 |
 | 4 | 4.68 | 3.40 | 5 40 | | 9
 | | | | | | : 2
 | iform a |
| qdd | 0.17 | 0.46 | 0.14 | 0.17 | 0.14 | 9
 | | | 0.23 | 0.13 |
 | 0.17 | | 6 | 0.20 | 0.13 | 0.46
 | | 3 | 0.26 | 0 14 | 0.46 |
 | 4 | 0.17 | 0.13 | 0.23 | Ì |
 | 0.19 | , | 0.0 | 0.24; | |
 | S
S
S
S
S
S |
| ⊣/6 w | 6.25 | 5.49 | 5.64 | 5.03 | 4 27 | 2 67
 | 0.07 | 0.0 | 3.97 | 3.51 |
 | 6.25 | | o : | <u>ب</u> | 5 | 2
 | | 3 | | | |
 | 4 | 86 | 5 | 27 | | 0
 | 1 6 | 3 4 | o 6 | اۃ | |
 | 31 TOT FE |
| ¬ /6ա | 2.40 | 1.33 | 0.15 | 0.04 | 0.03 | 777
 | 1 5 | 0.44 | 1.08 | 2.26 |
 | 2.40 | | 6 | 1.18 | 0.03 | 3.44
 | | 3 | 0.51 | 0 04 | 1.33 |
 | 4 | 1.50 | 0.03 | 3.44 | | 0
 | 1.56 | 90 | 0.00 | 7.70 | - | - 3
 | tric me |
| 7/6w | 1 | | | | | •
 | 1 | - | - 1 | 1 | 7 T
 | 2.000 | | o i | 3.7 | 0.4 | 8.2
 | | | | | |
 | 4 | 3.0 | 1.2 | 7.2 | |
 | 2.0 | | ٠
4. م | ر.
ن | |
 | |
| J/ɓw | 108 | 11 | 103 | 79 | 62 | 57
 | | 2 6 | 86 | 96 |
 | 108 | | 6 | 84 | 2 | 111
 | | 3 | 86 | 79 | 11 |
 | 4 | 69 | 22 | 98 | | ,
 | 96 | | 0 0 |
00: | | *
 | £ |
| 7/6w | 1.99 | 2.27 | 2.07 | 1.62 | 1.26 | 30.
 | 5.5 | 04. | 1.40 | 1.52 |
 | 1.99 | | 6 | 1.64 | 1.26 | 2.27
 | | 8 | 1.99 | 1.62 | 2.27 |
 | 4 | | | | | ,
 | 1.69 | 2 2 | 70.7 | 90: | |
 | |
| ე/ ნⴍ | 14.7 | 18.3 | 16.1 | 12.0 | 9.2 | 101
 | - u | 0 0 | 17:0 | 15.8 |
 | 14.7 | ļ | 6 | 12.8 | 8.
7.
8. | 18.3
 | | 3 | 15.5 | 12.0 | 18.3 |
 | 4 | 10.5 | 9.5 | 11.5 | | ,
 | 13.4 | | - 4
- 4 |
 | | -
 | ō |
| 7/6w | 156.2 | 171.0 | 119.0 | 85.8 | 65.0 | 60 4
 | 24.0 | 7.1.7 | 85.1 | 91.3 |
 | 156.2 | | 6 | 94.6 | 100 | 1/1.0
 | | 3 | 25 | 85 | 171.0 |
 | 4 | 70.4 | 60.1 | 85.1 | | 100
 | 97.2 | 2 | 30.0 | 20.00 | | A month
 | Anaiyze |
| 7/6ш | 12.7 | 20.7 | 15.4 | 16.8 | 13.8 | 400
 | n c | 7.0 | 15.0 | 15.6 | J L
 |] | | - 11 | (| 2.5 | 70.7
 | | 3 | 17.6 | 15.4 | 20.7 | į
 | 4 | 13.0 | 6.2 | 16.9 | | ,
,
,
 | 16.4 | 17.0 | 17.4 | - | | - 10
 | н |
| J /6w | 18.7 | 21.3 | 47.5 | 17.4 | 15.8 | 7 70
 | 7 7 | 4.1 | 17.5 | 18.4 | : ;
 | = | | <u>.</u> | | 4. i | 5.74
 | | 3 | | 4 | 2 |
 | -4 | က | 4 | 4 | | ,
 | ļ |
 | | <u> </u> | | Ž
 | Ž |
| _ | 8 | 33 | 6 | 9 | က |
 | t C | ו מ | - 1 | | i i
 | | | G (| 7.6 | 3.7 | 15.3
 | | | 11.6 | 8.6 | 15.3 |
 | | က | ~ | 6 | | ,
 | 4.0 | 2 7 | 0 4 | 1.2. | |
 | |
| J/Bm | 3.5 | 3.2 | 2.2 | 2.3 | 2.8 | 0 0
 | 0.4 | - ر | 9.0 | 2.3 |
 | | | 6 | 2.4 | o c | 3.2
 | | 3 | ø | 2 | 7 |
 | 4 | 2.5 | 8 | 3.1 | | ,
 | 2.2 | i c | 2 6 | 5.0 | | - Carrie
 | Затре |
| шэ/ѕоүшш | 100 | 510 | 500 | 495 | 380 | 368
 | 5 5 | 024 | 481 | 390 | |
 | <u> </u> | | | | |
 | | 3 | 502 | 495 | 510 |
 | 4 | 412 | 368 | 481 | | ,
 | 420 | 300 | 350 |
22 | | - N
 | OH HO |
| | 9.9 | 6.7 | 6.4 | 6.4 | 6.4 | 9
 |) u | 0 | Ϋ́ | ა
ი ი |
 | 9.0 | | ο i | 6.5 | 0 0 | ا ا
 | | 3 | 6.5 | 6.4 | 6.7 |
 | 3 | | | | | 2
 | | | | | |
 | _ |
| O gəb | 24.0 | 23.0 | 23.0 | 23.0 | 22.0 | 210
 | 10.0 | 5 6 | 20.8 | 20.4
21.0 |
 | 24.0 | rain) | o 1 | 21.5 | 0.0 | 23.0
 | | 33 | 23.0 | 23.0 | 23.0 |
 | 4 | 20.8 | 19.5 | 22.0 | | 2
 | 20.7 | 700 | 1.0 | 1.0. | | ١,
 | - |
| cfs | , | ļ | | | | -
 | | | | | |
 | | 12 afte | | | |
 | | | | ***** | |
 | ····· | | | | | -
 | | | | | | 1000
 | leasure |
| | 1605 | 140 | ļ | 815 | 1210 | 7,7
 | 2000 | 0077 | 120 | 930 |
 | \dashv | 's 1 and | | <u> </u> | | $\frac{1}{2}$
 | | - | | ÷ | _ |
 | | | _ | \dashv | | _
 | ÷ | ÷ | 1 | - | \mid | - Nint M
 | NOT ≥ |
	l				
 | | | | |
 | | in, Day | | | |
 | | | | | | rain)
 | | | | | rain) |
 | | | | | | NIRG
 | Ž |
| | ļ | ļ | ļ | Ļ | ļ | ļ
 | | ļ | ļ | <u>ļ</u> |
 | npie) | ata: Ra | | | *************************************** |
 | na rain) | | | | | 1 after
 | | | | | 2 after |
 | | | | | 3 | 3
 | |
| | ····· | į | ļ | ţ | ç | •••••
 | | •••• | i | ····• |
 | (sar | R (All o | | | |
 | 2 (durin | | | | | ? (Day
 | | | | | ? (Dav |
 | | | | | ? (Dav. | 1 3
 | rea |
| - | L | i | | | | 1
 | 1 | 1 | - 1 | • |
 | A LI | ATHE | | | |
 | TATHER | | | | : 1 | ATHE
 | | _ | _ | | ATHER |
 | | | | | :ATHER | 100
 | T Detec |
| | BWW25 | BWW25 | BWW25 | BWW25 | BWW25 | RWW75
 | BIVAVIOR | 20000 | 5WW25 | BWW25 | 7,7,7,4
 | JKT WE | VET WE | ount. | nean () | AIDIMUT. | Maximur
 | NET WE | Sount | lean (*) | Ainimum | Maximun | NET WE
 | Sount | Mean (†) | Vinimum | Maximum | VET WE | turio
 | Mean (*) | Ainim m | Asviming | אמאווויפו | WET WE | - N
 | ND = NO |
| | D geb Typm Typm Typm Typm Typm Typm Typm Typm Typm | CEUN100mL CRACK | Character Char | Company Comp | Color Colo | Caracteristic
Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristic Caracteristi | Paris Pari | Paris Pari | Figure Figure | Paris Par | Paris Pari | Part Part Part Part Part Part Part Part
Part Part | Hand Hand | Dry P 9/22/92 1606 C G G G G G G G G G | Paris Pari | Paris Pari | Parison Pari | Part
Part Part | Column C | Color Colo | Control Cont | Dy P 9/22/29 1660.6 C G G G G G G G G G | Third
Third Third Third Third Third Third Third Third Third Third Third Third Third Thir | DN P 9122092 1605 C C C C C C C C C | Characteristic Char | Part Part | Part Part | Part Part | The Registration The Registr | Charles Charles Charles Charles Charles
 Charles Char | CELL/1000mL CELL | Main 19 19 19 19 19 19 19 1 | Part Part | Mail Mail | ## CELL/100mm CELL/100mm
C | Name Secretary Control of the control of the |

Section A15-4

Wet Weather Data - Storm 2

- all Data with Statistics -

E. coli	100WF	1	AN	320	620	4,200	9,100	6,300	¥	360	¥	480	₹	220	Ϋ́	290	170	76		6	931	220	9,100		5	2.167	320	9,100		က	336	220	480		-	290			170	
Fecal Coliform	100ML 100ML	1,700	ΑN	1.800	8,900	9,300	8,300	4,300	ΑA	190	NA	3,000	ΑN	1,100	ΑN	2,500	1,400	1,700		6	2,727	190	9,300		2	5.561	1,800	9,300		က	856		3,000		1	2.500			1,400	:
oniZ	qdo	6	15	10	20	89	45	36	A A	.20	20	23	15	9	21	15	16	6		13	24	0	99		9	32	10	89		5	48	10	23		2	18	15	74	16	
реэд	qdo								: :	: :	- 1				- 1		- 1	2.3		13	9.6	3.8	41.1		9	15.1	3.8	41.1			4.8				2	6.1	5.7	6.4	4.1	
Nickel	qdo	1.8	1.2	1.9	14	4.5	3.4	2.1	ΑN	14	2.1	1.7	2.1	1.5	1.9	2.0	7	1.8		13	2.1	1.2	4.5		9	2.4	1.2	4.5		2	1.8	1.4	2.1		2	2.0	1.9	2.0	1.9	
Copper	qdo	3.0	3.7	3.6	7.0	22.7	14.2	8.4	Š	4.6	4.6	3.9	3.8	2.8	5.2	4.0	3.7	3.0		13	6 .8	2.8	22.7		9	6.6	3.6	22.7		2	3.9	2.8	4.6		2	4.6	4.0	5.2	3.7	
muimordO	qdc	0.57	2.67	0.67	0.91	4.49	2.40	1.43	Ϋ́	0.74	0.70	0.94	1.03	0.11	0.75	0.69	0.64	0.57		13	1.35	0.11	4.49		9	2.10	0.67	4.49		5	0.70	0.11	1.03		2	0.72	69.0	0.75	0.64	oliform
muimbsD	qdo	0.08	0.13	2	Q	0.12	0.07	0.05	0.08	Q	2	2	2	2	2	2	2	0.08		5	0.09	0.05	0.13		4	0.09	0.05	0.13		-	90.0				ļ					ecal Co
d-⊅0d	7/6u	0.02	0.02	0.01	0.01	90.0	0.16	60.0	0.05	0.01	0.01	0.0	0.0	9.0	0.0	2		0.02		13	0.04	0.01	0.16		9	90.0	0.01	0.16		9	0.02	0.01	0.05		-	0.0				an for F
N-EON+SON	7/6և	0.14	0.14	0.16	0.20	0.36	0.02	0.12	0.08	0.04	0.07	0.07	0.02	0.08	60.0	0.12	600	0.14		14	0.11	0.02	0.36		9	0.17	0.02	0.36		9	90.0	0.02	0.08		7	0.11	0.09	0.12	0.09	Geometric mean for Fecal Coliform
N-EHN	7/6ս	0.03	0.04	0.03	0.05	0.16	0.20	0.09	0.05	0.01	90.0	Q	0.05	2	0.04	0.01	0.07	0.030		12	990'0	0.010	0.200	İ	9	3.095	0.030	500		4	3.043	0.010	090		7	0.025	0.010	040	0.000	
muibo8	7/Bu	28	59	27	27	17	10	19	NA	24	24	25	25	27	24	56	27	28		l	i	0			9	ļ	9			2	25 (- 1			7	İ	24		27 (بٹ
muisəngaM	7/6ա	1.59	1.53	1.63	1.55	0.78	0.55	1.10	1.39	1.38	1.37	1.35	1.22	1.12	9.30	1.32	1.28	1.59		14	1.26	0.55	1.63		9	1.19	0.55	1.63		9	1.31	1.12	1.39		2	1.31	1.30	1.32	1.28	
muiolsO	7/6ա	17.5	17.9	17.6	17.2	9.6	6.7	11.8	12.1	13.8	14.4	14.4	11.6	14.9	15.0	14.7	15.0	17.5		14	13.7	6.7	17.9		9	13.5	6.7	1/.9		9	13.5	11.6	14.9		2	14.8	14.7	15.0	15.0	8
Chloride	7/6w	55.2	52.0	66.1	9.99	44.9	30.4	49.3	55.8	6.09	62.1	53.4	61.1	57.2	48.6	65.3	62.4	55.2		14	55.3	30.4	66.6		9	51.6	30.4	90.00		9	58.4	53.4	62.1		2	57.0	48.6	65.3	62.4	= Not Analyzed
SSV	7/6w	10	9	1.2	2.2	37.0	9.6	5.2	1.6	2	.8	4.	1.2	0.	4.	0.	2.8	1.0		12	5.4	1.0	37.0		5	11.0	1.2	3/.0		5	1.4	1.0	89.		2	1.2	1.0	1.4	2.8	NA = No
SST	7/6w	1.6	2.2	2.4	5.5	65.0	19.2	9.2	3.0	1.6	3.4	2.6	2.2	2.4	9.	1.4	3.5	1.6		14	8.7	1.4	02.0		9	17.3	2.2	02.0		9	2.5	1.6	3.4		2	1.5	4.	1.6	3.5	1
вор	7/ 6 w	J	<u> </u>	İ	<u> </u>		ii			ı				- 1	ı	- 1		1.2		6	5.6	7.5	11.6		5	7.7	1.5	Ö.		က	3.1	2.2	4.6			2.6				e Se
Dissolved Oxygen	7/6w	=	10	+	Ξ	5	_	-	÷	1	위	= :	=	일	o .	2		11.6			Ŧ	6.6	-			£	10.8	=			11.2	9	=	ľ		9	II.	5	7.4	o Sal
Conductivity	wo, soyww	Ί	1	•	7 205					158	1		1		- 1	164		181				105					105				158				l		158		364	NS= N
Нq				l	1					8 6.4	- 1	- 1		1				7.2 6.7	rain)	3 14	i	0 6.3				į	0 6.3			[9 6.5					<u> </u>	5 7.0		8	
	O geb	J	<u>. </u>	<u> </u>											1	1			2 after	4	٠ ١	0.0			ı		0.9				9	ဖ	80			œ	7	ω	9.8	asured
Wol	efo									50 113		- 1		- 1	-			72.0	s 1 and	_	132.	65.0	778		_	148	65.0	770			121.7	113.	128.			117.	113.0	121.	57.0	NM= Not Measured
		J	;	: :	: :	: :	:			32 2250			- 1			İ	1255		in, Day										ain)					ain)					mple)	NM
Date		11/2/92	11/2/92	11/3/	11/3/92	11/3/	11/3/	11/3/	11/3/	11/3/92	11/4/	11/4/	11/4/92	11/4/92	11/4/92	11/4/92	11/5/	nple)	ata: Ra					ig rain)					1 after rain					? after !					3) (1 sa	
grup groot grut)		۵.	ļ	•			•••••••	••••••		24		••••	တ္တ (9	44	8 6	7/	(1 san	R (All d					(durit					(Day					(Day					(Day	eg eg
Weather (Dry, rain, days after rain)			:		: :					24h				····	•••••	48h	U7.	ATHER	ATHER				_	ATHER					ATHER			_	_	ATHER					ATHER	= Not Detected
Station	•	BWW00	BWW00	BWW00	BWW00	BWW00	BWW00	BWW00	BWW00	BWW00	BWW00	BWWOO	BWW	BWW00	BWW00	0000	BVVVVUU	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days 1 and 2 after rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER (during rain)	Count	Mean (*)	Minimum	INIAXIIIUII	WET WEATHER (Day 1	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 3) (1 sample)	ND = Not

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	CFU/100mL	200	Ϋ́	400	4,600	8,900	6,500	Ϋ́	1,100	¥ 6	ΔN	009	¥	260	270	200		o	1,611	8,900		5	3,537	8,900		1	298	900	1,100		٢	260			270
Fecal Coliform	CFU/100mL	1,700	AN	3,500	7,100	13,000	7,900	NA	2,100 NA	2 000	ANA	2 600	ΑN	2,500	400	1,700		6	4,533	2,100		5	7,278	3,500 13,000			2 511	2 100	2,900		-	2,500			400
Zinc	qdd	52	32	34	88	9 9	09	49	39	9 %	3 8	37	30	34	39	52		14	42	88		9	48	88 2		ū	300	33	49		2	32	8 2	5	39
Lead	qdd	4.5	11.1	4.6	21.7	26.7	.15.0	9.1	4.7 c a	0 °	5.7	3.2	2.0	2.4	3.5	4.5			= '	26.7		9	17.6	4.6		ď	62	3.2	9.1	į	2		2.0		3.5
ИіскеІ	qdd		4.4	4	5.8	5.0	9.5	6.1	ω 4 C	0 0	2 4	30	4.6	3.4	4.2	4.0		14	4.4	9.5		9	5.6	9.5		ä			6.1		2	4.0	6. 4 4. 6	į.	4.2 Coli
Соррег	qdd	8.1	7.9	9.2	22.9 10.0	18.5	12.6	10.0	7.5	, z	t 4	4.5	3.1	2.8	4.4	1.8		14	9.6	22.9		9	15.2	7.9		ü	9	44	10.0		2	3.0	2.8	<u>-</u>	4.4 and E. C
тиіточАЭ	qdd	3.81	2.77	6.34	6.56	3.41	2.90	2.27	2.35	1.57	3 94	1.75	1.81	1.93	4,42	3.81		14	3.10	6.56		9	4.47	2.77 6.56		 G	2 15	1 24	3.91		2	1.87	1.81	3	Coliform a
muimbsO	qdd	9	0.06	0.20	0.18	0.16	0.09	0.06	0.06 C	2 2	Ş	2	0.07	0.09	0.14			10	0.11	0.00		9	0.14	0 00			0.06	90 0	0.08		2	90.0	0.07	3	0.14 Fecal C
d-‡0d	7/6w	0.01	0.01	0.01	0.02	0.10	0.08	0.03	0.0	5 6 5 6	9 5	0.0	Ϋ́	0.01	0.01	0.01		13	0.03	0.0		9	0.04	0.01		 G	0.00	0 0	0.03		7	0.01		-	0.01 an for F
N-EON+ZON	7/6w	0.41	0.33	0.32	0.23	0.16	0.24	0.22	0.18		0.17	0.16	ž	0.30	0.31	0.41		13	0.23	0.41		9	0.28	0.16			0.17	0	0.22		<u>-</u>	0.30			230 0.31 0.01 Geometric mean for
N-SHN	7/bw	0.18	0.32	0.16	0.35	0.13	0.07	0.21	0.11	9 0	0 0	0.22	0.18	0.22	0.23	0.180		14	0.176	0.070		9	0.200	0.070			0.143	060 0	0.220		2	0.200	0.180	27.	
muiboS	7/6ա	62	47	43	32	19	24	78	29	30	3 6	35	35	33	36	62		li		47		9		19		L	i	.i	35		L	i	33		36
muizəngsM	mg/L	3.28	2.51	2.30	1.7	0.86	1.14	1.46	1.64	1 74	1 74	1.74	1.59	1.69	1.72	3.28		14	1.66	2.51		9	1.67	0.86 2.51		ď	1 67	146	1.74		2	1.64	1.59	2	1.72
muiəlsƏ	ე /ნⴍ	33.2	24.3	22.5	13.3	8.5	10.6	12.8	4 4 8 4	. d	, c	17.3	16.8	16.8	17.8	33.2		14	16.0	24.3		9	16.1	8.5 24.3			15.7	12.8	17.3		2	16.8	16.8 16.8	2	17.8 ed
Chloride	7/6w	122.0	102.0	106.0	98.8	45.9	63.2	68.7	67.5 70.6	65.4	78.7	75.4	80.8	83.2	85.7	122.0		14	78.1	106.0		9	80.8	45.9 106.0		ď	72.6	65.4	79.6		2	87.0	83.2	2	Not Analyzed
SSV	_	J		I.	I		1	I.	i		. i	. i	i	1	il	5.0			i.	18.0		9	S.	18.0		4	30	10	8.0		2	1.6	6. 6. 6.	2	3.0 NA = No
SST																12.2		14	11.1	318		9	20.5	31.8		ű	47	2 8	11.6		7	2.1	1.8	i	3.7
BOD	7/6ա	6.9	ΑN	4.6	2.0	10.9	9.3	Ϋ́	5.0 V	ζ C	S Z	2.7	Ϋ́	1.8	Ϋ́	6.9		6	4.0	2 -		5	9.0	11.6		ď	3.6	2.7	5.0		1	1	6. c		Be Be
Dissolved Oxygen	J/6w	Ξ	10.8	11.6	11.5	₹	11.2	11.1	10.6	5 7	10.4	10.6	9.6	10.2	7	11.0		13	9.02	11.6		ည	11.2	11.6		ď	10.7	10.4	111		2	9.9	9.0	<u> </u>	
Conductivity	шэ/ѕочшш	368	272	262	202	135	152	175	180	192	200	194	223	202	122	368			1	272		9	198	135 272		ď	191	175	202		7	213	202	3	122 7.0 NS= No Sam
Hq		ဖ	ဖ	9	φ φ α	6	9	9	ω (c	o c	œ	ဖ	9	7	z	9.9	in)		1	7.1			ဖ	6.9			9	9	9.9			9	6.8	1	
Temperature	O gəb			Ì	O AN										9.8	8.0	after ra			8.5				7.4					8.1				8.0		9.8
WOIJ				- 1	185 245		1 1	- 1		1	1	1	1	1	62	77.0	and 2	14	142.7	245.0		9	160.2	71.0		ď	130 8	122 0	138.0		2	126.0	122.0		ole) 62.0 9 NM= Not Measured
əmiT		Ji		- 1	820	i			2305	•	•	•	1900	1			Days 1								1					1					ole) NM= N
Date		11/2/92	11/2/92	11/3/92	11/3/92	11/3/92	11/3/92	11/3/92	11/3/92	11/4/92	11/4/92	11/4/92	11/4/92	11/4/92	11/5/92	(əldı	WET WEATHER (All data: Rain, Days 1 and 2 after rain)				(during rain)	*			l offer rain					after rain					(1 sam
Вип		۵		က	ο σ	··••	ļļ	2,5	2,4	32	36	4	4	48	72	(1 sarr	(All de				(durin				/ veQ/	3				(Dav 2	(2)				(Day S
Weather (Dry, rain, days after rain)		Δy	Rain	Rain		Rain	Rain	24h	24h	24h	24h	24h	48h	48h	72h	THER	ATHER				THER				THER					THER					ATHER Detecte
Station		BWW01	BWW01	BWW01	BWW01	BWW01	BWW01	BWW01	BWW01	BWW01	BWW01	BWW01	BWW01	BWW01	BWW01	DRY WEATHER (1 sample)	WET WE	Count	Mean ()	Maximum	WET WEATHER	Count	Mean (*)	Maximum	WET WEATHER (Day	į	Mean (*)	Minimum	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum		WET WEATHER (Day 3) (1 sample) ND = Not Detected NN

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	CEU/100mL	100	¥	15,000	5,000	000'9	12,000	22,000	¥ S	8,700	Y C	ر د د	2000	Z,200	200	470	5	2,800		6	6,422	1,900 22,000		5	10,351	5,000			e 67	000	8,700		-	1 900			470
Fecal Coliform	CFU/100mL	15,000	ξŽ	10,000	35,000	22,000	009	43,000	AN :	17,000	NA OCC OC	000,02		000,01	٠,٠	11,000		15,000		6		600 43,000		5	11,472	600 43.000			e 1	19,070	28,000			31,000			11,000
Zinc	qdd	48	31	36	76	88	20	54	42	33	77	22	3 4	0 6	2 4 2 4	9 9	<u>:</u> "	84		41	9	98 88		9	8	88 ع			9 5	77	42		0	20	16	57	16
Геяд	qdd	4.7	2.9	3.2	16.1	28.8	19.7	16.0	10.3	9.5	0. F	4 - c	2.0	7,7	t 0	3.5		4.7		14	0.0	28.8				2.9 28.8			9 .	0.0	10.3		٥	3.4	2.7	0.4	3.5
Nickel	qdd	15.6	15.2	13.9	16.1	12.6	9.2	10.8	13.4	12.2	0.0	0 6	0 0	. c.	2 2 2	13.1	<u></u>	15.6		14	12.2	16.1		9	13.0	9.2		ŀ	9 6	3.0	13.6		2	12.3	12.2	12.3	13.1
Copper	qdd	15.2	10.9	11.2	24.2	27.0	21.3	19.0	16.1	12.3	4.0	0.0	2 7	- 0 ~ 0	0.0 7	4 4		15.2		14	13.9	27.0		9	18.9	10.9			9 1	7.7	16.1		2	8.2	7.5	9	8.4 7 □ □ □
Сһготіит		99	23	36	6	35	45	26	99	0 6	2 2	2	78	ט ע	2 %	2 8	. []	7.66		4	92	3.61		1		5.36	1 1		တ ဥ	9 5	3.01 7.66		2	6.25	5.65	0.00	Coliform and
Cadmium				ì	i` i	`		- 1	- 1	- 1	- 1	-	1			1		1.63		l	į.	2.04		ł	8	2 04 2 04 1			φ ς	60.0	1.04		2	0.56	0.50	0.02	0.63 Fecal Col
d-t-0	_	ဣ	55	2	7	စ္	35	9	က္	2 1	2 2	- 5	2 2	3 2	ųς	2 5	.	0.83		4	္က	0.02			54	0.35		ı.	Θ,	? č	0.43		1	1 9	0.02	3).05
N-SON+2ON	_	80	42	30	21	19	29	32	38	322	7 K	2 2	2 2	- 00	7 0	2	(0.80				0.42		i		0.19	11		ဖွ	9 1	0.38 (2		0.17		510 0.22 0.05 Geometric mean for
N-SHN	_	1	<u> </u>	<u> </u>	<u></u> j					<u>l</u>		<u> </u>	İ			<u> </u>	[5.320		H		7.090			477	220 080					4.420		L	800	080	220	
muibo8		Ö	ļ	ļ						45 6								20				25 64 7		9	Ll	25 2. 64 7.	J I	L.	<u>į</u>	<u>i</u>	42 4		1	4	4.	٦	45 5.
magnesium		41	3.74	2.87	2.66	1.59	1.32	1.14	1.52	1.83	2.00	7.0	2 28	2.40	7 1 7	2.61		4.41		14	2.11	3.74		9	2.22	1.14 3.74			9 6	3 5	1.52 2.28		2		2.14		2.61
Calcium		ı					- 1	- 1	- 1	1				ì	ì	Ī	- 1	25.2		4	e .	70.0 24.0			8	10.0			9 0	ر د	17.9		2	10	17.9		1 1
Chloride		_				~		~		2.69			. -	4,			[117.0		4		10.6		9	_	11.0	11		9 •	t c	89.0		2	1 00	87.6		96.6 19.4
SSA	_	J	<u></u>	1	ll	i			<u>i</u>			i	I .	[i	- 1	6.6		က	ຕຸ	1.4 t 62.7 11		9	-	2.6 5 62.7 11					7.8		2	1	4.	1	
SST	_	0	8	4	0	ဖ	4	S.	0		0 0	v .		t C	2 4	- 60		0.6		4	2	72.6 6		9	9	3.8 72.6 6	1	Į.	9 0	7 .	4.0		L	1 0	4. 0		1.8 AN
ВОР	_	1 3			1	- 1	- 1	. !	- 1	- 1	- 1	1	1		1	1		4.1		6	.	11.5		5	œ	5.8					9.8		7	5.5			3.3
nagyxO bavlossiO	7/ 6ⴍ	9.4	8.9	9.8	9.6	9.4	ş	10	10.9	0.5	6. 2.0	2 7	9 O	ς α	0 0	6.5		9.4		13	9.6	10.9		5	9.6	10.0	1 1	-	တ င	n c	10.9		2	8.6	8.0	 	6.5
Conductivity	шэ/ѕочшш	330	370	346	330	235	190	175	201	211	215	252	240	225	230	290	3	330			!	370		L	<u>i</u>	175 370	.1		9 6	200	252		2	228	225	500	290 6.5 NS= No Sam
Hq		6.7	6.6	6.7	6.8	6.5	9.9	6.2	6.4	0.0	0 0 4) (C	9 9	0 0	9 0	Σ		2.9	(u	1	٠,	6.9 6.9		9	9.9	6.2 6.8			9 4	0 0	6.6		2		6.0		
Temperature	O geb	11.3	11.0	10.0	7.0	9.4	Ϋ́	8.2	7.1	0.6	ο α † C	100	2 5	10.5	, 0	11.1		11.3	ifter rai	13	9.5	11.0		5	9.1	11.0			9 0	0.0	10.5		2	10.3	10.2	4.5	11.1
Wol	sho	107			245	453				1//				8 2	12	103		107.0	and 2 after rain	14	199.2	107.U 453.0		9	244.5	107.0			9 0	6 6	222.0		2	166.5	156.0	5.	103.0
-Time		1553	2355		535		1130		1916	2320	213	1100	1520	1920	1	1	"		1											1		_					Ž
Date		11/2/92	11/2/92				11/3/92	11/3/92	11/3/92	11/3/92	11/1/02	11/4/92	11/4/92	11/4/92	11/4/92	11/5/92		ole)	ta: Rain,				rain)					arter raın				offer rain	101				(1 samp
мпя		<u>م</u>	,,,	က	ဖ	6	12	16		47		ļ		44	42	72	 ! !	(1 sami	(All da				(durina rain)					(Day 1				(Day 2	7 (00)				(Day 3)
Weather (Dry, rain, days after rain)		Dry	Rain	Rain	Rain	Rain	Rain	Rain	24h	24n 24h	2411	24h	24h	48h	484	72h		THER	THER				THER					HEK				THEB					THER
noitstS		BWW02	BWW02	BWW02	BWW02		•	•		SWWG	BYAAAAA	BWWW02	BWW02	BWWW2	BWW/02	BWW02		DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Mean (*)	Maximum	WET WEATHER	Count	Mean (*)	Minimum Maximum		WEI WEATHER (Day 1	Count	Minimum	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum	MAXILLIGITI	WET WEATHER (Day 3) (1 sample) ND = Not Detected

Page A15-71

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	JM00h\U3C	670	¥	1,800	1,300	3,900	7,100	10,000	¥	12,000	¥Z,	4,400	Δ,	004,1	- : `	5 6	06,	670		6	3,438	1,300	200,4		2	3,650	10,000		ľ	A 107	, d	12,000		T	1 400			1,900
Fecal Coliform	Jm001/U3C	9,800	ΑN	13,000	8,300	25,000	31,000	38,000	ΥN	61,000	AN CO	22,000	AN O	000,81		9300	inne'n	9,800		6	21,902	8,300	200		S	19,972	38,000		·	27 794	16.7.7	61,000		-	17.000			6,300
Zinc	qdd	53	42	36	47	115	136	22	51	43	8 8	32	8 8	77 9	0 4	ς τ	<u>o</u>	23		14	48	136	3		9	7.7	136			0 %	5 6	51		2	22	18	52	18
peəq	qdd	1.9	5.8	3.2	7.2	39.1	51.3	18.2	13.4	0.0 0.0	ο.ς	4.2	0.5	ر ا رو	0,0	ى 0 بر	0.0	6.		14	12.4	7.5) :		9	20.8	51.3			0 0	4 0	13.4		2	2.7	1.5	3.8	3.5
Иіскеі	qdd	11.8	12.9	14.2	14.9	27.7	20.6	10.3	6.9	11.3	0 1		× 5	7 .	2 2	₹ 2	7.1.	1.8		13	13.2	8.2			9	20.0	27.7			90,	4 C	11.6		-	10.0			11.2 Coli
Copper	qdd	10.9	13.7	11.6	13.9	9.09	58.5	20.9	18.0	14.7	4.2	n (χ 4. 4	4.1	0 0	0.0	7	10.9		14	19.0	5.7			9	29.5	9.09		0	120	2 ×	18.0		2	7.1	5.7	8.5	7.2 and F
Сһготіит	qdd	3.97	5.02	4 94	5.62	27.50	23.60	5.90	5.65	5.57	40.0	3.81	7.86	5.22	4.4 4.7	200	0.29	3.97		13	7.78	27.50			9	12.10	27.50			7 36	2 0	5.65		F	2.41			Coliform
Cadmium	qdd	1.55	1.60	1.56	1.82	5.18	4.14	1.76	0.98	1.08	۵ رو د رو	90.0	0.52	0.72	5 C	900	00.0	1.55		14	1.56	5.18	5		9	7.68	5.18			0 70	2 2	1.08		2	0.50	0.43	0.56	0.60 Fecal C
d-†0d	٦/6w	0.90	0.68	0.79	0.67	0.58	0.42	0.42	0.58	0.49	24.0	D 0	0.27) () ()	3 6	0.27	<u></u>	0.90				0.23			9	0.59	0.79		0	9	200	0.58		2	0.25	0.23	0.27	770 0.49 0.16 0.60 Geometric mean for Fecal
N-SON+SON	7/6w	Ϋ́	1.21	0.45	20.0	0.45	0.25	0.37	0.37	ξ	79.0	0.32	0.31	0.3	2 5	0.42	1 2			13	0.42	1.21			9	74.0	1.21			0 49	5 6	0.62		2	0.37	0.31	0.42	0.49
N-SHN	7/6w	3.46	5.00	6.65	2.90	4.24	2.27	5.42	2.25	2.74	40.0	2.72	04.0	7.03		27.6	7.7.7	3.460		14	3.241	1.340			- -	4 6	6.650		0	2 205	400	2.850		2	2.830	1.340	4.320	
muibo8	7/6w	51	48	44	20	40	23	18	28	2 5	2 6	2 8	22	9 6	2 4	2,0	1 1	27		14	28	18		-	<u>ဖ</u> ြ	3/	50			3 0	τ α	78		2	1	70	- 1	26 2
muisəngsM	7/6w	4.14	4.50	4.05	4.52	2.85	2.02	2.31	2.14	2.65	2.08	2.70	30.0	ۍ ۲۵ د	2 6	3.28	0.20	4.14		14	3.03	2.02					4.52		9	0 7.2	, ,	3.20		2	2.85	2.70	3.00	3,26
muiɔlsɔ	7/6ա	20.7	24.7	23.8	23.0	14.2	9.5	11.7	6 8 1	17.6	2 2 3	4 c	9.7	0 4	17.0	17.8	-	20.7		14	15.6	8.9			9 (8.7	24.7			77	ď	16.8		2	16.7	16.2	17.2	17.8
9birold9	J/6w	85.8	114.0	120.0	122.0	102.0	70.3	66.8	53.2	200	0.77	47.7	ρ	08.0 08.0	200	- 0	30	82.8		14	79.7	36.0		1	9	23.5	122.0		ē	929	2 2	77.8		2		36.0		= Not Analyzed
SSA	7/6w	2.0	2.4	2.8	9.0	64.3	16.7	5.0	5.6	4.0	4,0	4.0	ى 0.0	0 0	ν c	1 2	-	5.0		14	9.5	2.0		;	0		64.3		Ü	8	8 0	6.4		2	2.4	2.0	2.8	1.2 NA = NO
SST	7/6w	1	1	1 1			- 1	- 1			- 1	- 1	- 1	1	1	ŀ	1 1	3.6			4	3.2 73.9			9	7.07	73.9			l.	İ.,	12.6		2	3.5	3.2	3.8	1.4
BOD	7/6ա	<u> </u>			`	`	`	`	- [`	٦.	-			1	1	Ŧ	1 1	2.7			o,	12.6				۳	12.6			α	1	10.9			6.1		*****	4.0
nagyxO bavlozsiO		J	<u>.</u>	10				<u>÷</u>				- 7	!	!		7.8	1.	10.4			2	11.5		l I.	<u>l</u> .	<u>i</u> .	11.5		L.,	<u> </u>	. i	110			ŀ	9.5		252 7.8 NS= No Samp
Conductivity	шыровусш	J	Ī	6.6 35				- 1		i	1		-		1			5 285		Lj	<u>l</u>	5 170 0 355	J				8 355		ļ	<u>.</u>	.ļ	7 216		1	1	9 210		A 252 NS= N
Hq	O geb	ı					- 1	1	- 1	-	-	-	- 1			1		10.0	after rain)	1 1	- 1	8.0 6.5 10.8 7.0	1 1		٩	9	10.2 6.		ū	•	, ,	9		1		10.0	- 1	AN 6:
Temperature		<u> </u>	<u> </u>	1					273 (12 after	li	- 1	- 1	1 1			1			ď			10.			1	1 1		ole) 108.0 11.9 NM= Not Measured
Wol		<u> </u>		<u>. </u>			- 1		- 1	1	i	•	1	l	2338	1	-	108.0	s 1 and 2	$\overline{}$	214	380.0		-	- 3	108	380.0		F	103	142	273.0		L	178	165.0	191	108.0
Тіте		ı	/92	/92	92 (92 8	/92 11	/92 15	/92 16	7 78/	787	78/	1 28/	1	į	l			in, Day									rain	, auni				rain)					(1 sample)
Date		11/2/92	11/3/92	11/3/92	11/3/92	11/3,	11/3		11/3/92		į	į	į	<u>.</u>		Ļ		samble)	fata: Re					ng rain)				affor					2 after					3) (1 8(
Ster rain)		<u>Դ</u>	ļ	3		·	12	·····	20	<u> </u>			_			·	<u> </u>	R (1 sa	R (All 0					R (duri				B (Day 1	200				R (Day					R (Day
Weather (Dry, rain, days		4 Dry		1				- 1	24h		244		- T	-				EATHE	EATHE		Ĵ	E E		EATHE	1	\ F	E E	FATHE	4		, 6	٤	EATHE		4)	<u>ا</u> ج	٤	T WEATHER (I
Station		BWW0	BWW0	BWW04	BWWō	BWW0	BWW0	BWW0	BWW0	00000		0,444	500000		BVAAAOA	BWW04		DRY WEATHER (1	WET WEATHER (All data: Rain, Days	Count	Mean (*)	Maximum		WET WEATHER (during	Uno Conu	Minimim	Maximum	WET WEATHER	2	Mean /*	Minimim	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 3) NO = Not Detected

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

	Julion to jo	1	Š	Ϋ́	Ž	ž	Ϋ́	Ϋ́	Ϋ́	Ϋ́	Ϋ́	Ϋ́	Z	Ž	Ž	Ϋ́	ž													T			T		T	T	T	T]		İ
ilos 3	CFU/100mL											_											<u> </u>				ļ					ļ.	ļ								
Fecal Coliform	CFU/100mL	1	Ž	Ž	Ž	Ž	NA	Ž	Ž	Ž	2	≥	Ž	Ž	N	Ž	Ž						***************************************																		
Zinc	qdd	6	10	2	9	9	8	7	2	8	2	Q	4	9	QN	8	S		6		10	7	20		G	9 (4	,	10		1	ა 🗲	2 `	20 4		7	•	3				
реәд		ı		1	i	1	i	1	1	1	ŧ	1	1	1	1	1	1	1			12	2.7	0.8		Ğ	000	1 C	3.1		•	4 6	ر د د	4.7		Ċ	۷ (0,4	0.0		1.0	
Nickel	qdd	2	6.0	0.7	Q	Q	QN	2	2	1.5	2.2	1.1	0.7	9.0	3.0	2.1	1.2				6	1.4	3.0		Ĉ	7 0	2 6	0.9		i	0 6	, o	2.2		Ċ	۷ (7.0	3.0	;	1.2	<u>:</u>
Copper																			1.5		14	1.7	0.8 1.1			٥, ۲		4.1			۰,	† 0	2.0		Ċ	7	4.	0 8		1.0	and E. (
Сһғотіит		0.27	0.29	0.29	9	2	0.46	8	2	0.58	Ϋ́	0.49	0 39	0.42	0.64	0.55	0.50		0.27		6	0.46	0.29		Ċ	0.35	300	0.46		,	4 4	1	0.58		Ċ	۷ و	0.60	0.55	;	0.50	Geometric mean for Fecal Coliform and E.
muimbsO		2	2	0.08	g	QN	0.20	S	Q	S	S	QN	QN	Q	Q	8	2				2	0.13	0.06		ï	0 13	9	0.20		ľ											Fecal C
d-1/0d	7/6ш	QN	2	2	9	2	2	2	8	2	9	2	Q	2	2	2	2		*****									-										T	-		ean for
N-EON+SON	7/6w	0.11	0.12	0.12	0.12	0.11	0.07	0.05	0.05	0.02	0.02	0.02	0.02	Q	0.02	0.02			0.11		13	90.0	0.02		1.0	9	200	0.12		ï	0 0	3 6	0.02		Ċ	7 6	0.02	0.02			netric m
N-EHN	7/6w	Ϋ́	2	ž	ž	ž	ž	ž	ž	ž	ž	ž	Ϋ́	¥	Ϋ́	ž	ž															-									(*) Geon
muibo8	7/6w	28	29	27	27	26	27	27	27	31	29	28	25	30	27	28	30		28		14	28	31		 	27	28	29		Ğ	0 00	92	31		Ċ	7 6	70	27	1	30	:
muisəngsM	7/6ա	2.60	2.63	2.71	2.74	2.58	2.52	2.44	2.55	2.44	2.45	2.25	2.30	2.50	2.48	2.57	2.42		2.60		14	2.51	2.25		 	2 60	2 44	2.74			0 67 0	7 00	2.55		c	۷ (2.53	2.48		2.42	
muiolsO	7/6w	19.4	19.5	19.3	18.7	18.2	18.4	18.5	17.2	17.5	18.3	18.0	17.8	18.6	18.6	18.4	18.6		19.4		14	18.4	17.2			188	18.0	19.5			4		18.6			7 4	18.5	18.4		18.6	sed
Shiroide	7/b̂ш	9.99	72.3	71.6	80.1	78.2	82.4	90.6	81.9	78.8	85.6	69.2	82.6	82.3	85.5	86.4	81.8		9.99		14	80.5	69.2 90.6			79.2	71.6	90.6			9	3	85.6			7 0	86.U	85.5 86.4	:	81.8	= Not Analyzed
SSA	7/ მⴍ	QN.	S	Q	Q	3.4	N	2	1.4	1.6	2	2	Q	1.0	2	2	S				4	1.9	3.4		-	3.4	3.4	3.4		c	7		. 6		-		+				NA = NO
SST	7/6ш		<u> </u>	<u> </u>	<u> </u>	<u> </u>	å		<u> </u>		<u> </u>		<u> </u>	Ĺ	<u>.</u>	L	<u>.</u>		1.0				9.0		Ċ	46	1.5	8.0			0 T	• •	5 6				1			1.0	
BOD							Ą																																	.2	e De
Dissolved Oxygen						5 10	S N	2 11.1	5 10.8	9.01	10.4						2 7.2		1.6			5.	5 9.5 2 11.2			9	σ	11.1			ç	2 5	11.2			c	o i	9.6		7.2	NS= No Sam
Conductivity	шэ/ѕочшш				1	1	6.4 203				1	.7 200	ŀ	1	•	1		Ш	6.7 202		1		6.4 195 7.1 212			1	1	6.9 212					6.8 202		- 1	7 7	- 1	6.9 196 7.1 206		182	-SN
Hq	. 6						NA 6											ΙI	8.0	r rain)	13					1		10.0		Į	σ	9 4	00		- 1	1		6.5 8.0 7		9.0	_
Temperature	O gəb	2	<u> </u>	ļ	ļ	ļ	11	<u> </u>			<u></u>	<u>. </u>	<u> </u>	Ĺ,	<u> </u>	ļ,	<u>ļ</u>	Ш	2.0	WET WEATHER (All data: Rain, Days 1 and 2 after rain)	14	6.	3.0 6.0 3.0 10.0		[0	ıc	0			0 4	5 6	0.0			N C	.	50		16.0	NM= Not Measured
Flow	sto		9	325	325	925	ļ	1607	2000	5	355	305	154	1610	310	353	<u> </u>		-	rs 1 and		÷	3.0	$\left \ \right $	-			14.		-	1.5	- 4	16.		-		1	7. 7.		16	- Not M
		1		l		ŀ			1 1		:	:	:	•	1	•	ļ			in, Day									rain	lann				rain)	rann			***************************************		ample)	Ž
Date		11/2/92	ļ	į	ļ	<u>į</u>	Į	11/3/92	į		<u></u>	11/4/92	į	<u> </u>	<u>.</u>	11/4/92	11/5/92		mple)	lata: Re					ng rain				1 offer rain	alter				2 offor	z ditei					3) (1 Si	
after rain)		۵	_	3	9	6	12	16	20	24	28	32	36	4	44		├		R (1 sa	R (All o					R (duri				A (Day	(Da)) (Day	R (Uay					R (Day	ted
Weather (Dry, rain, days		S Dry	S Rain	S Rain	S Rain	S Rain	S Rain	S Rain	S 24h	5S 24h	S 24h	S 24h	S 24h	S 24h	S 48h	S 48h	3S 72h		ATHE	EATHE)	E E	$ \ $	EATHE		, ,	. E	THE			,		:ATHE	Ĭ			_ F		ATHE	t Detec
Station		BWW05S	BWW05S Rain	3WW05	3WW05	3WW05	BWW05S Rain	3WW05	3WW05	3WW05	3WW05	3WW05	3WW05	3WW05	3WW05	BWW05S 48h	BWW05S		DRY WEATHER (1 sample)	VET WE	Count	Mean (*)	Minimum Maximum		WET WEATHER (during rain)	Mean (*)	Minim	Maximum	WET WEATHER (Day 1		Mean (*)	Minim	Maximum	WET WEATHER (Day 2 affect rain	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Moor (*)	Mean ()	Maximum		WET WEATHER (Day 3) (1 sample)	ND = Not Detected
		نسر		سب	<u>: 44</u>	;ш	ر بدر	س	نت	۳	۳.	<u>ت :</u>	<u> </u>	<u>, W</u>	<u>; ш</u>	<u>;w</u>	<u>;Ш</u>	ı l	=1	2	زير	=:	<u> </u>	ı L	-	-		اکن	12	-10	<u>2</u>		- 2	, ∟≥	عاد	<u>اءِ دِ ر</u>	= =	<u>= </u>	ı	>	2

Page A15-73

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	CFU/100mL	220	Α	290	100	2,500	2,400	7,100	¥ S	11,000	¥ S	6,200	¥.	810	Ž S	00,	380	220		6	1,599	100	000		5	1,043	100	301,		ဇ	3,809	810	000		1	1,000			390
Fecal Coliform	Jm001\U3C	1,700	ΑN	3,700	5,100	8,500	38,000	26,000	NA S	24,000	NA	36,000	ΑN	11,000	Z S	0,400	1,400	1,700		6	13,257	3,700	30,000		5	10,965	3,700	00,00		င	21,182	11,000	000,00			8,400			1,400
Zinc	qdo	27	43	32	43	33	102	54	48	42	39	36	38	45	/7	0 0	77	27		14	43	27	102		9	51	32	102		9	4	34	ř		2	78	27		22
резд	qdo	2.8	5.5	5.5	10.6	5.4	37.7	19.2	14.8	16.2	15.1	8.5	19.4	4.7	0 0	0 0	9.7	2.8		14	12.7	5.4	0/./		9	14.0	27.7	7.70		9	13.5	7.4	t D		2	6.4	0 e		6.2
Nickel	qdd	12.3	11.4	12.0	10.4	11.3	19.7	11.8	8.2	8.6	8.2	9.0	8.4	9. 0	0 0	0.7	? <u> </u>	12.3		14	10.3	7.9	 		9	12.8	4.01	9	-			9.0					8 8		7.0 Coli
Copper	qdd	13.0	14.5	14.5	13.1	12.9	50.8	23.7	18.0	15.6	13.8	12.9	11.2	10.3	9 0	0.0	Σ O	13.0		14	16.5	9.7	20.0		9	21.6	12.9	30		9	13.6	10.3	2		2	1 0-	9.7		8.9 and E. (
Chromium	qdo	2.48	3.27	2.90	3.39	4.25	20.00	7.49	4.29	4.30	5.11	4.77	4.02	3.12	45.5	0.23	3.5/	2.48		14	5.25	2.30	30.00		9	6.88	2.90	00.00		9	4.27	3.12	 		2	3.29	3.23		Coliform 8
muimbsO	qdd	4. 6	1.57	Ϋ́	1.38	1.40	3.64	1.95	1.36	1.12	1.05	0.96	0.81	0.70	0.0	- 0	0.60	1.40		13	1.33	0.69	3.04		5	1.99	1.38	9.04		9	.0 8	0.70	5		2	0.70	0.69		0.60 Pecal O
d-†0d	7/6ա																	0.71		13	0.42	0.21	5		9	0.58	0.40	0.7.0		5	0.30	0.21	00.00				0.24		0.18
N-SON+SON	¬ /ճա	1.75	1.86	1.04	1.54	1.22	0.29	0.35	0.75	0.58	0.40	0.55	0.44	70.0	0.58	1 5	0.52	1.75		14	0.75	0.29	8		9	1.05	0.29	00.1		9	0.54	0.40	2		2	0.50	0.41		400 0.52 0.18 0.60 Geometric mean for Fecal
N-EHN	7/6w	4.25	4.77	4.83	3.02	3.89	6.17	3.79	2.90	2.01	1.71	3.00	1.63	2.03	2.80	2.02	1.40	4.250		14	3.219	1.630	0 1 0		9	4.412	3.020	0.		9	2.213	1.630	2000				2.520		1.400 (*) Geom
muibo8	7/6w	4	42	40	50	47	4	8	21	9 6	22	25	56	87 0	7 0	2 6	30	40		14	32	6 2	200		9	42	2 3	2		:		9 %	1]		34	J	000
muisəngsM	¬ /6ա	1.85	2.00	1.98	1.93	1.90	1.60	1.40	1.27	1.40	1.53	1.40	1.63	00.0	4.03	3 6	99.1	1.85		14	1.66	1.27	3.5		9	1.80	4. 6. 6.	2.00		9	1.46	1.27	3		2	1.83	1.63 0.03		1.66
muiolsO	7/6w	20.0	20.2	20.6	22.9	21.3	15.1	14.6	11.7	11.1	12.0	13.7	14.2	0.0	0 0 0 0 0	5 6	0.0	20.0		14	16.1	111	27.3i		9	19.1	14.6 23.0	22.0		9	13.0	11.1	5.5		2	16.6	16.3		16.5 ed
Chloride	7/6w	81.8	81.3	91.3	119.0	112.0	95.9	81.4	63.5	0.00	65.8	29.5	(2.5	13.2	0 00	0 0	04.7	81.8		14	9.08	45.0	 2.0	İ	9	8.96	81.3	9.0		9	63.3	45.0	10.6		2	84.1	81.4		= 84.7 16
SSV		1 3	:	: :	: :	:	•							- 1				2.4		2	9	12	.		5	8.8	12.4	† - -				3.0			2	1.9	2.2		NA = No
SST	7/6w	3.2	3.6	5.2	6.2	1.6	51.3	20.8	5.6	0.7	11.4	9.0	4.4	ο 4 ο) a) v	4.	3.2			6.6	9 2	 				9. 6					2.0					2.8		4. 4.
BOD		2.3	Ϋ́	5.1	12.2	5.3	10.6	8.0	≨ :	Ž.	Z I	× .	ž,	4.	Z	0 5	4.4	2.3		8	8.0	5.1	12.2		2	8.2	5.1	16.2		2	8.1	7.4 7.0			-	6.9			4.2
nsgyxO bsvlossiO	7/6ա	10.3	9.8	10.4	11.5	10	Ϋ́	10.5	7	4.01	10.4	10.8	10.6	7.0	0,0	3.6	,	10.3		13	10.3	9.7	<u>-</u>		5	10.4	9.8 7.7	5		9	9.01	10.2	2		2	9.4	9.2		7.0
Conductivity	шэ/воцшш	J				- 1			ı	2 3		1		1	225	1		282		14	242	178	SS	l	9	301	220	200		9	192	178	2021		7	518 218	210		230 7.0 NS= No Sam
Hq		1) I		- 1	1		6.7	i		-	-	1		1	1	9.9	(ui	1	1	6.5				ဖ	0.0 0.5				9	တ် ဖ				Ġ	8.9 7		
Temperature	O geb					-	ı		8.2	ı	1		1					8.9	after rain			0.0					10.0	Į I				8.0					8. G	l	10.8 sured
Flow	cfs	ļļ		1				- 1	286	- 1	-	ļ	-	l.	<u>. l</u>	1	120	111.0	and 2	14	215.4	22.0	24.0		9	230.3	153.0 334.0	2		9	201.5	1410 286	2007		7	212.0	179.0 245.0		ole) 126.0 10 NM= Not Measured
Time		1637		i i	j	910	- 1	1		- 1	340	- 1	- 1	٦,	200				Days 1										μ,			***************************************		1]	ole) NM= Nc
Date		11/2/92	11/2/92	11/3/92	11/3/92	11/3/92	11/3/92	11/3/92	11/3/92	78/4/11	11/4/92	11/4/92	11/4/92	1/4/97	11/4/92	14/15/02	76/0/11	(aldı	WET WEATHER (All data: Rain, Days 1 and 2					g rain)					l after rain,					after rain		***************************************			(1 samp
Вип		۵		က	[<u>i</u> .	12	i	2 2	47 00	87 6	7 6	၀ (5 2	1 4	2 5	7/	(1 sample)	(All de					(durin					(Day 1					(Day 2					(Day 3
Weather (Dry, rain, days after rain)		Dry			- :	Rain			24h		•••••	740	740	147	101	2 2	127	THER	THER					THER					ATHER					1THER					NTHER Detecte
Station		BWW06	BWW06	BWW06	BWW06	BWW06	BWW06	BWW06	90000	DVVVVO	BWWUG	BWWOO	BWWOO	DVVVVO	BWW/06	200000	DAAAAG	DRY WEATHER	WET WE	Count	Mean (*)	Minimum	Maxilla	WET WEATHER (during	Count	Mean (*)	Maximim		WET WEATHER (Day	Count	Mean (1)	Minimum		WET WEATHER (Day 2 after rain)	Count	Mean (*)	Maximum		WET WEATHER (Day 3) (1 sample) ND = Not Detected NIV

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	CFU/100mL		AN	40	130	970	280	200	NA OBO	ΔN ΔN	2 600	Ϋ́	6,400	Ϋ́	2,400	410	78		6	748	6,400		4	224	5	970		ď	3.511	2,600	6,400		1	2,400			410	
Fecal Coliform	CFU/100mL		ΑA	2,100	2,200	3,800	1,200	5,000	AN OC	NAN	17,000	Ϋ́	11,000	¥	16,000		1,200		6	5,695	20,000			2 528	2000	5,000			15.522	11 000	20,000		1	16,000			4,900	
oniZ	qdd	38	39	45	37	31	33	43	42	42	48	48	20	45	54	53	38		14	42	54			0 0	3 5	45		ď	. 43	24	50		2	20	45	54	53	
реэд	qdd	3.5	3.8	4.7	5.2	4.8	5.0	6.5	ξ .	10,5	2.0	8	7.4	7.2	6.3	8.0	3.5		13	7.0	0.0 11.6	•				6.5		ď	9.5	7.4	11.6		2		6.3		8.0	
Міскеі	qdd	13.5	12.9	13.2	12.6	12.0	12.8	10.2	0 Z	. α	0 0	0 0	8.5	8.8	8.5	8.9	13.5		14	10.0	13.2			100	, c	13.2		ď			6.6		2	8.7	8.5	8.8	8.9	Soli
Copper	qdd	13.2	13.3	13.3	12.7	13.3	14.2	15.8	0. A	2 6	14.7	15.0	12.0	13.3	9.3	12.6	13.2		14	13.9	9.3 16.5			200	13.7	15.8		ď			16.5		2	11.3	9.3	13.3	12.6	1
Сһготіит	qdd	3.89	3.92	3.89	3.52	3.48	3.64	4.96	7, 73	0 A	4 10	4.35	4.41	4.94	3.29	4.19	3.89		14	3.94	5.13		٦	9	2 0	4.96		ď	3 93	1.23	5.13		7	4.12	3.29	4.94	4.19	oliform a
Cadmium	qdd	1.46	1.31	1.41	1.31	1.31	1.31	1.42	O 4.	200	1 16	1.72	0.88	1.00	1.1	1.10	1.46		14	1.22	1.72			7 36		1.42		ď	1.15	0.49	1.72		2	1.06	1.0	-1	1.10	Fecal Coliform
d-1/0d	7/6w	69.0	99.0	0.69	0.66	99.0	0.62	0.52	0.39	20.0	0.29	0.25	0.32	0.32	0.25	≨	0.69				0.69			0 2	5 6	0.69		ď	0.31	0.25	0.39		2	0.29	0.25	0.32		ট্
N-SON+SON	7/6 w	1.72	1.66	1.72	1.77	1.43	1.57	Ϋ́	0.03	2 N	99 0	0.63	0.54	0.54	Α Α	Ν	1.72		11	1.07	1.77		ï	7 63	3 5	1.77		2	0.62	0.54	0.66			0.54			-	Geometric mean
N-EHN	უ/6ⴍ	2.57	3.51	2.92	2.67	2.65	4.40	3.10	3 /3 5 8	7 7 7	2.66	2.26	1.64	1.26	1.25	1.16	2.570		14	726	4.560			000	9 20	4.400		ď	733	550	4 560		2	.255	250	.260	1.160	
muiboS	7/6ш	46	45	4	37	43	38	49	4 7 7	2 6	30	28	27	29	30	33	46		į	<u>į</u>	49 4			į	<u>.</u>	49		Į			45 4			30	29 1		33	ت
muizəngsM	7/6 w	1.38	141	1.47	1.38	1.43	1.40	1.61	1.07	1 18	1 15	10	1.11	1.18	1.15	1.34	1.38		14	1.28). 16.			44	2 6	1.61		ď	1.14	1 07	1.22		2	1.17	1.15	1.18	1.34	
muiolsO	7/6w	19.6	19.5	19.2	19.1	18.9	19.0	21.1	19.4 4.0	1 7	13.6	12.6	12.8	14.0	14.0	15.8	19.6		14	16.6	21.1			9	ο α Ο Ο	21.1		α	14.6	12.6	19.4	:	2	14.0	14.0	14.0	15.8	pe
Shirold	7/ 6 w	83.3	96.6	86.1	88.2	92.2	92.3	95.5	93.9	0 X	583	62.4	62.0	46.1	74.1	78.4	83.3		14	77.9	96.6			0 0	9 4 S	9.96		ď	6 69	583	93.9		7	60.1	46.1	74.1	78.4	= Not Analyzed
SSA	7/6w	2.4	2.0	1.6	2.6	2.2	2.4	3.4	9 2	2 0	5.7	3.2	2.8	6.0	2.0	3.0	2.4		13	 	6.4 6.4		č			3.4		ű	, 1	2.6	6.4		2		2.0		3.0	NA = No
SST	7/6w	3.4	2.8	4.0	4.8	3.0	5.4	0.0	3.6	† «	11 0	7.4	4.2	11.4	4.0	5.7	3.4				11.4					9.0		ď			11.0		7	7.7	4.0	11.4	5.7	-
BOD	7/6w	2.7	ΥN	4.4	3.0	2.5	2.6	9.9	A V	5. V	€ œ	Ş₹	7.8	ž	5.9	3.6	2.7		6	5.5	0.8 8.8		 L			6.6		Č			8.8			5.9			3.6	ø
Dissolved Oxygen	7/6w	8.5	12.2	8.3	9.2	11.4	9.1	8.0	ο α Θ	οα	t (C	96	8.5	ΑN	0	7.75	8.5	}	13	4.0	12.2		č	0	n 0	12.2		ď			9.6		_	9.6			7.8	Sampl
Conductivity	шэ/ѕоцшш	<u> </u>	<u>. </u>			İ			<u>i</u>	İ			<u>.</u>	<u>. </u>	<u>.</u>	235	255		ı		302	ΙI	C	0 620	300	302		ď	206	175	283		L	<u> </u>	183		235	NS= No Sar
Нq		9	9	Ø	9	ø	ø	9	დ ი 4. ი	o c	0 0	်ဖ	ဖ	Ø	9	: 1	89	(uie			o 6 9	ΙI		4	o (6.7			ی	c c	6.9		ı		6.7			
Temperature	ე 6əp	<u> </u>	1						10.0						ļ		7.4	after rain			10.8	ΙI		1		9.6			6	0	10.8		ı		66		11.2	sured
Wola	sto						302	- 1	339	1				1		1	100.0	1 and 2	14	226.9	367.0		,	0 0	2 6	367.0		ď	250.8	205.0	339.0		2	204.0	200.0	208.0	183.0	NM= Not Measured
9miT			1	1 1		i.		l.	1950	i				1	:	: 1		Days	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								[5]					(u,					ple)	NM= N
Date		11/02/92	11/03/92	11/03/92	11/03/92	11/03/92	11/03/92	11/03/92	11/03/92	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	11/05/92	(əldı	ıta: Rain,					g rain)				1 offer rain					after rai					3) (1 sam	
uny		۵	·		ဖ	თ			ຊ ຊ		32	36	4	44	48	72	(1 sample)	(All de					(durin				/Day 4	9				(Day 2					(Day 3	8
Weather (Dry, rain, days after rain)		Dry	Rain	Rain	Rain	Rain	Rain	Rain	24h	24h	24P	24h	24h	48h	48h	72h	THER	THER					THER				THER					THER					THER	Detect
noitst	· · · · · · · · · · · · · · · · · · ·	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW0/	B/M/M07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	DRY WEATHER	WET WEATHER (All data: Rain, Days	Count	Mean (*)	Maximum		WET WEATHER (during rain)	West (*)	Minimum	Maximum	WET WEATHER	1	Mean (*)	Minimum	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 3) (1 sample)	ND = Not Detected

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	CFU/100mL	91	Ϋ́	70	4	55	720	065	Z Z	2 2		00,0	2 0	200,7	200	580		91		6	406	40	8	ζ.	106	40	390		3	1,896	780	3,800		-	3.300			580	
Fecal Coliform	CFU/100mL	1,400	Ϋ́	910	760	3,000	000'6	1,800	AN C	007'6	2000	000'8		000'01	15,000	4,700		1,400		6	4,017	760	200,61	4	1.796	: N-	5,000		3	9,908	3,200	19,000		-	15.000			4,700	
Zinc	qdd	38	47	48	47	41	9 5	61	2 4	φ ()	9 5	247	S 2	0 4	2 %	28		38		14	47	36	5	9	49	41	61		9	47	39	56		2	4	36	45	28	
реәд	qdd	4.1	5.0	5.4	5.9	6.9	2.7	18.5	10.	126	5 6	2 0	1001	7 7 7	17.7	5.6		1.4		14	11.2	5.0	2		8.2	5.0			9	12.7	9.4	15.1		2	15.7	14.0	17.4	5.6	
Nickel	qdd	14.3	13.9	14.0	13.5	13.1	12.7	9.4.	4.0.	12.8	2 6	5 4 2	0 0	o c	, c	8.6		14.3		14	12.1	9.0	<u> </u>	ď	13.7	12.7	14.9		9	11.2	9.0	13.4		2	10.0	9.8	10.1	9.8	Coli
Copper	qdd	14.0	14.9	14.7	14.9	15.3	α α α	0.55	0.07	20.0	0.07	2 4 2 4	77.5	16.7	12.7	10.1		14.0		14	18.7	12.2	200		18.6	14.7	33.0		9	20.1	15.5	25.6		2	14.5	12.2	16.7	10.1	and E. C
Chromium	qdd	4.83	4.88	4.99	4.74	4.29	20.0	13.55	95.0	7 14	7.44	1 15	1 2	t 0	2 2	3.52		4.83		14	6.48	2.83	200		6.26	4.29	13.55		9	7.33	4.15	11.39		2	4.64	2.83	6.44	3.52	oliform 8
muimbsD	qdd	1.55	1.56	1.63	1.61	1.49	0.00	2.38	2.73	4 83	50.00	1 26	3 45	, t	1 57	0.81		1.55		14	1.75	1.35	200	ď	1.72	1.49	2.38		9	1.87	1.35	2.15		2	1.49	14.	1.57	0.81	Fecal C
d-#0d	7/6ш	0.63	0.58	0.55	0.61	0.65	0.0	0.61	0.00	5 6	00.0	, c	25.0	5 6	300	Ϋ́		0.63		14	0.48	0.30	3	œ	09.0	0.55	0.65		9		0.34			2	0.33	0.30	0.35		ean for
N-SON+SON	7/6ш	2.00	1.95	2.00	1.83	1.60	1 2	7.57	- C	0 0	0 0	0 0	0.50	5 0	20.0 AN	ž		2.00		13	1.23	0.52	20.2	ď	1.76	1.57	2.00	ŀ	9	0.81	0.57	1.49		-	0.52				netric m
N-EHN	7/6w	1.65	2.47	2.12	2.17	2.14	7.87	24.0	2.3	4 07	2 03	2.95	2.03	5.4	2 20	1.05		1.650		14	2.565	1.970		···	2.533	2.120	3.480		9	2.733	1.970	3.310		2	2.155	2.110	2.200	1.050	(*) Geometric mean for Fecal Coliform and E.
muiboS	7/6w	1				45	1	- 1			1					i	ı	20		14	4	28	7	ë	46	43	48		9	38	28	48		7	73	28	S	34	
Magnesium	7/6w	2.23	2.22	2.13	2.14	2.08	2.10	7.99	2 0	20.0	0.0	00.	1 55	3 5	1.63	1.93		2.23		14	1.91	1.49	77.7	.c	2.11	1.99	2.22		9	1.82	1.54	2.16		2	1.56	1.49	1.62	1.93	i
muiɔlsɔ	7/6w	19.5	19.3	18.8	18.4	18.3	2.0	16.3	2 2 2 2 2	0 ú	- 1	† c	2 6	5 6	13.4	16.4		19.5		14	16.4	12.6	2	ď	18.1	16.3	19.3		9		13.3				13.	12.6	13	16.4	pez
Chloride	7/6w	84.6	92.8	88.0	97.4	96.6	25 20 30	33.0	7.70	0. 78 0. 0.00	00 0	- a	5 G	0 0	77.0	80.5		84.6		14	83.1	56.9	ř.	ď	92.1	83.0	97.4		9	79.5	64.6	97.3		2	67.1	56.9	77.2	80.5	= Not Analyzed
SSA	7/6 ⴍ	1.8	2.5	ND	3.6	2.4	0 0	, v	- Z	2 5	, r	οα) () a	9 0	9.7	,	1.8			4	4. c			<u>.</u>	2	ω.		5	4.4	1.4	7.4		2	2.9	2.0	3.8	9.7	N = N
881	7/6ш	က	7	~	7	1 1	` (2 7	- 6	7 6	1 5	4 5	2 α	7	4	F		3.4			_	1.2	<u> </u>		Ļ	_	19			o,	1.8	22		2	8.0	4.2	11.8	11.7	
BOD	7/6w	<u> </u>				2 2.5			<u>.</u>	<u>L</u>	<u></u>	<u> </u>	<u>.</u>	l.	1	<u>.</u>		3 1.3			r.	7 2.4			4 4.1	2	ω			Ġ	7 2.4	œί		7	10	8 1		8 3.5	mple
Conductivity Dissolved Oxygen		∞	-	7	_	(2	C	» c	α	o a	οα	7	- a	ά	7.7		∞		Γ	o,	1,000	4	9	6	7	12		9	æ	7	6			∞	ω (ωi	228 7.8	Sa
		l				6.7 230		1	287 6.0	1		202	1	7 0	1	1		6.4 255			- 1	6.4 135 6 9 292	1 1	e	6.6 239	1	1		9	9	6.5 135	6			188	6.6 180		22	-SN
Temperature Hq		0	7	7	ນ	8.0	N C	י מ	4 u	ט ע)))		ט ע	2 1	- 6	0		7.0	r rain)	14]	7.2	5	l	7.8	<u> </u>			9	7	9.0	S.		l	2	9.2		11.0	-
Flow						171		L.	282					207		279		206.0	d 2 afte	14	5.5	105.0	11		175.8	0.5	0.6		9		282.0			2	8.0	269.0	7.0	279.0	NM= Not Measured
əmiT		l				915			3330							1625		20	vs 1 ar		72	7 4			1,	5	26		-	33	28	4			27	26	2	П	A= Not A
2100				11/03/92		1	.	11/03/92	Į	i	į		į	į	į	j			Sain. De					(u				r rain)					r rain)					sample)	Ź
Date		†***	11/0	įi				ļ	∤	į	j		.	ļ	ļ			ample)	data: I					rıng ra				v 1 afte					(Day 2 after rain)					y 3) (1	
after rain)		γ	Rain	į		Rain 9				···			-	1	1	†		ER (1 s	ER (A)					EK (du				ER (Da					ER (Da					ER (Da	ected
Station Weather (Dry, rain, days		BWW08 Dry	******			BWW08 Ra			••••	WW00 24h	•••••	•••••		···•	******	BWW08 72h		DRY WEATHER (1 sample)	WET WEATHER (All data: Rain. Days 1 and 2 after rain)	Count	Mean (*)	Minimum		WEI WEATHER (during rain) Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 1 after rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 3) (1 sample)	D = Not Det
	· .	B	8 B	S B	á	<u></u>	ה מ	ב מ מ	δ <u>α</u>	2	á	á	á	2 2	Š	S		R	W	ខ	Š	ΣŽ		ਵ ੇਹ	Σ	Ž	Ma	WE	ပြ	Ā	Σ	Ma	Š	ပိ	ğ	≨:	Ma	WE	2

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	Jm001\U3C	ر ا	Ž	30	11	96	130	250	Ϋ́	200	Ā	180	₹	83	ΑN	83	91	3		6	86	1	nez		5	63	250			e :	4 8	200			-	83	83	3	61	
Fecal Coliform	Jm001/U3C		Ν	2	09	200	350	170	Ν Α	260	ΑN	130	ž	6	ž	140	190	3		<u></u>	140	95	320		သ	138	350			ε ,	145	360 260			-	5	4. 6. 6.	<u>-</u>	190	
Zinc	qdc	3	7	12	6	15	11	16	12	14	17	15	80	14	13	16	12	8		14	13	7	=		9	12	16			9	2	17			7	15	13	2	12	
реәд	qdo	N N	60	0.7	1.0	2.1	2.4	1.2	9.0	1.6	1.1	6.8	3.9	1.2	1.4	0.8	1.3			14	2.0	0.7	0		9	4.6	2.4	.	•	9 0	S 0	0 0 0 0			5	1.1	0.8	Ë.	1.3	
Nickel	qdc	2	9	2	Q	QN	QN	ΩN	Q	9	9	2	2	2	2	2	2	-												_	-					_				≒
Copper	qdc	2.3	0.7	1.4	0.8	10	1.1	1.4	1.0	1.2	1.2	1.2		1 ئ	1.5	.3	0.0	2.3		14	1.2	0.7	 		9	1.1	7 4					ر ان			5	1.4	ر دن بر	<u>:</u>	6	and E. Col
Chromium	qdc	0.42	0.78	0.83	0.80	0.83	76.0	0.93	1.09	0.95	0.83	0.92	0.60	0.51	0.49	0.28	0.24	0.42		14	0.77	0.28	 20.		9	0.86	0.97		,	9 6	0.82	1 09			7	0.39	0.28	2	0.24	liforma
muimbeO	qdc	2	2	2	S	Q	Q	ΩN	9	S	2	2	2	2	2	0.05	0.09			-	0.05				+				ŀ					-	-	0.05		-	60.0	Fecal Coliform
d-ÞOd	7/6ա	2	0.01	0.01		0.01	0.01	0.01									Ν V			14	0.00				9	0.0	0.01		ï	9		-			2					ġ
N-EON+ZON	7/6ա	0.12	0.13	0.17	0.15	0.16	0.15	0.14	0.12	0.09	0.11	0.11	0.0 20	60.0	0.07	0.38	Ϋ́	0.12		14	0.14	0.04	00.00				0.17			9 6	6 6 6	0.0			2	0.23	0.07	3		Geometric mean
N-EHN	7/6ա	0.01	2	S	S	9	0.05	N	2	9	0.05	9	90.0	9	0.02	Q	0.04	0.010		4	0.045	0.020	0.000			0.050			į	7	0.05	0.000		ļ	- [8	0.020		_		
muiboS	7/6ա	2	5	4	4	5	5	Q	4	2	က	7	2	9	2	2	2	2		6	ļ	2 4]			ļ	t 10					۸ 4	. 1				-			Đ
muisəngsM	7/6ա	0.86	0.77	0.73	0.74	0.70	0.70	0.64	0.63	0.63	0.58	0.58	0.54	0.52	0.51	0.53	0.46	98.0		14	0.63	0.51	 		9	7.0	0.7	· 	-	9 0	0.00	0.63		i	7	0.52	0.51	3	0.46	
muiolsO	7/6w	7.3	6.3	6.2	6.2	5.9	5.7	5.5	5.1	4.2	4.4	4.7	4.2	4.5	4.4	4.1	4.1	7.3		14	5.1	4. a	5	-					ï			5.1		h	7	4.2	4. 4 1. 4	:	4.1	<u>6</u>
Chloride	7/6w	55.2	26.0	21.4	30.2	26.0	27.0	28.7	26.5	22.8	28.3	22.3	24.1	23.7	23.0	22.7	20.2	55.2		14	25.2	21.4	30.7		9 6	9.07	30.2		ï	0 0	0.4.0 0.00	28.3		į	7	27.3	22.7		20.2	Not Analyzed
SSV	7/6w	2	2	Q	1.2	1.4	1.4	1.0	2.6	2	8.	1.3	Q	1.2	0.5	2	2			6	1.4	0.0	2		4 (4		;	4 1		2.6		;	- (2.	0 0		1 1	N N N N
SST	7/6ш	l	l .	1.						-	į										7	1.0	4		•	7	2.8			٥	5	2.8		Ī	- (7.7	2 2			_
BOD	7/6ш	<u></u>	<u> </u>	1.0	<u> </u>																7	0, 6	2		(7	3.8		L		l.	2.0								ble
Dissolved Oxygen	7/6ա	6	9	1	2	Ξ	9	2	6	9		6	σ <u>'</u>	ω (တ်		∞ Σ.	9.4		_	Ö	11.2			5	٥	11.2			c	n a	10.4			•	ກ່ເ	0 6		8.4	NS= No Sampl
Conductivity	шшрог\сш	<u></u>	į	į		<u></u>		ll	į	<u>i</u>	İ	L	İ.	l.			[.5 72		4	ဖ	5.3 60	5		9 6	9 9	2 ~					8 70					7 73		89	S
Hq	. 6	Ö	2	7.2 6.7	2	0	~	m	~: 	io.	<u> </u>	i	0		٣Ė,	=+;		7.0 6.	rain)		-	6.5 6.	1		•	9	8.3 6.		l,	0 6		5 6.8			V (י פ	9 6		9.4	
Temperature	O geb	<u> </u>	<u> </u>	34										104				34.0	WET WEATHER (All data: Rain, Days 1 and 2 after rain	45			1				86.0			ı	ı	10 10		ï			0.0		74.0	NM= Not Measured
Time Flow	cts	ļ		230					- 1	- 1	- 1	-	- 1	į		1	-	3,	rs 1 and	L	œ	34.0	2			6	86		ŀ	403	2 6	104:0		-	-	5	100.0		7	NOI N
		92	4	· (********	4				/92 1	/92 2:	/92	/92	/92 1	/92 1		···•			in, Day									laier	lann				1	raini					(1 sample)	İ
Date		11/02/	11/02/92	ļļ	ļļ	ii		11/03/92	11/03	11/03/92	11/04	11/04	11/04	11/04/92	∤	į	11/02/92	mple)	fata: Re					ing rain)			***************************************	1 2000	i alter ram		***************************************			z aner						
after rain)		۵.		•	о п		******		8	24	28	32	8	40	·	- δ		DRY WEATHER (1 sample)	R (All c					WET WEATHER (during				WET WEATHER (Day 1	T (Day				WET WEATHER (Acres office and	Lay Lay					WET WEATHER (Day 3)	ctea
Weather (Dry, rain, days		T	•••••		9 Rain				9 24h								1/ZN	EATHE	/EATHE		ĵ.	ع ع		ÆATHE	*	7	독	FATHE	EAINE	Ŧ	\ E	트	EATUE		1	7	≘ ਵ		EATHE	= Not Defected
Station	··-	BWW09	BWW0	BWW09	BWW0	BWW0	BWW0	BWW0	BWW0	BWW0	BWW0	BWW0	BWWC	BWW0		BOANAG	BWWC	DRY W	WETW	Count	Mean (Minimum		WET M		Minimim	Maximum	WETW		Moon	Minimim	Maximum	METIN		TINOS	Medi	Maximum		WETW	Ž I Q

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	CEU/100mL	N A	Ϋ́	AN	¥	ΑN	AN	Ϋ́	Ϋ́	Ν	AN	Ϋ́	ΝΑ	ΝΑ	ΑN	NA	NA																						
Fecal Coliform	CEU/100mL	NA	AN	ΑN	Ν	Ϋ́	NA	ΑN	ž	ΑΝ	N	Ϋ́	AN	Ν	ΑN	ΑN	NA																	-		-			
Zinc						6	ľ			ľ								4		14	∞ ·	12		9	8	9	12		9	7	5	10		2	7	4	6	ŭ	5
реэд	qdd	0.8	0.5	1.0	1.7	1.5	1.0	0.7	1.0	1.0	2.1	0.9	0.4	0.8	9.0	6.0	0.8	0.8		14	0.	2.1		9	1:1	0.5	1.7		9	1.0	0.4	2.1		2	8	9.0	0.9	å	2
Nickel	qdd	Ω	2	S	9	9	9	9	9	9	2	8	9	Š	2	8	Q																		- 				<u></u>
Copper	qdd	1.0	1.	6.0	1.4	1.0	1.0	6.0	0.9	1.7	6.0	1.0	9.0	1.5	1.	9.	1.4	1.0		14		1.9		9	1.1	0.9	1.4		9	1.1	9.0	1.7		2	1.5	1-	1.9	7 7	<u>.</u>
Сһготіит	qdd	0.45	2	Q	2	Q	8	2	Q	S	Q	S	2	0.49	0.41	09'0	0.42	0.45		8	0.50	0.60							-	0.49				2	0.51	0.41	0.60	0 43	for Fecal Coliform and
muimbsO	qdd	0.05	2	2	S	Q	S	S	Ω	Q	2	0.07	2	Q	2	0.19	0.10	0.05		7	0.13	0.07							F	0.07				<u></u>	0.19			4	Fecal O
d-†Od	7/6ա	0.01	2	0.01	Q	2	2	9	9	9	S	S	Q	ND	S	0.04	Ν	0.01		2	0.03	0.04		<u></u>	0.01				-	<u></u>	<u></u>			-	0.04			•••	ean for
N-EON+ZON	7/6w	0.10		0.02	0.22	0.39	0.02	0.02	0.02		0.03	0.02	0.01	0.04	0.03	0.08	₹	0.10		14	90.0	0.39		9	0.11		0.39		9	0.02	ļ	0.04		2	90.0	0.03	0.08	***	Geometric mean
N-EHN	7/6w	ΝA	0.10	٨	٨	Ϋ́	٧	Ϋ́	ž	ž	ž	Ϋ́	Ϋ́	ΑN	Ϋ́	Ž	Ą			-	0.10				0.100					-	ļ					-			(*) Geon
muibo8	7/6ш	10	26	26	25	25	24	25	24	25	25	24	24	24	24	22	23	9		14	25	22 26		9	25	24	38		9	24	24	25		2	23	22	24	22	
muisəngeM	7/6 ₩	1.03	1.21	1.21	1.19	1.12	1.10	1.08	1.11	1.09	1.12	1.10	1.04	1.09	1.06	1.03	2 .	1.03		74	1.1	1.21		9	1.15	1.08	1.21		9	1.09	1. 2	1.12	,	2	1.05	1.03	1.06	70	<u>;</u>
muioleO	7/6ա	6.3	7.4	7.4	7.3	7.1	9.9	6.8	6.7	5.9	6.3	9.9	ž	6.4	6.6	6.1	6.3	6.3		13	6.7	7.4		9	7.1	9.9	7.4		5	6.4	5.9	6.7		2		6.1		2	zeq
Chloride	¬ /6ա	93.6	66.5	59.9	70.4	64.5	58.6	67.4	59.6	59.4	67.6	57.2	61.7	62.3	62.7	65.1	57.1	93.6		14	63.1	57.2 70.4		9	64.6	58.6	70.4		9	61.3	57.2	67.6		7	63.9	62.7	65.1	57.4	= Not Analyzed
SSV											-									4	4.6	1.8		-	1.6				2	1.4	1.0	1.8		-	1.2			,	NA = N
SST	უ/ 6ⴍ		Ĺ	Ĺ,	Ĺ	Ĺ	<u>.</u>	<u> </u>	<u> </u>	<u> </u>	Ĺ											3.0		3	1.5	1.2	1.6		3	1.8	1.2			-	1.8			27	••••
ВОР	¬ /6ա		<u>.</u> ,	<u> </u>	Ĺ.,,	Ϋ́	<u> </u>	<u> </u>		<u> </u>	<u> </u>																				<u> </u>				<u></u>				mple
Dissolved Oxygen		ြ	12	œ	တ	0 8.8	2	Ξ	6	6	∞	∞	ω	∞	0	ω	80	7 9.1		` ['	5	3 12.2			i	œ	17			œ	80	9.6	ļ		80	7 8.4	6	8 3	o Sa
Conductivity		L	Ĺ	<u> </u>	Ĺ	Ĺ	<u>.</u>	Ì	Ĺ	<u>.</u>	Ĺ							.6 127		İ.	L	6.8 133		ļ	.7 114	4			<u> </u>	_	9	7 130		L		6 127	7	138	NS=
Hd		5.8 6.6		<u> </u>		<u> </u>		<u> </u>	<u> </u>	ļ		_		~		~		6.8 6.	r rain)			9.8			2 6	9	9		9		1	9.8			2 6	8.1 6.	3 6	2 4	
Flow		<u> </u>	<u> </u>	<u> </u>	<u> </u>	18		<u> </u>	<u> </u>	<u> </u>								13.0	d 2 afte			13.0 27.0		9	က	0			L	6	0	0		2		27.0		20.0	말
emiT	sjo	1655																	ys 1 an		7	2		\vdash	7	13.	5			2	Ž	25.			2	2	2	3	Not N
ow:I		/92 1	/92 2	/92	/92	/92	/92 13	/92 1	/92 1	/92 2:	/92	/92	/92 10	/92 1	/92 19	/92 22			ain, Day				-					rain)					rain)	,				(alume	NN
Date		11/02/92	11/02														11/05/92	sample)	data: R				ing rain	6				1 after rain					2 after					2) (1 6	<u>}</u>
after rain)		<u>a</u>		п	9 u	6 u	n 12	n 16	2	24	78	32	38	40	44	48	72		:R (All (-R (during					R (Day					R /Dav	1				/16(J) (I)	oted
Weather (Dry, rain, days		OS Dry	OS Rai	0S Rai	0S Rai	0S Rai	0S Rai	0S Rai	0S 24h	0S 24h	0S 24h	0S 24h	0S 24h	0S 24h	0S 48h	0S 48h	0S 72h	DRY WEATHER	WET WEATHER (All data: Rain, Days 1 and 2 after rain	5		ᄄ	WET WEATHER		٠,	Ē	E	WET WEATHER (Day 1		۳)	Ę	Ę	WET WEATHER (Day 2 after rain		(*)	E	틸	WET WEATHER (Day 3) (1 sample)	ND = Not Detected
Station		BWW10S Dry	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	BWW1	DRY W	WET W	Count	Mean ()	Maximum	WETW	Count	Mean (*)	Minimum	Maximum	WET W	Count	Mean (*)	Minimum	Maximum	WETW	Count	Mean (*)	Minimum	Maximum	WETW	N= QN

E. coli	CEU/100mL	5	Ž	ဓ	4	80	300	160	Z S	§ ₹	2 2	S 2	2 0	2	2 6	410		2		6	185	890		5	86	8	8		3	489	180	890		,	- 6	460]	410	
		8	Ϋ́	50	260	10	2 8	08	≨ 8	O A	Ş	2 2	5 5	2 2	<u>د</u> د	200		120		6	2	250		5	48	250	80		3	51	8	200		,	- 6	008			8	
Fecal Coliform	CEU/100mL		_	2	2	e (ກ	• و	7.0	_ ر	2 100	ה ס	- 6	7.0	α	7.4					1,0	8,8			m	2	9			3.4	1.3	6.2				8,8			4,700	
Sinc	qdd	78	28	27	25	24	9	4/	22	- 43	2 8	S S	3 %	2 5	7 5	33		28		14	39	71		9	32	24	47		9	45	31	77		Ġ	7 (7.7	24 4		33	
реэд	qdd	3.5	2.6	2.1	2.4	3.6	0.0	10.9	200	12.0	7.70	b a 1 a	ο α	7 7 0	- V	10.3		3.5		14	9.2	28.5		9	4.6	2.1	10.9		9	13.6	8.4	28.5		Ġ	7 0	9 0	11.6		10.3	
ИіскеІ	qdd	7.4	7.0	5.7	6.3	4 0	0.0	× 0	υ ς υ α	0.2	7.7		4 0	, 0	, r	5.6	ĺ	7.4		4	7.5	5.3				5.7			9	8.8	6.4	12.5		Ġ	7	9.0	5.3 6.5		9.6	Coli
Copper	qdd	12.5	10.6	9.0	9.4	10.2	23.0	22.0	47.7	4 ડ 6 ડ	5 r	5 2	1 c.	2 6	7 2	0 80		12.5		14	16.1	7.5		9	12.5	0.6	22.0		9	21.1	13.4	41.3		Ġ	7 7	31.8	16.1		9.6	nd E. C
muimordO	qdd	3.73	3.08	2.68	2.72	2.90	4.67	8.58	200	8. 8. 4. 8.		20.02	0. A	27.7	. 0	3.49		3.73		14	6.25	19.34		9	4.11	2.68	8.58		9	9.03	4.25	19.34		Ġ	7 .	4.37	1.99		0.63 3.49 9.8	oliform a
muimbsO		0.73	0.68	0.57	0.58	0.64	0 6	1.30	00.0	2.5	1 06	9 6	- r	0 2	5 5	0.63		0.73				2.38		9	9.76	0.57	1.30		1	ŧ		2.38		Ġ	7 6	0.60	0.56		0.63	ecal C
д-рОд	¬/6w	0.31	0.30	0.25	0.26	0.25	0.20	0.30	0.34	0.38	25.00	0.20	0.43	2 6	- 01	<u>.</u> ₹	<i>.</i>	0.31		14	0.27	0.39		9	0.27	0.25	0.30		9			0.39		ï	7 6	0.20	0.21			
N-SON+SON	7/6w	ΑN	2.06	2.05	1.10	2.22	C 6	1.03	S	1 13	2 0	0 0	2 6	2 0	1 67	ž				14	1.25	2.22		9	1.57	0.95	2.22		9	96.0	0.70	1.40		ï	7	1.17	1.67		720 NA	etric me
N-EHN	7/6ш	0.61	0.73	0.63	99.0	0.66	0.87	173	1 2 4	1 1 5	2 2	- 24	2 6	2 5	5 0	0.72		0.610		14	1.142	0.630		9	0.775	0.630	1.150		9	1.513	0.880	2.100		ï	7 6	1.130	1.070		0.720	Geom
muibo8	7/6ա	37	34	33	31	8	3 8	၁ (25	36	3 %	200	200	3 6	2 00	23	i	37		I		38		ļ	į	င္တ			9	İ	Ĺ	36		I	İ	Ī	22	J I	23 (Đ
muisəngsM	7/6w	2.07	2.00	1.94	9.	1.84	1.84	1.73	1 47	1 78	3 2	50. 1	7 27	2 0	 S &	1.55		2.07		14	1.72	1.33 2.00		9	1.88	1.73	2.00		9	1.67	1.47	1.83		č	7	1.41	1.33		1.55	
muioleO	7/6w	14.5	14.0	13.0	12.9	12.6	12.4	4.7.4	- c	. e.	2 0	7 7 7	- 0	2 0	, o	10.4		14.5		14	11.8	9.2		9	12.7	11.4	14.0		9	11.8	10.3	13.8		č			9.6 4.6		10.4	p eg
Chloride	7/6ш	64.3	42.3	55.8	71.4	64.2	000	0.79	2.60	87.3	64.7	, t	50.5	. u	2 2	48.2		64.3		14	62.3	42.3 81.7		9	60.4	42.3	71.4		9	66.7	59.1	81.7		Ġ	7	0.00	54.3 55.6		1.6 48.2 10.	t Analyz
SSV	7/5w	2.6	2.6	1.6	2.5	0 0 0	0 0	0 0	5 t	0 0	SS	2 0	ο α ο α	, c	2 2	6.		5.6		12	4.5	1.5		9	3.1	1.6	6.3		5	6.5	2.8	11.5		ļ	- 0	3.6			9.	NA = No
SST		4	4	7	က	m ο	Σ C	2 2	3 6	Ş 4	-	- a	οα	α	7		1	4.2		14	10.1	39.0		9		2.4			9	15.7	4.	39.0		ï	7 .	4 .	1.2 8.0		7.8	_
ВОР	7/6w					<u>. l</u> .		L	1		<u>. L</u>	Ĺ		.i.	l.	İ		2.3		6	4.2	6.3		5	3.3	1.7	6.3			r)	S	6.2		7	- (0.4				<u>se</u>
negyxO bevlossiG	T/bm	80	12	7	5	, ç	2 0	o)		6	ά	, C	2 ∞	σ	σ	8.25		8.9		-	6	13.6			5	<u>ll</u>	5			œ	ω	10.2			c	o o	8.7		8.3	o Sampl
Conductivity	шэ/воүшш	li			152	1	- 1	- 1		1			1		1	155	1	191				210		Ĺ		152			l	186	i				1		147	ΙI	155	NS= No Sal
Hq		8	0	2	S	- I	N C	χ τ		v 0		. α			- ~	2 NA	-	8 6.4	ain)		•	6.6				9.9				Ĺ	ļ	5 6.7		L			3 6.7	Η	~	
Temperature	O gəb	ဖ	7	7	7	xo o	x) c	xó c	o α	o o	σ	o o	, C	<u> </u>	σ	, 0		6.8	2 after 1	1,		7.0				7.0				6	ω	10		1			9.3	ΙI	10.2	sarred
How	efs	0 252			- 1			1										252.0	1 and 2 after rain	17	357.	152.0 553.0		_	248.	152.0	376.(L	452.7	409.0	553.0			, ,	401.5	389.0 414.0		382.0	NM= Not Measured
Time		1 :								2 2240					2000	1			n, Days									(uir						fune					nple)	N⊠
Date		11/02/92	11/02/92	11/03/9	11/03/92	11/03/9	11/03/9	11/03/92	11/03/8	11/04/92	11/04/9	11/01/0	11/04/92	11/01/0	11/04/9	11/05/92		ple)	ta: Rain				g rain)					after rain						апег г					(1 sar	
Вип		Д		က	ဖ	э (7 6	2 6	3 5	78	3 6	7 8	3 4	2 3	ξ			(1 sam	(All da				(durin					(Day 1						(Day 2					(Day 3	8
Weather (Dry, rain, days after rain)		1 :					- 1	- 1		24h						···		ATHER	ATHER				ATHER					ATHER					1	AIHEK	***************************************				ATHER	Detect
Station		BWW11	BWW11	BWW11	BWW11	BWW11	DVVVV	D.W.W.	DVVV	BWW11	BWW11	BWW1	BWW11	BVAVA/1	BW/W11	BWW11		DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Mean (*)	Minimum	WET WEATHER (during rain,	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day	Count	Mean (*)	Minimum	Maximum	THE TAX COLOR OF THE PARTY OF T	WE! WE	Couli	Mean ()	Maximum		WET WEATHER (Day 3) (1 sample)	ND = Not Detected

age 12

Page A15-79

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	CEN\100WF	23	ž	40	20	200	0 0	S Z	2	Ϋ́	220	¥	170	ž	330	2,100	23			တြ	0 4	330		5	38	9	86		က	139	72	220		-	330		2,100
Fecal Coliform	CFU/100mL	79	Ϋ́Z	100	50	140	110	ΔN	230	S X	800	Ϋ́	1,500	NA	1,900	2,100	62			o [50	1,900		5	113	20	240		8	651	230				1,900		2,100
zinc	qdd	15	22	26	2,2	<u> </u>	17	- 6	2 2	24	28	21	20	18	25	27	15			44	17	29		9	22	17	78		9	22	1 0	70		2	10	25	27
peə¬			3.1	5.6	2.4	ر د د	ο « α	0.0	0.4	7.5	7.0	4.4	6.3	7.7	9.2	0.2	2.7			4 6	2.0	14.4		9	3.7	2.4	9.6		9	7.2	3.9	r f		2	8.5	9.2	10.2
ИіскеІ Поске		3	4	က	5.1	o c	ο α) (C	2 1	. 10	4	6	7	æ	Ŋ	-	5.5			4 0	5 rc	5.9		9		4.0			9	m	4.7 5.0			2		5.8	1.4
Copper			8.5	8.2	6.7	0.0	2 C	. œ	0 00	11.9	11.7	13.3	10.0	12.4	6.5	12.1	7.8			4 4		13.3		9	7.3	6.3	8.5				2 03			2		12.4	12.1
Сһготіит		Σ.	89	Ö	Ξ:	4 5	2 0	5 7	2 9	35	35	23	77	8	77	8	2.21			4 6	1 57	5.23		9	2.27	2.09	7.58	,	9	4.25	3.46	2.53		2	3.24	4.90	.560 0.52 5.08 12.1
Cadmium		₽	22	49	66 ;	4 0	0 7	1 8	5 5	56	55	2	29	26	64	25	0.43	IJ		4.	, p	0.70		9	46	0.39	52		9	55	0.42	2		7	3 6	0.56	.52
d-†04		9	17	8	<u></u>	٥ :	1 1	- 00	0 00	0 00	25	25	42	2	4	⋖	0.16	Ш			l	0.25		9	17	0.14	18		9	7	0.18	2		7	17		
N-SON+SON	_	1			0.81												1.28				1	5.07	1 1	5	62	0.47	 64				0.65			2	3		
N-SHN		1 1		1	i	- 1	i		1	1	1	1	1		i	: 1	0.120					1.970		9		0.130					380					1.660	0.560
muiboS		7.7			78		1			1	ĺ	ì	i			1	27 0.	.1 1		İ	į	28 4		İ	<u> </u> j	22 0.	l			0	26 26 26 26	-		2	į		18 0.
Magnesium			1.56	1.57	1.50	9 6	5,1	5 12	1 47	1.43	1 44	1 42	1.50	1.52	1.15	1.21	1.52			4 6	1.5	1.57		9	1.49	1.35	1.5/		9	1.46	1.42	2		2	45. 14.	1.52	1.21
Galcium	_					l	L	l.	Ĺ	<u>. </u>	Ĺ	L.			<u> </u>		10.9	.		L	L	11.3			S.	9.5			9	9	7.3	5		7			80
Chloride	_	-	က	-	ω,	- 0	ט ע	0 0	1 @	2	0	7	7	6	က	7	53.1	. 1		4 0	n (1	.l			0	53.3	 		9	9	54.0			7	9 0		3.0 43.2 7
SSA						i	i			ì							2.0	Ш		7 0	1 C	3.5				0.0			4	œ,	3.24	<u>,</u>				3.5	3.0
SST	7/6ш	3.4	2.4	2.4	7.4	0.0	7 C	0 4	1 6	80	1.6	7.0	5.8	8.8	2.0	3.7	3.4			4 6	, t	- & 0 & 0 &				2.2			9	4.7	9.0	2		5		8.8	3.7
ВОР	7/6ա	2	Α	-	2.1	– c	, c.	SZ	2.5	Ž	3.3	ž	2.9	Ž	3.0	2.1			- [c	4 ~	3.5				- ;					2.5			- 6	3.U		2.1
Dissolved Oxygen	7/6ա	6.6	1.8	ω	9.7	0 0	10.0	5	7.8	8.15	9.4	6.6	8.8	10.6	8.3	8.1	6.6			, 2	7 2	11.8		9	6.6	80	11.8 1.8		9	8.8	8. o	9.		2 2	ο ο α	10.6	133 8.1
Conductivity	шэ/ѕоүшш	140	138	140	135	0 0	140	160	150	145	155	162	165	151	145	133	140		ľ	4 6	120	165		9	135	130	149		9	156	145	3		7	148	151	133
Hq][9.0		.l	Ĺ	<u>. </u>	Ĺ	<u>.</u>	İ	<u> </u>				6.9		_ I	- 1		9.9			Ġ	9.0	اف			9	9 8				9	9	
Тетрегаture		ဗ	ဖ	7	7.5	۰ ۰	0	ν α	0	0	6	6	9	ဝ	5	9	6.5		after		1	10.5				6.8				o	8.0 10.5	2	1 1			10.0	10.0
wol	efts	1			273			1	1	542	1	1				1	321.0		1 and 2	14	2220	676.0		9	335.5	222.0	483.0		9	580.5	540.0	200		2	533.5	547.0	ole) 497.0 10
				ii	430			i		300	.ļ	ļ	į.,						ı, Days									(ui					(in)				(aldı
ətsÖ		11/02/92	11/02/92	11/03/92	11/03/92	11/03/92	11/03/92	11/03/92	11/03/92	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	11/05/92	ole)		ta: Rair				rain)					after ra					after ra				(1 sar
uny		<u>.</u>				» ç				28	·}	ļ	ļ			72	(1 sam)		(All da				(during					(Day 1					(Day 2				(Day 3)
Weather (Dry, rain, days after rain)		Dry	Rain	Rain	Rain	ב מינים					••••••	•	·	48h	48h	72h	ATHER		ATHER			,	ATHER					ATHER					ATHER				ATHER
Station		BWW13	BWW13	BWW13	BWW13	DVVVI 3	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	DRY WEATHER (1 sample)		WET WEATHER (All data: Rain, Days 1 and 2 after rain)	Count	Minimum	Maximum	WET WEATHER (during rain	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 1 after rain)	Count	Mean (*)	Minimum	INGVIII	WET WEATHER (Day 2 after rain,	Count	Minimum (Maximum	WET WEATHER (Day 3) (1 sample)

E. coli	JM001/U3C	120	AN	2	110	140	190	/6 VV	5 5	3 2	2,600	NA	160	ΑN.	40	820	120		6	137	2,600	n	74	2 5	190		3	280	53	2,600		1	\$			850
Fecal Coliform	JW00N/U3C		Ϋ́	400	380	440	210	130 NA	Š	3 2	170	NA	170	¥	09	380	320		6	185	440	l li	282	300	440		3	132	80	170		ļ	8		•	380
Zinc	qda		10	16	8	6	1,	7 7	† rc	2 4	QN	QN	Q	5	9 4	n	7		11	7	16		o o	8 C	16		3	4	4	5		2	9	လ	5	2
реәд	qdo	1.3	1.0	1.4	7.8	8.	1.5	0 6	, c	12	2.2	2.0	1.5	1.2	0.8		1.3		14	9.	7.8		2 5	1 0	7.8		9	1.6	1.2	2.2		2	1.0	0.8	<u> </u>	1.7
Nickel	qdc	2	2	2	2	2	2	2 6	0 6	2	1.0	QV	0.7	2	0 7	-			2	8.0	1.0		-	1			4	0.7	9.0	0.0		٦	1.0			1.1
Copper	qdc	2.2	1.8	1.7	2.3	6.0	6. I	1.7	. r	9 6	1.9	1.8	2.1	1.5	9.0	2.3	2.2		14	2. V	2.3		o o	٠ م	2.3		9	1.8	1.5	2.1		2	1.6	ر ان	2	2.3
Chromium	qdc	0.64	0.33	0.54	1.65	0.62	0.47	0.21	0.45	0.23	0.36	0.73	0.47	0.45	0.31	0.27	0.64	1.	13	0.52	1.65		2 6	20.0	1.65		5	0.45	0.23	0.73		2	0.38	0.31		0.08 0.27 2.3
muimbsO		J!		: :		•		2 2	- 1	;		: :	: :						5	0.05	0.09		900	900	0.06		7	90.0	0.05	0.05						0.08
d-+0d	7 /6u	2	Q	Q	2	2	2	2 2	2 2	2 2	Q	QN	Q	2		NA.							-	-				<u> </u>	,						,	
N-EON+2ON	7/6և	0.37	0.38	0.37	0.42	0.31	0.42	0.33	232	0.28	0.38	0.32	0.31	0.33	0.32	NA.	0.37		14	0.34	0.42		22 0	5.5	0.42		9	0.32	0.28	0.38		2	0.33	0.32	3	150
N-SHN	7/6ա	0.08	0.08	0.06	0.11	0.07	0.14	0.0	000	0.17	0.03	0.17	0.03	0.13	0.05	0.13	0.080		14	0.091	0.170		000	2000	0.140		9	0.090	0.030	0.170		2	0.090	0.050	3	
muibo	7/6ա		က	က	က	5	η,	4 4	t 6) m	က	က	2	4	ი ი	D.	က		i.	1.	7 4	i i		<u>l</u>	14		9	ĺ	7					დ 4		6
muisəngsM	7/ ໓ w	0.49	0.49	0.49	0.45	0.47	0.46	74.0	0.46	0.46	0.45	0.44	0.43	0.43	643	0.43	0.49		14	0.46	0.49) (4.0	0.49		9		0.43			2	0.43	0.43	5	0.43
Calcium	⊐/6ա	4.4	4.1	4.1	4 1	4.1	0.4	4.0 7	3.0	3.4	3.7	3.2	3.6	3.6	3.7	3.7	4.4		14	3.7	4.1) ,	. c	1.4				3.2					3.6		3.7
Chloride	7/6w	20.4	24.7	22.2	28.4	26.9	26.8	27.9	23.1	27.1	23.7	25.4	27.0	26.2	27.2	24.0	20.4		14	25.8	28.4		26.2	2007	28.4		9	25.2	23.1	27.1		7	26.7	26.2	1	1.6 24.5 3
SSV	7/ይա	Q	N	1.4	1.0	9.	0	Σ°	7.7 CN	7 2	0.4	4.	1.0	0.1	Q v	0			9	9.	0.0		7	3 c	9 9		2	2.0	1.0	4.0	-		1.0			1.6
881	¬/6ա	1.4	Q	1.6	2.8	2.4	1.8	2.7 2 a	o Z	9	4.7	1.8	1.2	1.2	0 6	ο:	1.4		12	7.7	1.0		2 6	, , (2.8			~	1.2	4		2	1.1	1.0	1	1.6
BOD	უ/ ნⴍ	Q	Ϋ́	4.	2.1	4.	6. 6	3.0	20	ž	1.5	ΑN	9.	ž:	2 2	S			8	9.	3.0) 0		3.0		3	1.7	1.5	2.0						<u>-</u>
Dissolved Oxygen	¬ /6ω	8.6		8.8	7.9	10.6	80 0	11.3		10	9.7			Ϋ́		D)	9.6		13	χ. Ο (12.8	9	10.0	7 0	12.8		9		8.2	10.4		-	8.7			9.0
Conductivity	шэ/ѕочшш]						69									19				82				8				62		Ш		i	71	1	82
Hq					ı		1	9 6			1			- 1	-		6.9	in)			6.9 4.0		4	D G	9.9		9	6.7	6.5	9.8		2	6.7	6.4 9.0	3	
Temperature	O geb		8.0	7.5	8.0	8.2	8.5	9.0	ο Ο Γ	0 6	9.0	9.5	10.5	10.6	0.0	0.0	7.2	after ra			10.6		C Q	7.0	9.0		9	9.4	9.0	10.5		2	10.1	9.5	2	10.0
Flow	ete	li			ı			105	1	i				130	128	2	68.0	1 and 2 after rain	14	108.8	130.0	G	25.5	0.00	105.0		9	125.3	116.0	130.0		2	129.0	128.0	2	113.0
əmiT	1	1800		1	i	- 1	1325	- 1		•				2030	2340	1/30		Days 1								2) (
Date		11/02/92	11/03/92	11/03/92	11/03/92	11/03/92	11/03/92	11/03/92	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	78/C0/11	(a)di	ıta: Rain,				g rain)				after rain					after rain		1) (1 sam
упр		۵		ო	ဖ	တ (7	9 6	24	78	32	36	40	4	84 t	7/	(1 sam	(All da				(durin				(Day 1					(Day 2					(Day 3
Weather (Dry, rain, days after rain)		۵	Rain	Rain	Rain			Kain 24h							48h		THER	THER				THER				THER					THER					THER
noijstS		1 :		: :	:			BWW14	:	:	:	: :	: :			``I	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Mean ()	Maximum	WET WEATHER (during rain)	Moon (*)	Minim m	Maximum	WET WEATHER (Day	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum		WET WEATHER (Day 3) (1 sample)

age 14

Page A15-81

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II

E. coli	7W00WF		ΑĀ	ΝA	Ϋ́	Ϋ́	₹ S	Z Z	Z Z	Ϋ́	ΑN	Ϋ́	ΝΑ	Ϋ́	ΑN	NA							***************************************													
Fecal Coliform	JM00NU3C	1	ΑN	NA	ΑN	YY S	Y Y	Z Z	ΣΥ	Ϋ́	₹	₹	AN	ΑN	ΑN	Z A								••••		}							+			
Dinc	qdd	9	6	14	2	o (2 7	- 4	r (C	7	5	æ	4	4	သ	4	10		14	7	14		9 6	2 "	74		9	9	4	80		7	2	4 2	5	4
реәд	qdd	6:	3.1	1.6	1.2	3.3	0.7	ν 6 4	20	4.	1.4	1.1	0.9	1.4	1.5	0.0	1.0		14	2.2	6.1		9 6	5.0	6.1		9	1.7	6.0	3.4		7	1.5	4.1	-	1.0
Nickel	qdd	0.5	6.0	1.0	2	28	0 0	° C	100	0.7	0.7	0.8	1.2	2	1.5	2	0.5		11	0.0	1.5		4 0		1.0		9	6.0	0.7	1.2		-	1.5			
Соррег	qdd	1.7	5.6	1.1	1.0	1.5	- 6	1 2	1 4	1.5	1.2	1.1	0.8	1.2	4.5	1.7	1.7		14	7.7 0	5.6				5.6		9	1.2	9.0	1.5		7	2.9	1.2	; ;	1.7
Сһготіит	qdd	0.60	Q	0.70	0.51	0.48	0.24	0.35	0.23	0.28	0.54	0.29	ON.	2	2	2	09.0		10	0.40	0.70		2 2	5 2	0.70		2	0.33	0.21	0.54				ļļ		
muimbsO	qdd	2	0.07	Q	2	0.09	2 2	0.00	2	Ω	S	N	Q	2	0.14	0.25			2	0.08	0.14	.	ლ ბ	200	0.09			0.05				-	0.14			0.25
d-tOd	7/ 6 w	2		Q	2	ç	20.0	0.00	2	Q	QN	0.01	0.01	0.01	9	¥			6	0.02	0.08		4 6		0.08		4	0.01		0.01		-	0.01			- 60
N-SON+ZON	7/6 ա	0.55	0.55	0.54	0.54	A S	0.87	0.43	0.43	0.47	0.48	0.49	0.49	0.49	0.48	¥	0.55		13	0.52	0.87		C 2	0.03	0.87		9	0.47	0.43	0.49		2	0.49	0.48	0.40	260
N-EHN	7/6 w	0.31	0.33	0.35	0.32	0.45	0.30	0.36	0.26	0.37	0.39	0.39	0.34	0.35	0.33	0.26	0.310		14	0.354	0.450		950	320	0.450	,	9	352	0.260	330		2	340	0.330	200	0.260
muiboS	7/6w	21	20	20	21	0 0	6	27	20	20	21	20	17	18	20	9	24 (L	20 -					21 (9	Į	17 (2	<u>. </u>	18]	18 0.
Magnesium	7/6w	1.07	1.04	1.06	1.07	1.06	9 6	103	20	1.03	66.0	1.09	1.06	1.07	1.09	1.1	1.07		14	1.05	1.09		9 5	3 5	1.07		9	1.04	0.99	1.09		2	1.08	1.07	 	1.11
Calcium	7/6w	8.5	8.0	8.5	8.4	8 0	α 7. α	0 00	7.7	7.6	8.2	7.6	7.9	8.2	9.1	8.2	8.5		14	8.0 7.1	8.5		9 6	7.0	8.5		9	7.7	7.1	8.2		2	8.1	8.1 2.	2	8.2
Chloride	Ⴄ /6ա	47.0	54.1	44.3	48.8	51.3	58.7	52.4	50.7	55.9	46.9	52.4	56.2	54.7	0.09	52.9	47.0		14	52.9	60.0		o o	44.3	58.7		9	52.4	46.9	56.2		2	57.4	54.7		- Not Applyand
SSA	7/6w		1.6	Ϋ́	2	3.0	0 0	3.0	0 0	1.8	1.6	1.2	1.4	1.2	1.4	1.4			12	1.8 7.0	3.0		4 6	7 F	3.0		9	1.8	1.2	3.0		2	1.3	1.2	ř.	1.4 - NA
881	7/ 6 w	2.2	3.0	2.4	2	4.0	ن 5 م	4 4	2.4	4.0	3.4	2.6	2.4	2.8	2.8	2.0	2.2			3.3 4			2 2	2.4	5.4		9	3.2	2.4	4.4		2		2.8		2.0
BOD	7/6w	¥	Ϋ́	Ž	Ϋ́	Ϋ́ Z	Σ Ζ	Ç Z	≨	Ϋ́	ΝΑ	ΑN	Ϋ́	Ϋ́	ž	Z V												-								
negyxO bevlossiO	7/6ш		_		7.2	ľ	1		Ī		ω		'	_	~	~	5.8		14	4.6	8.8		o ر		7.3		9		6.0	8.7		2		& a		8.7
Conductivity	шэ/вочшш	ļ	ļ		121	<u></u> [<u></u> į	Ļ	<u>.</u>	ļ	ļ		[125		!	125	1	1 1	- 1	1	130		L	<u> </u>	120			2	130	127	102	148 (
Hq		ø	Ö	ဖ	6.6	9	o u	Ó	Ö	9	Ö	Ö	Ö	9	ဖ		6.3	ain)	: :	9.9			<u> </u>	o c	9			ø	6.4	ဖြ			9	6.7		
Temperature	ე ɓəp	1			- 1		1		1	1		1		- 1	ŧ	i	8.5	after r	14	က က ျ				5 10	9		9	1				1	İ	10.8	1	9.5
Flow	efs				11												10.0	1 and 2	14	19.	31.0		9 4	9 0	22.0		9	21.2	16.0	24.0			26.0	21.0	2	ole) 18.0 9
Time	-		222	2 14!	435	800	150	185	2210	25(. 64(101	144	184	221			, Days								in					in)					nple)
Date		11/02/92	11/02/92	1/03/92	11/03/92	1/03/92	1/03/82	1/03/92	1/03/92	11/04/92	1/04/92	1/04/92	11/04/92	1/04/92	1/04/92	11/05/92	Je)	a: Rain				rain)				affer rain					after ra					(1 sam
Вип		٦			9						32 1	36 1	40	44	48		(1 samp	(All dat				(during				1	·l				Day 2	1				(Day 3)
Weather (Dry, rain, days after rain)	,	ρλ															THER	THER				THER				THER					THER					THER
noitst		BWW15S Dry	BWW15S	BWW15S	BWW15S	BWW155	BWW155	BWW15S	BWW15S	BWW15S	BWW15S	BWW15S	BWW15S	BWW15S	BWW15S	BWW15S	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days 1 and 2 after rain)	Count	Mean (*) Minimum	Maximum	WET WEATHER (during rain)	Count	Minimim	Maximum	WET WEATHER (Dav	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum		WET WEATHER (Day 3) (1 sample)

E. coli	Jm001/U3C		Ϋ́	8,700	1,700	12,000	3,800	4,800	Ϋ́	2,800	≨	1,500	¥	1,600	¥	2,200	3,400	3,000		6	3,311	1,500	12,000		ה נ	20,0	12,000			က	1,887	1,500	4,000		_	2,200			3,400
Fecal Coliform	DFU/100mL	46,000	AA	59,000	45,000	62,000	44,000	79,000	ΑN	42,000	A A	26,000	ΑN	26,000	Ϋ́	14,000	29,000	46,000		6	39,374	14,000	79,000		0 6	00,400	79,000			က	30,507	26,000	12,000;		-	14,000			29,000
Zinc	qdd	16	24	25	23	29	15	24	2	18	ω	4	ω	5	က	82	2	16		14	23	က	82		٥ و	3 4	29			9	=	4 10		1	2	43	82 33	;	9
ревор	qdd	1.9	8.6	4.3	5.9	5.4	2.9	8.7	3.6	8.3	9.0	4.1	1.5	2.3	2.6	2.9	1.8	1.9		14	4.8	1.5	8.7		0 6	0	8.7			9	4.3	ر: د ۾	2		2	2.8	2.6	į	1.8
Nickel	qdd	6.0	9.0	Q	9	1.6	9.0	9.0	0.6	0.5	0.5	2	1.0	6.0	1.	2	2	0.9		10	1.6	0.5	0.6	;	4 0	n (6.		Ì	3	2.4	0.5	3		-	Ξ.			ilo:
Соррег		3.9	3.5	2.4	3.1	7.3	2.0	5.7	3.8	3.7	3.1	1.6	1.8	1.8	1.7	2.1	1.7	3.9		4	3.1	1.6	7.3		0 (t c	7.3			9	2.6	7.6 8 8	3		2	1.9	1.7	•	1.7 and E
Chromium	qdd	S	Q	g	9	2	2	9	4.93	2	2	9	9	9	0.14	1.07	0.46			က	2.05	0.14	4.93							-	4.93				2	0.61	1.07	<u>:</u>	0.46
Cadmium	qdd	0.39	0.15	0.14	0.17	0.37	0.10	0.11	0.07	0.12	0.10	2	0.07	Q	0.07	0.24		0.39		12	0.14	0.07	0.37		1	1	0.37			4	0.09	0.07	<u>i</u>		7	0.16	0.07	;	Feral
d-t-0d	7/6w	0.03	0.07	0.03	0.0 40.0	0.09	0.04	0.04	0.0	0.0	0.0	0.0	0.03	0.0	0.0	0.0	¥	0.03		14	0.03	0.01	0.09		٥	3 6	0.0		Ī	9	0.0	0.0	2			0	0 0	'l l	ean for
N-£ON+ZON	7/6w	0.75	0.75	0.81	0.82	0.54	0.75	0.63	0.48	0.52	0.45	0.42	0.40	0.47	0.45	0.74	Ž	0.75		14	0.59	0.40	0.82	;	٥	2 2	0.82		,			0.40			2	0.60	0.45	;	m chir
N-EHN	7/6w	0.28	0.54	0.17	0.19	0.18	0.19	0.01	0.14	2	0.13	9	0.51	0.05	0.21	0.03	0.34	0.280		12	0.196	0.010	0.540		0	2 0	0.540		,	4	0.208	0.020	2		2	0.120	0.030		0.340 0.46 1.7
muiboS	7/6ш	13	18	18	18	12	16	4	13	12	13	12	15	7	15	14	12	19		14	15	12	18		٥	2 0	9 4		Ì	9	13	7 7	<u>"</u>		2	13	4 5	! !	15
muisəngsM	¬ /6ⴍ	1.21	1.05	1.20	1.14	0.70	1.08	0.81	0.86	0.98	1.01	1.05	1 .	1.02	1.03	0.85	0.98	1.21		14	0.99	0.70	1.20		٥	3 0	1.20		ï	9	9.	1 2 6	<u> </u>		7	0.94	0.85		0.98
muiolsO	7/6w	10.3	9.5	9. 9.	9.9	7.0	9.5	7.8	7.3	7.1	8.1	8.8	8.3	8.5	8.5	7.7	8.0	10.3		14	8.4	7.0	6.6		0	0 0	6.6		ļ			- α α			7	 1.1	7.7		8.0
Chloride	⊤ /6ⴍ	36.8	44.8	42.2	45.6	28.9	43.1	38.3	32.5	33.6	38.5	33.7	37.1	40.4	32.7	43.2	38.4	36.8		14	38.2	28.9	45.6	;	9	0 0 0 0 0	45.6		1	9 0	36.0	32.5 40.4	: د د		7	38.0	32.7 43.2	<u>:</u>	1.6 38.4 8 NA = Not Apalyzed
SSA] ;	"		15.6		į	ı				ı		1	- 1	- 1	- 1	1.6		11			- 1	i	0 0	2 -	31.2		ï	2	2.3	4.4	, ,		1	4.8			1.6 NA = N
SST		1 3		: :		- 3				- 1	- 1		- 1		- 1	- 1		2.0				1.4			ç	9 0	90.4				7	- « 4 «	2			7			2.2
BOD	7/6ш					- 1				Ì					1	- 1		3 3.1			4	2.4	_		4	Ö	7.6			ľ	4 (4 50				2.4	<u> </u>	1 1	0 2.3
negyxO bevlossiO	7/6ա	ļ			0 6.5	i					:		i	İ	<u>i</u> .	<u>ì</u> .		9		٦	9	0 6.1	ω. 		4	o (c	7.3		ŀ	1	``	∞ اه	<u>خ</u>			6	9 7		7.0 SomeSov
Conductivity		L			6.5 110		- 1				- 1	- 1		.6 112	- 1		NA NA	6.3 135				6.4 80		l I.,	L	İ	6.8 118			!	-	6.7 112		1 1		Ť	6.5 115 7.0 120	1 1	
Hq		li			5.9 6	- 1	1		1	1		1	- 1					6.5 6	r rain)		~	5.9		11	0 4	, 0	8.0			- 1	- 1	o 2.1	1	iΙ	1		9.2 6 10.0 7	1 1	8.6 F
Flow Temperature		9			œ		- 1		i	ı		1	į	į	i			0.9	and 2 after rain	14		0.9	_	i.		l	30.0			- 1	1	21.0	1			1	11.0		11.0
Fime Time	cfs	li	235	130	420	740	120	445	840	500	240	930	1010	1430	830	200	425		-		-		ř		Ť		E		ŀ		-	= ``	-			-		-	ole) 11.0 9
		ļi	, . ,	i	į.	j.	į.	į.	į	į	į	į.	į	ļ.	Į	l.,			ain, Da										rain)					rain)					ample)
əjsQ		11/02/92	11/02/92	11/03/92	11/03/92	<u>.</u>	j.		[-		j	į.	j.	∤-	j		11/05/92	(aldur	data: R					ing rair					/ 1 affer					2 after					3) (1 s
after rain) Run		۵			9	<u>.</u>	ļ			7 5					- 4		72	R (1 sa	R (All		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			R (dur				i	K (Da)					R (Day		***************************************			R (Day
Weather (Dry, rain, days		16 Dry				•••••	•••••			16 24h	,,			•••••	····:		16 72h	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days		Đ	Ę	ωn	WET WEATHER (during rain	*		5		WEI WEATHER (Day 1 after rain)	•				WET WEATHER (Day 2 after rain)		.	<u> </u>		WET WEATHER (Day 3) (1 sample) ND = Not Detected NM
Station		BWW16	BWW16	BWW16	BWW16	BWW	BWW	BWW	BWW.	BWW	BWW.	BWW.	BWW	BWW	BWW16	NAM C	BWW16	DRY W	WETW	Count	Mean (*)	Minimum	Maximum	WETV	1 60	Minim	Maximum		WE	Sound Sound	Mean ()	Maximum		WET N	Count	Mean (*)	Maximum		WET W

Page A15-83

E. coli	Jm001/U3C	43	Ą	40	310	1,100	390	780	ΝA	170	Ν	160	Ϋ́	330	Ϋ́	350	820	43		6	287	1,100		r.	334	40	3		ဇ	208	330		-	350			820	
Fecal Coliform	Jm001/U9C	110	Ϋ́	120	640	1,200	990	200	ΑŽ	750	NA	340	Ϋ́	870	NA	1,200	2,000	110		6	553	1,200			449	120	002,1		ဇ	605	340 870			1 200			2,000	
Zinc	qdo	17	33	27	18	27	24	ΑĀ	13	12	12	19	15	24	19	17	27	17		13	20	33			26	18	3		9	16	12 24		2	1 @	1 2	19	27	
Lead	qdc	2.4	2.7	2.6	3.5	5.1	5.3	3.4	3.3	12.4	3.4	5.8	6.1	5.7	5.5	1.5	9.3	2.4		14	4.7	12.4		ď		2.6			9	6.1	3.3	1	3	1 5		5.5	9.3	
Nickel	qdo		4.7	4.7	4.7	0.4	4.7	5.0	5.9	4.2	0.9	5.4	5.6	6.3	9.9	5.7	2.0	4.9		14	5.3	6.6 6.6		<u>د</u>		0.4					6.3 6.3		,		5.7		5.0	
Copper	qdc	8.0	6.8	6.8	8.7	9.2	7.0	9.7	7.4	7.0	9.9	8.2	9.4	10.5	10.8	8.9	9.5	8.0		14	8.4	6.8 10.8		ď		6.8			9	8.7	10.5		0	1 00	9 8 9	10.8	9.5	and E. Col
Сһготіит	qdc	2.05	1.81	1.92	2.12	2.30	1.97	1.99	2.09	1.75	2.52	2.87	3.24	3.31	3.09	1.66	3.07	2.05		14	2.33	3.31		e e	2.02	1.81	20.3		9	2.63	3.31		9	238	1.66	3.09	3.07	Coliform a
muimbsO	qdc	0.52	0.41	0.35	0.41	0.34	0.34	0.38	0.38	0.36	0.51	0.52	0.64	0.68	0.70	0.54	1.04	0.52		14	0.47	0.34		ď	0.37	0.34			9	0.52	0.36			0.62	0.54	0.70	1.04	Fecal Co
d-†0d	7/6ս	0.19	0.18	0.16	0.18	0.16	0.17	0.18	0.16	0.16	0.19	0.16	0.19	0.24	0.25	0.21	ΑĀ	0.19		14	0.19	0.16		9	0.17	0.16	 2		9	0.18	0.76		0	0 23	0.21	0.25		an for F
N-EON+SON	7/6u	2.13	1.58	1.44	1.51	1.37	¥	1.44	1.31	1.17	1.86	1.27	1.31	1.51	1.34	2.60	N A	2.13		13	1.52	1.17			1.47	1.37	5		9	1.41	1.86		,	1 97	1.34	2.60		Geometric mean for
N-SHN	7/6ա	0.12	0.10	0.10	0.08	Q	0.11	0.18	0.17	0.21	0.48	0.37	0.68	0.16	1.20	ž	0.74	0.120		12	0.320	0.080			1114	0.080	3		9	345	0.680		-	1 200			0.740	
muibo8	7/6u	28	27	26	26	24	26	26	25	24	27	26	27	27	28	28	70	28		l i		24 (9	<u> </u>	24		ı	li	i	27 (1 1	,	<u> </u>	28	78	20	ت
magnesium	7/6u	2.13	2.12	1.98	1.99	1.82	1.90	1.89	1.91	1.80	1.93	1.77	1.64	1.75	1.94	1.90	1.47	2.13		14	1.88	1.64		9	1.95	1.82	2 2		9	1.80	1.64 1.93		,	1 92	1 30	1.94	1.47	
muiolsO	7/6ա	12.0	11.5	11.1	11.2	10.3	11.0	11.0	10.7	8.9	10.6	10.5	10.0	11.0	1.8	11.7	8.9	12.0		14	10.8	8.9		9	11.0	10.3	2		9	10.3	11.0		2	117	11.7	11.8	8.9	Po
Chloride	7/6w	50.2	54.1	58.9	63.9	56.3	59.7	65.5	54.9	50.1	63.8	52.3	57.3	63.4	67.1	74.4	46.9	50.2		14	60.1	74.4		9	59.7	54.1 65.5	3		9	57.0	50.1 63.8		٥	70.8	67.1	74.4	46.9	Not Analyzed
SSV	7/6w	1.4	1.2	1.2	2.2	1.8	1.2	1.4	2	2.2	4.0	1.5	2.0	2.0	2.2	2	1,3	1.4		12	1.9	4.0		9	1.5	1.2	12.5		S	2.3	4.0		-	2.2			1.3	NA = No
SSI	¬ /ճա	2.0	1.6	1.4	3.8	3.6	2.0	2.6	1.6	5.3	6.8	4.2	5.0	4.4	4.8	4.1	8.7	2.0		14	3.5	1.4		9	2.5	<u>+</u> α	2				0.B		~	3.1	1.4	4.8	8.7	4
BOD	7/ 6 w	2	Ϋ́	1.7	2.5	3.2	2.3	4.0	ΑN	2.5	Ϋ́	2.2	ž	2.5	≨	ž	1.9	******		ω	2.6	4.0		5	2.7	1.7			3	4.2	2.5			- 	Ħ		1.9	
Dissolved Oxygen	7/6ա	=	٦	Ξ.	-	ω	5	9	9		8.7	œί	<u>о</u>	ω	5	ത് 🏻	80	11.4			10.0	12.0		Ì	10	8.8	1		ľ	on c			2		9.5	10.4	8.0	ım
Conductivity	шэ/ѕочшш	<u> </u>		į	135		[]]	160			120	164		[- 1	125		1	1	125			9	150	160		~	175	175	1/2	150	NS=No S
Hd		ဖ	ω	9	ii	Ö	ဖ	Ö,	o,	ဖ	ဖ	ø.	Ø	Ö	ဖ	6		6.3	in)		٦	6.5			9	9 9]			9	6.8 6.8			9	6.7	9		
Temperature	O geb	_	z	7		ω.	ω	ω.	80	œ	တ	6	6	5	9	9	9	7.3	after r	13		10.2		5	7.8	7.2			9	0.0	10.2		2	10.1	10.0	10.2	10.0	sured
Wol	efo	}					į	- 1	- 1	- 1	- 1	- 1	1	- 1	- 1	1	}	259.0	1 and 2	14	483.6	282.0 693.0	Ì	9	309.8	282.0	200		9	607.5	693.0		2	633.0	606.0	990.n	569.0	NM= Not Measured
Time				: :	415				1810								1500		Days									(u,				1						NW=N
Date		11/02/92	1/02/92	1/03/92	11/03/92	1/03/92	1/03/92	11/03/92	11/03/92	1/03/92	1/04/92	1/04/92	1/04/92	1/04/92	1/04/92	1/04/92	11/05/92	(e)	a: Rain,				rain	,				after rain				Mor rai	100	-			(1 sample)	
уnu		٦		į	6	j.	*****											1 samp	(All dat				(during rain					1				nav 2 ;	7 (80				(Day 3)	-
Weather (Dry, rain, days after rain)	*	Dıy				•••••	Rain	·····	24h					****	•••••	48h		THER (THER (THER /					THER (THER /					THER (Setecter
Station		BWW17	BWW17	BWW17	BWW17									:	:		1	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days 1 and 2 after rain)	Count	Mean (*)	Maximum	WET WEATHER	Count	Mean (*)	Minimum		WET WEATHER (Day	Count	Mean ()	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 3) (1	ND = Not Detected

E. coli	CEN\100WF		ž	46	77	130	, «	Σ	570	Ϋ́	56	Š	130	ž	170	830	12		6	95 24	570		5	62	72	2		က	161	56	0/c		-	12			830	
		20	¥	30	09	တ္က မ	10	2 ≰	8	Ą	8	¥	560	Ϋ́	90	100	120		6	689	8		5	47	280	8		က	8	560	3		-	990			8	
Fecal Coliform	CFU/100mL	٦		ဖ	6	930	1 6) ~	1,3		1,0	-	5	_		2,1				900	1,0			ις,	2 0	Ď			6	,				ð			2,100	
Zinc	qdd	20	33	22	20	8 8	17	20	22	20	21	17	18	23	19	16	20		4	23	36		9	56	7- 20	8		9	8	17	77		2	21	19	23	16	
реэд	qdd	2.6	2.5	3.0	4.1	0 c	2,0	3.9	6.0	4.3	5.1	4.5	4.7	4.8	1.3	5.5	2.6		14	2.4	8.3		9	3.9	2.5	9		9	4.7	6.0	٥		2	3.1	1.3	4.8	5.2	
ИіскеІ	qdd	5.0	4.3	5.1	8 1	4, k	4	4.4	4.1	6.4	4.5	5.2	4.9	5.6	5.3	 89.	5.0	:	14	4. 4	5.6		9	4.6	0.4	<u></u>		9	4.7	4.1	5.2				5.3		3.8	Coli
Copper	qdd	8.5	7.4	8.9	9.5	10.2 5.5	9 00	0.0	10.6	12.0	10.0	0.6	11.3	11.8	7.7	<u>+</u>	8.5		14	9.6 7.4	12.0		9	8.8	7.4	10.4		9	10.3	0.6	12.0		2	9.6	7.7	11.8	11.1	and E. C
muimord⊃	qdd	1.66	1.46	1.60	1.94	2.72	53	194	2.26	1.92	3.36	2.87	3.04	3.00	1.31	2.53	1.66		14	1.31	3.36		9	1.83	1.46	2.12		9	2.57	1.92	3.36		2	2.16	1.31	3.00	2.53	oliform a
muimbsO	qdd	0.42	0.36	0.39	0.41	0.7	0.37	0.37	0.50	0.57	0.51	0.52	0.59	0.64	0.46	0.62	0.42		4	0.49 36	0.71		9	9. 4	0.36	 		9	0.51	0.37	0.58		2	0.55	0.46	0.64	0.62	Geometric mean for Fecal Coliform
d-1/0d	7/6ⴍ	0.18	0.30	0.31	0.31	0.36	0.00	0.26	0.31	0.28	ΑŽ	0.23	0.25	0.31	0.33	<u></u>	0.18		13	0.29	0.36		9	0.31	0.26	50.50		5	0.27	0.23	0.31		5	0.32	0.31	0.33		an for F
N-SON+SON	7/6w	2.74	1.72	1.62	1.72	1.55	1 48	1.23	Ϋ́	1.51	Ν Α	1.31	1.12	1.15	1.47	ž	2.74		12	1.45	1.72		9	1.60	1.48	1.72		4	1.29	1.12	1.51		2	1.31	1.15	1.47		etric me
N-EHN	7/6w	0.80	0.42	1.87	1.36	0.98	1.52	1.62	1.19	0.75	1.24	0.82	1.30	0.74	1.52	2.06	0.800		14	1.171	1.870		9	1.202	0.420	0,0		9	1.153	0.750	1.620		2	1.130	0.740	1.520	2.060	Geom
muibo8		J			I	ဗို	L	.	. i	ļ	ii	İ		i	i.		32		<u></u>	35 0 0					32	l		li	i	82			L	İ	31		28	£
muisəngsM	7/6w	1.50	1.57	1.97	1.50	1.60	8 6	1.79	1.64	1.71	1.64	2.10	1.61	1.70	1.56	1.60	1.50		14	1.71	2.10		9	1.70	1.50	-3/		9	1.75	1.61	2.10		2	1.63	1.56	1.70	1.60	
muiolsO	7/6 ш	12.4	12.2	12.4	12.3	2, 6	1 4	10.8	9.7	10.0	10.2	10.4	10.4	Ϋ́	11.3	9.2	12.4		13	7.1	12.4		9	11.9	11.3	12.4		9	10.2	0.7	10.8		-	11.3			9.6	ed
Chloride										:						- 1	56.8		14	39.5	80.0		9	71.1	57.0	17:71		9	62.9	56.8	7.14		7	59.8	39.5	80.0	62.4	= Not Analyzed
SSV	7/6w	2.8	1.4	2.2	2.2	8. 6		3.4	8.4	6.6	1.0	2.8	3.8	0.9	15.5	2	2.8		14	2. 2.00	15.5		9	9.1	0.0	7.7		9	3.7	0.6	9.0		5	10.8	6.0	15.5		NA = No
SST		1 1								1 1				- 1	- 1	- 1	3.0		14	9 6	22.5		9	2.6	6. c	5 0.0		9	7.0	3.4	0.0		7	17.1	11.6	22.5	1.6	_
ВОР	7/ɓw	2.1	ΑN	2.2	3.2	 	4 4	Ϋ́	5.3	ΑN	3.0	Ž	3.1	Š	3.5	2.9	2.1		6	4.0	5.3		2	3.1	2.7	-				3.0				3.5			2.9	e Se
Dissolved Oxygen	7/6ⴍ	8	7	ဖ	7	i) (C	ာ	9	7.5	80	7	Ø	00	œ	∞	8.1			4. 6	6			9	6.5	-			7.	6.1	D)		<u> </u>	æί	8.4	∞	200 8.2	lo Sam
Conductivity	шэ/ѕоцшш		[[<u></u> [180	.Į		ļ			L			Ì.]	170		j.	152					171					152			L	<u> </u>	184		200	NS= N
Hq		0	2	2	ω.	2 6.5 5 7			0	0	0		ω	~			0 6.1	rain)	4 1/	0.6 0.6 0.6	1	ŀ	9	9	2 6.5) 			9	0 6.4	اه		1	l	7 6.8		0	
Temperature		8	ω	ω	ဖ	α α	ο α	0	6	ω	ω	ω	თ	9	o i	9	0 8.0	2 after	4 1	62	1			æ	600	٥				8.0		1 1			0 9.7		0 10.0	asured
Flow	sio		1	1	- 1	30 451	1	1							i		295.0	1 and	1	265.0	767			359.	265.0	3			627.	451.0	/9/			679	628.0	730	568.0	NM= Not Measured
əmiT		ļi				1200			ļ	į	ļį	L		į.	Į.	1500		n, Days									ain)					rain)					mple)	=WN
Date		11/02/9	11/02/92	11/03/92	11/03/5	11/03/92	11/03/92	11/03/92	11/03/92	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	11/05/92	(ejdi	ıta: Rai	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			g rain)					after r					after					(1 sar	
Вun		۵.		ო	9	ъ С	1 6	20	24	ļ	ļ	ļ		·····	48	72	(1 sam	(All de		***************************************		(durin					(Day 1					(Day 2					(Day 3	ed
Weather (Dry, rain, days after rain)		Ω	······	•••••••••••••••••••••••••••••••••••••••		•••••	Z Z		· · · · · · ·							72h	ATHER	ATHER				ATHER					ATHER					ATHER				اے	ATHER	t Detect
Station		3WW18	3WW18	3WW18	3WW18	BWW18	WW18	WW18	1WW18	1WW18	3WW18	3WW18	3WW18	3WW18	BWW18	BWW18	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days 1 and 2 after rain)	Count	Minimum	Maximum	WET WEATHER (during rain,	Count	Mean (*)	Minimum	MaxIII	WET WEATHER (Day 1 after rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 3) (1 sample)	D = Not
		<u> m</u>	<u>a)</u>	ш	шβ	niα	1 <u>i</u> CC	1 <u>. m</u>	<u>:</u> CO	<u> </u>	m	<u>m</u>	<u>m</u>	m j	10	ıı)		5	O.	2 2	2	S	O	2	2 2	<u>≧</u>	5	O	2	≥:	<u>≥</u> j	5	ပ	≥	≥ :	≥]	5	Z

Page A15-85

E. coli	Jm001/U3C	3	Ϋ́	11	6	45	2 2	Ϋ́	NS	Ž	290	¥	120	Ν	က	86	3		80	32	290		5	26	9	2		7 10	187	290			. 60			86
Fecal Coliform	Jm001/U3C		ΑN	290	120	390	2 8	Ϋ́	NS	Ž	290	¥	760	۸A	150	840	140		8	237	760		5	171	390			2 5	0/0	760		-	150		,,,	840
Zinc	qdo	17	32	15	20	23	23	13	NS	29	26	32	24	26	26	26	17		13	7	32		9	24	15	3		က	67	32		2	26	26	3	26
pead	qdd	2.2	2.7	2.7	3.3	2.7	1 7 8	2.9	SN	0.9	7.9	8.2	5.7	5.4	1.8	5.4	2.2		13	4.4	8.2		9	3.2	2.7					8.2		2	3.6	4.8 4.8	ř	5.4
ИіскеІ	qdd	3.7	4.3	3.9	4.7	5.6	7 7	4 8	SN	7.0	6.1	7.0	8.9	6.0	6.1	7.9	3.7		13	5.7	7.7				3.9					7.0		5		6.0		7.9
Copper	qdd	6.9	7.1	7.2	6.9	6.7	ς σ	0.9	SN	9.7	11.4	10.2	11.4	8.9	5.6	8.9	6.9		13	4.	11.4		9	7.5	6.7 8.0			2 0	n d	11.4		2	7.3	5.6	 2	8.9 and E. C
Chromium	qdd	1.36	1.39	1.42	0.93	0.88	207	1.05	NS	2.37	3.12	2.80	2.42	1.82	0.95	2.47	1.36		13	1.65	3.12		9	1.16	0.88			2	4.35	3.12		2	1.39	0.95	2.4	2.47 Coliform 8
Cadmium	qdd	0.35	0.35	0.35	0.23	0.28	3 5	0.41	NS	0.55	0.64	0.71	0.46	0.52	0.37	0.62	0.35		13	9. 4.	0.71		9	0.35	0.23			2	0.55	0.71		2	0.45	0.37	2.2	0.62 Fecal Co
d-tod	7/6w	0.23	0.19	0.20	0.23	0.23	0.23	0.27	NS	0.32	0.28	0.25	0.29	0.27	0.23	¥	0.23		13	0.25	0.32		9		0.19			Ω 2	07.0	0.32		2	0.25	0.23		an for F
NO2+NO3-N	7/6w	1.80	1.71	1.40	1.40	1.40	177	1.70	NS	¥	1.46	0.82	1.33	1.36	1.33	ΑN	1.80		12	1.45	1.77		9	1.58	1.40					1.70		2	1.35	1.33	3	480 Geometric mean for
N-SHN	7/6w	0.54	0.56	0.70	0.79	0.47	2 0	1.15	NS	0.32	1.10	0.69	0.56	0.68	0.93	1.48	0.540		13	0.728	1.150		9	0.673	0.470			2	930	1.150		5	0.805	0.680	2	
muibo8	7/6ш	32	33	33	34	32	8 8	34	NS	31	32	31	30	28	28	31	32		l	j	34		l	Li	37			į	1	32		5	1	28	1	31 1.
muisəngsM	7/6w	1.40	1.35	1.41	1.38	1.49	00.4	146	NS	1.35	1.36	1.33	1.24	1.37	1.27	1.34	1.40		13	6 5	1.68		9	1.47	1.35			ល		1.46		2	1.32	1.27	<u>.</u>	1.34
muiolsO	7/6w	12.9	12.7	13.1	13.0	12.5	10.0	12.5	NS	10.5	10.3	10.1	10.3	10.4	10.7	11.9	12.9		13	11.7	13.1		9	12.8	12.3			ر ا ري	2 5	12.5		7	10.6	10.4	3	11.9
Chloride	7/ 6 w	61.5	80.0	75.8	81.0	70.5	73.5	69.5	SN	74.8	62.0	69.1	70.8	0.69	74.1	71.5	61.5	Ì	13	72.6	81.0		9	75.7	70.5			ည (၁	2.00	74.8		7	71.6	69.0		= Not Analyzed
SSA	7/6w	2.0	1.6	1.4	2.2	7.7	5 6	2.4	NS	44	7.6	6.8	4.6	4.2	2.5	0.9	2.0		13	4.6	7.6		9	2.0	3.3			ر د	7.0	7.6		7		2.2		6.0 NA = No
SST				- 1	i	1	1	1	1		Ι'	١.				1	2.8		13	6.2	13.8				2.0			2	0 C	13.8		2		3.8	; ;	7.0
ВОР	7/6ш][<u> </u>	<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> </u>				1.8			ຕ່ເ	5.0		<u></u>	က်	2.4					5.0			3.0			ple
Dissolved Oxygen	7/6w	8		9.6	_ (0	2 (0	7	Z	7	7		9	7	7		8.5			~ 0	7.9			7	7.7			r	- «				7	7.4		8.0 Vo Sampl
Conductivity	шэ/ѕоүшш	1	.6 180		[.	Į		Ĺ	ļ	Ĺ,	İ.,	Į	į				3 185			[_	9 187				4 173 7 187		I.	İ.,	<u>. j</u>	180		l	<u>.</u>	8 160		210 8 NS= No Sa
Hq		9	9	9	9	0 4) (C	9	Z	9	9	9	9	9	9	Z	8.5 6.3	rain)	-	6	10.5		9	5.	0 0	;		ه ک		5 6			5	6 6		<u></u>
Temperature								1			<u> </u>		<u> </u>					1 and 2 after rain	i						0 0		ŀ	9 4	D C	10		2		6 G		0 10.5 asured
Flow		1655 328	- 1				1	į	•	1	1	1	i				328.0	s 1 and		576	852.0		_	398.	294.0 554.0			909	500	852.		F	753.	697.0		ole) 630.0 10 NM= Not Measured
Time		ļļ.					<u>į</u>		:	:			1	: :	ß	-		in, Day									'ain)				(luia	au.,				mple) NM⊏
Date		11/02/92	11/02/92	11/03/92	11/03/	11/03/92	11/03/92	11/03/	_	11/04/9	11/04/9	11/04/9	11/04/9	11/04/92	11/04/9	11/05/92	(a)dt	ata: Ra				g rain)					l after rain				affer 1) (1 sa
Run Run)		۵			9	••••	•••••••	8	24	28	32	36	40	4			(1 san	R (All di				l (durin					(Day 1				(Dav	1				(Day:
Weather (Dry, rain, days after rain)		ρ				בי מיק מיק		••••••	24h	:	:	:				72h	ATHER	ATHER		-		ATHER			_!_		ATHEF				ATHER	<u>i</u>				T WEATHER (I = Not Detected
noi3s3S		BWW20	BWW20	BWW20	BWW20	BWWZU	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Mean (*)	Maximum	WET WEATHER (during	Count	Mean (*)	Minimum		WET WEATHER (Day	Count	Minimim	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum		WET WEATHER (Day 3) (1 sample) ND = Not Detected NM

E. coli	CEU/100mL	17	₹ 6	40	4,300		550	¥ S	S	¥ 8	0 2	<u> </u>	ΔV	73	410	17		æ	176	4,300		2	252	4 300 4		c	111	- a	140		-	73			410
			ξ S	8 06			8	۷ ک	2	₹ 5	⊋ <u><</u>	\$ 5	3 4	30	20	96		œ	48	000		5	93				7 2	100	800		<u></u>	630		-	980
Fecal Coliform	CEU/100mL	96	ح ک	Ý	15,00	5,10	1,7(۷.	_	< c	7 -	- α	5	- 6	6			***************************************	& `	15,00			1,0	15,000			ŭ	3 6	9 8			6			36
Zinc	qdd	19	လ လ	9 6	58	25	19	2	2 2	21	17	3 2	, ç	8	31	19		13	5 9	18 36		9	24	38			0,5	3 6	34		7	33	8	S	8
геза	qdd	3.7	0.0	10.1	2.7	3.9	2.9	3.0	SS.	9. a	0.0	ر. د د	7.3	5.9	6.8	3.7		13	6.1	10.9		9	5.8	10.1		ü	0 6	7 0	10.9		2	9.9	5.9	17.	8.9
ИіскеІ	qdd		4, Δ C, α	9 0	5.4	4.6	5.0	4.5	2 .	ტ ტ	4 n	o v	0.4	5.6	5.0	3.2				6.0				6.0			7		5.8		2		4.3		5.0
Copper	qdd	5.1	o u	5.7	8.2	7.4	7.6	6.7	250	9 0	0 0	0 0 0	10.0	80	9.2	5.1		13	7.8	5.0 10.9		9		2.0 8.2		ŭ	0 4	† ^ •	10.9		2	8	00 C		9.2
muimordƏ	qdd	0.72	0.04	0 42	2.26	1.69	1.06	0.82	SS	0.74	70.0	20.2	20.0	2.11	1.92	0.72		13	1.53	2.82		9	1.14	0.42		Ü	173	5 77 0	2.82		2	2.18	2.11	7.73	1.92
Cadmium	qdd	0.31	S C	0 28	0.40	0.29	0.35	4.	SS	0.43	0.00	0.00	0.72	0.68	0.73	0.31		13	0.48	0.28		9	0.34	0.28		ü	0 57	0 0	0.72		2	99.0	0.63	90.0	0.73
d-tOd	7/6ա	0.32	2, 2,	0.22	0.20	0.18	0.20	0.17	2 2	0.17	0 7 0	0.20	0.22	0.25	Α	0.32		13	0.22	0.26		9	0.21	0.18		ü	0 22	7 1 7	0.26		2	0.25	0.24	0.43	
N-EON+ZON	7/6ш	1.91	1.82	161	1.56	1.78	1.83	1.83	2	Z S	, 00 A	- t	3 6	1,75	¥	1.91		12	1.67	1.83		9	1.69	1.52			1 6	3 4	1.83		2	1.69	1.62	. (3	330 September 101
N-EHN	7/6w	0.73	1 07	0 89	0.56	0.94	0.94	1.18	25	0.50	60.0	0.02	0.02	0.67	1.33	0.730		13	0.767	0.33U 1.180		9	0.788	0.330		ü	0 762	200	1.180		2	0.715	0.670	0.700	1.330
muibo&	7/6ш	53	8 0	30	28	28	28	27	SS	520	77	27	27	27	26	53				8 8		9	<u>i </u>	30 28		-	<u>į</u>	Ų	27		2	<u>. </u>	27	l	7,
muisəngsM	7/6w	1.82	7.10 25.10	1 80	1.92	1.86	2.09	1.77	SZ	1.94	1,00	1 70	1.76	1.75	1.80	1.82		13	1.86	2.10		9	1.94	1.80 2.10			ر م	5 5	1.94		2	1.76	1.75	 - -	1.80
muiolsO	ე/ 6ⴍ	12.7	13.1	13.0	12.5	12.7	12.9	13.0	SS	11.7	- 6	7 0.7	5 C	10.2	11.4	12.7		13	11.9	13.1		9	12.9	12.5			11 A	100	13.0		2	10.4	10.2	0.0	11.4
Chloride	7/6ա	67.7	53.6	80.1	6.69	74.7	66.4	70.3	SS	(2.5	04.0	75.4	71.0	76.7	72.0	2.79		13	7.1.7	63.6 80.1		9	72.3	63.6 80.1		ü	70 1	2 2	75.4		2	73.9	71.0	 0	72.0 11
SSV	7/6w	0.0	0.2	2.2	4.3	1.2	1.2	0.5	200	0 0) c	ν γ γ	יי ס כ	2	1.6	1.0		12	2.6	5.2		9	2.2	1.2		ŭ	9	, ,	5.2		F	5.0			1.6 NA = NO
SST	7/6w	4.4	4 6	3 6	5.3	3.4	2.0	- 2	n c	200	7.7	10.2) 0	2 4	4.0	1.4		13	9.4	12.2				2.0 5.3		u	5.7	. α	12.2		2	6.0	2.4	0.0	4.0
BOD	7/6w	요 :	Z +	5.7	3.3	2.4	4.3	≨ŝ	χ 2	4 ₹	y. 5	ζ _τ	- AN	3.9	4.4	Q		8	3.5	5.1		5	2.9	4 0 0 0		, c			5.1		-	3.9			4.4
nagyxO bavlossiO	7/6ш	9.0	ر م م	0	7.15	7.2	7.3	8.0	SS	8.25	0 0	7.78	200	8.7	8.55	9.8		13	7.7	9.0		9	7.4	7.2 8.0		ü	7 4	. α . α	8.3		2	0.6	8.7	3.6	
Conductivity														<i>.</i>		175		13	181	192		9	184	171		u	178	142	185		2	179	177	2	205 8.6 NS= No Sam
Hq		6.3					1				1		1		1	6.3	(ui		90	7.0			Ó	0 9 8		u	ט ע	3 4	6.6			Ģ	6.9		-
Femperature	O gəb	8.0	ο α α	9 8	8.5	9.2	9.0	9.5	S	0.0	0 0	4. C	0 0	10.2	13.0	8.0	1 and 2 after rain)	13	9.0	10.8		9	8.5	8.0 9.2		ü	0	, α . π	10.8		1		9.2	1	13.0
Hlow	cfs	294				1 1	i	•		1	1		i	Ì		294.0	and 2	7 1	580.4	208.0 956.0		9	357.8	208.0 458.0		ğ	7040	446.0	890.0		2	877.5	799.0	930.0	702.0
əmiT		1715			925						744	1535	2000	2315	1820		Days 1													2	$\left\lceil \right\rceil$				ole) 702.0 13
ete		11/02/92	11/02/92	11/03/92	1/03/92	11/03/92	11/03/92	11/03/92	SS	11/04/92	11/04/92	11/04/92	11/04/92	11/04/92	11/05/92	(e)	ı: Rain,				rain)	, dilli)			offer rain	ונכו ומוו				fter rain					(1 samp
Run		Р.	۰,	2 6				•••••i•••		į		į			72 1	samp	All data				during	2			91,42					Dav 2 a					Day 3)
Weather (Dry, rain, days after rain)		Dry	Kall Dain	••••••		******		····	24n	····	747	<u></u>	T	T	+	THER (THER (/ HER				// DED					THER (1	i				THER (
Station		BWW21		1	1		·····						-T	T	1	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Mean ()	Maximum	WET WEATHER (during	Count	Mean (*)	Minimum Maximum	WET WEATHER (Day 4	1	Mean (*)	Minimum	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 3) (1 sample)

20 90

Page A15-87

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II BWW22 is the CSO facility in Worcester.

24 CFU/100mL E. coli 400,000 190,000 400,000 CFU/100mLFecal Coliform 98 98 82 qdd ouiZ 25.0 22.0 26.0 resq dqq _∞ ₀ 4 ∞ 0 ω 8.8 Nickel 15.0 22.0 15.0 Copper dqq 4.4 4.30 4.20 Chromium 0.40 0.25 0.25 MuimbeO 0.09 0.09 7/6ա d-40d 1.56 NO2+NO3-N ¬/ճա 3.200 3.20 1.28 0.35 7/6w N-EHN 20 20 16 ¬/6ա muibos 3.11 3.11 0.58 0.23 **7/6**₩ Magnesium 4.1 Calcium 7/6w 76.0 40.6 26.2 76.0 ٦/6w Chloride 11.2 11.2 22.8 16.0 7/6ա SSA 18.0 J\gmg\L 33.6 20.0 SST 68.2 1√8mg/L 76.3 9.3 BOD NA žΣ Dissolved Oxygen ⊐/6ա Ä Mmhos/conductivity A ¥ ž Ηd WET WEATHER (All data: Rain, Days 1 and 2 after rain)
Count
Mean (*)
Minimum
Maximum NA ¥ξ O geb Temperature Flow STO 735 **Jime** 11/3/92 11/3/92 11/3/92 Date DRY WEATHER (1 sample) นทษ BWW22 Bain
BWW22 Rain
BWW22 Rain
BWW22 Rain
BWW22 Bain
BWW22 24h
BWW22 24h
BWW22 24h
BWW22 24h
BWW22 24h
BWW22 24h
BWW22 24h
BWW22 24h
BWW22 24h
BWW22 24h
BWW22 24h after rain) Weather (Dry, rain, days Station

Count Minimum Augen (*) Auge	(6																			
ATHER (Day 2 after rain) ATHER (Day 2) (1 sample)	Count					2	2	2	2	2	2	5							2	
ATHER (Day 2 after rain) ATHER (Day 21 (1 sample)	Mean (*)			ļ		:	33.4	13.3	0.41	:	3.815				1				101 190,000	3 84,000
ATHER (Day 1 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain) ATHER (Day 2 after rain)	Minimum			Ļ	•		<u>.</u>	7.7	0.23		350	1	i	:						•
ATHER (Day 2 after rain) ATHER (Day 2 after rain)	Maximum					: 1	1		0.58	: 1		: I		: 1					3	
NTHER (Day 2 after rain) NTHER (Day 2 after rain)	WET WEATHER (Day 1 after rain)																			
NTHER (Day 2 after rain)	Count	 			_				ļ			-	-							
\(\text{THER}\(\text{Day 2 after rain}\)	Mean (*)		ļ		ļ				-		-	<u></u>	<u> </u>			ļ				
NTHER (Day 2 after rain)	Minimum	 									ļ	<u> </u>	<u> </u>		ļ	<u> </u>	ļ	ļ	<u></u>	
	Maximum			·			į		······											
	WET WEATHER (Day 2 after rain)																			
	Count	 							ļ	ļ	ļ		ļ	ļ	ļ	ļ	ļ 			
	Mean (*)											ļ	<u> </u>	ļ	ļ	ļ	ļ	ļ		
	Minimum		<u></u>		ļ					ļ		ļ	<u></u>	•••••	ļ	ļ	ļ			
WET WEATHER (Day 3) (1 sample)	Maximum		<u></u>					ļ	ļ	ļ		ļ	<u></u>	ţ	ļ	ļ	ļ	ļ		
	WET WEATHER (Day 3) (1 sample)													-		-				
	ייייי ייייי אוריייייי (סמו יייייייייייייייייייייייייייייייייייי			_											-			-		

	E. coli	JM001/U30	4,900	AN	8,500	13,000	11,000	16,000	NAN	13.000	N N	14,000	ž	12,000	Ą	18,000	nna'c	4,900		6	12,907	18,000		2	12,038	8,500		1	3	12,000	14,000			-	18,000		5.600	
	Fecal Coliform	Jm001/U3C	10:	NA	12,000	120,000	100,000	120,000	NA	39,000	AN	100,000	Ϋ́	90,000	Ϋ́	110,000	71,000	29,000		6	15,537	120,000		S	73,004	12,000		7	e 6	2000	100,000			1	110,000		21.000	
	oniZ	qdo	77	98	4	39	35	23	3 4	98	38	33	38	39	32	28	77	24		14	32	8		9	98	29			9 1	3 6	40		1	2	% %	32	27	i
	геза	qdc		1.9	1.9	4.3	2.4	3.1	43	2.7	3.2	3.6	4.5	4.1	1.8	2.5	3.6	1.6		14	3.2	4.7		9	3.1	1.9			9 1	2,4	4.5		ļ	7	2.2 1 8	2.5	3.2	ĺ
	Міске	qdo	17.9	26.3	30.1	27.7	22.0	17.1	21.8	23.0	25.9	28.8	26.9	23.0	28.0	31.7	42.0	17.9		14	24.8 45.5	31.7		9	23.1	15.5 30.1		ľ	9 6	2 . 5 .	28.8		ľ	2	28.9 28.0	31.7	45.5	Ö
	Copper	qdo	17.9	15.4	15.5	15.5	13.0	14.9	20.5	21.7	22.0	16.2	16.7	15.6	17.9	16.3	 	17.9		14	17.2	22.0		9	15.6	13.0			9 0	0.0 0.0	22.0		i	7	17.1	17.9	14.0	and E. C
	muimordƏ	qdc	3 2.44	8.60	7.67	5.63	4.20	3.42	13.60	12.80	10.90	10.10	8.43	12.40	13.90	20.20	91.30	2.44		14	2.42	20.20		9	6.80	3.42		ļ	9 .		13.60		,	5	17.05 13.90	20.20	31.50	Coliform a
	muimbsƏ	qdo	2.88	2.66	2.82	2.75	2.38	1.77		1 49	1.56	1.59	2.02	2.45	2.52	2.35	7.00	2.88			2.12	: 1		9	2.34	1.63 2.82		- 1	:		2.45		ï	7	2.35 4.5	22	2.66	Fecal C
	d-þOd	¬ /6u														1.30		1.15		14	1.33 8.4	1.61		9	1.41	1.30		ļ	9 9	9 28	1.61	i	ï	2	1.26	1.30	0.24	an for F
rcester.	N-EON+ZON	7/6և	1,70	0.68	0.34	0.18	0.63	0.38	0.18	0.08	0.05	0.03	0.05	0.06	0.01	0.0	0.0	1.70		14	0.22	0.68		9	0.44	0.18		ļ	9	9 6	0.18		ï	2	5 00	0.01	0.61	Geometric mean for
UBWPAD wastewater treatment facility in Worcester	N-EHN	7/6u	3	7	2	2	<u>'-</u>	5 5	15	12	12	12	œ	7	13	17.60	2	13.100		14	7.380	20.600		9	13.947	7.380		Ī	9 22	, Q	12.800		ë	5	3 300	17.600	2.500	(*) Geon
nt facili	muibo	7/6ແ	29	74	75	74	63	38	300	42	SS	48	48	54	22	62	92	29		13	4 %	75 2				32					54		1	2	59 15. 55 13	62 1	62 12	
treatmer	muisəngsM	7/6u	1.96	1.72	2.05	2.06	1.83	1.59	1.27	1.49	1.62	1.54	1.55	1.86	1.90	1.58	10.	1.96		14	1.69	2.06		9	1.80	1.55		ï	9 9	1 27	1.86		ï	2 -	1.74	1.90	1.94	
tewater	muiolsO	7/6ա	21.2	19.7	20.0	19.3	19.1	6. τ 8. α	122	12.1	14.1	15.5	16.6	17.6	18.2	18.6	77.	21.2		14	10. 4. 4.	20.0		9	17.5	11.8		ī	۱ 0	101	17.6		1	2	18.2 18.2	18.6	22.1	, Sed
\D waste	9birold	¬/6ա	95.5	143.0	120.0	132.0	121.0	73.8	72.5	77.3	87.8	84.3	96.3	115.0	120.0	137.0	123.0	95.5		14	72.5	143.0		9	111.6	73.8			9 0	72.5	115.0		ï	2	120.0	137.0	123.0	Not Analyzed
UBWP/	SSV	7/6w	J		i .	i	i				. i	: :					- 1	8.0		N .				9	7	13.8	11	١.,	4 9	ο α	7.0		L.	N	9.0	O		NA = No
is the	SST	7/6w	12.5	3.8	7.4	16.8	8.8	12.0	5.2	3.6	4.7	10.0	0.6	9.9	8.0	4 6	5	12.5		14	0 0 0	16.8		9	10.2	3.8		ï	o u	9 6	10.0		ï		8.0 8.0		3.0	
BWW23	doa	7/6w	9.5	Ϋ́	16.9	23.0	22.0	27.5	2 ≨	20.1	Ϋ́	19.0	Ϋ́	20.0	ž	12.8 NA	<u> </u>	9.5		6	2.5 2.5	27.5		5	22.2	16.9		ï	υ 1	190	20.1		Ţ	- 6	17.8			<u>o</u>
_	Dissolved Oxygen	7/6w	¥.	≨:	ž	¥:	ž:	Z Z	≨	≨	ž	Š	ž	Š	Ϋ́	A A	ř											Ï									5.4	Sampl
	Conductivity	шэ/ѕоүшш		-		- 1	- 1			1	1				į	₹₹		384	İ	I I	280	1 1		L	II	260 520	JI	- 1		1	360			Ī				NS= No San
	Hq								1						-	A N		9.9	(uie	13	0.0 4	6.8		9	9.9	6.4			0 4	9 9	6.7			- 0	ο. Ο			
	Тетрегаtиге	O geb	≥ :	ž	Ž	ž	2	Y Y	2	Ž	ž	Ž	ž	₹	ž	4 Z	?		after r																		17.0	sured
	wola	ato	li						ļ.,	<u></u>									f and 2																			NM= Not Measured
	- Time		1455					i	į	1	230			1433					Days									n)					1				(e)	NW=N
	Date		11/2/92	11/2/92	11/3/92	11/3/92	11/3/92	11/3/92	11/3/92	11/3/92	11/4/92	11/4/92	11/4/92	11/4/92	11/4/92	11/4/92	701011	(əlc	ta: Rain,				rain)					arrer rain					after rai				(1 sam	
	Вun		a.		n (9 (ი (7 9	28	24	28	32	36	40	44	72		(1 sam	(All da				durino				h	(Day 1				5	(Day 2				(Day 3)	_
	Weather (Dry, rain, days after rain)		ا م	Rain	Yalı Yalı	Rain	Kain	Rain	24h	24h	24h	24h	24h	24h	48h	48h	1	THER	THER				THER					AEK					HEK	***************************************			THER	= Not Detected
	Station		BWW23	BWW23	BWW23	BWW23	BWW23	BWW23	BWW23	BWW23	BWW23	BWW23	BWW23	BWW23	BWW23	BWW23 BWW23	1	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days 1 and 2 after rain)	Count	Minimum	Maximum	WET WEATHER (during rain	Count	Mean (*)	Minimum Maximum	A STATE OF THE PERSON NAMED IN COLUMN 1	WE! WEALHER	Mean	Minimum	Maximum	ANCT 1875	WEI WEATHER (Day 2 after rain	Count	Minimum	Maximum	WET WEATHER (Day 3) (1 sample)	ND = Not [

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM II RMM/24 is the Whomsonker wastment facility

			9	Ϋ́	⊽	-	8	8	2	≰	ო	₹	8	₹	5	≰	F	5	10
	E. coli	CEU/100mL									က								
	Fecal Coliform	CEU/100mL	70	AN	₹	2	48,000	000'69	ო	ΑN	610	¥	79,000	Ϋ́	230	NA	1	10	70
	Zinc	qdd	232	121	63	55	275	311	248	236	47	45	367	328	255	180	169	Ϋ́	232
	рвэд		l	1	•		1										•	:	19.1
	Nickel		l			l												l	4.4
	Copper	qdd	40.6	24.8	7.4	8.5	48.3	55.7	53.0	41.6	7.3	4.6	61.9	53.7	43.0	26.5	26.1	Α	40.6
	muimond⊃	qdd	2.55	1.49	1.50	6.74	3.87	3.66	3.03	2.91	0.62	0.33	2.69	5.30	5.11	3.98	3.87	ΑN	2.55
	muimbsO	qdd	0.80	0.48	0.25	0.23	1.50	1.30	1.14	0.70	0.16	0.11	0.63	1.30	1.01	0.69	0.65	AN	08'0
	PO4-P	- 7/6w	4.70	4.18	3.58	2.91	3.13	3.43	4.18	4.77	4.77	3.43	3.21	4.85	7.16	6.19	5.96	NA	4.70
lity.	N-SON+2ON	J/bm	0.21																0.21
BWW24 is the Woonsocket wastewater treatment facility	N-EHN	7/6ш	29.00	22.30	32.70	18.40	19.20	20.50	24.00	25.20	33.60	28.00	24.80	28.90	26.70	25.80	26.40	29.80	236 29.000
r treatm	muibos	7/6ш	236	226	223	238	240	242	262	255	254	267	287	280	296	297	289	N A	
stewate	Magnesium		l																0.97
cket wa	 Calcium		l													8.3			9.8
Woonsc	Chloride		ı	371.0	421.0	489.0	449.0	477.0	486.0	465.0	454.0		456.0		746.0	659.0		603.0	33.9 202.0 151.0 379.0
t is the	SSV		151.0	78.0	21.0	21.0	239.0	227.0	150.0	90.0	100.0	12.0	290.0	143.0	171.0	13.4	185.0	194.0	151.0
3WW24	SST	ط8رب ماراد	9 202 0	۸ 78.0	2 23.0	23.0	9 297.C	5 281.0	4 194.C	4 113.C	√ 160.0	√ 15.C	350.C	A 338.C) 206.C	16.4	39.0 227.0	\ 235.0	3 202.0
	BOD																	N N	33.6
	negyxO bevlossiO	7/6w											.,						
	Conductivity	шэ/ѕочшш	_	Υ-	$\overline{}$	$\overline{}$	5 1,350	$\overline{}$	$\overline{}$	1,395	-	Τ.	7 1,480	-	6 NA			1,20	6.5 1,300
	Hq		A 6.5			4 6.7		4 6.5		A 6.4		1	٩ 6.7	1				Ż	9
	Temperature	O geb	Z	Ϋ́	Z	z	z	z	Z	z	z	Z	z	z	z	Z	z	21.	ļ
ļ	wola) .	_	_	_				_				_					
	əmiT			2340						`	145		1	` !	`			1400	
ŀ	Date		11/2/92	11/2/92	11/3/92	11/3/92	11/3/92	11/3/92	11/3/92	11/3/92	11/3/92	11/4/92	11/4/92	11/4/92	11/4/92	11/4/92	11/4/92	11/5/92	mple)
	Kun (min)		Д.				တ							ļ				72	(1 sa
	Weather (Dry, rain, days after rain)		۵	Rain	Rain	Rain	Rain	Rain	Rain	54h	24h	24h	24h	24h	24h	48h	48h	72h	ATHER
	Station		BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	BWW24	DRY WEATHER (1 sample)
								_	_	_								_	

1		•																		ĺ
Count			14 11	0	14:	14 14											4		 60	~
Mean (*)			6.6 1,360	50.1 1	65.8 12	4.3 503.1											12.2		182	4
Minimum			6.4 1,200	11.2 15.0 12.0 3	15.0 1.	2.0 371.0	83	0.50		1	ŧ	1	0.11	0.33		<u> </u>	2.5		⊽	v
Maximum			6.7 1,480	82.5 3	50.0 29	0.0 746.0	ΙI		297 33.600	: 1	0.84 7	7.16 1	1	il	61.9	5.6	22.7	367	79,000	15,000
WET WEATHER (during rain)																				
Count			9 9	2	9	9	•	ı			ı	ı	ı	ı	1	l	9		4	
Mean (*)		ļ	6.6 1,308	4.4	44.4 149.3 122.7	2.7 448.8	19.	1.26	239 22.850		0.19	3.57 0	•	3.38	33.0	4.4	11.1	179	115	72
Minimum		9	4 1,200		23.0 2	1.0 371.0			:			:	•	ŧ		•	3.2		2	
Maximum			6.7 1,390		97.0 23	9.0 489.0	: 1	: 1	: 1		:	: 1	1.50	: 1			19.5		000'69	14,000
WET WEATHER (Day 1 after rain)																				
Count	****		6 5	2	9	9	l	l	,				ı		ı	ı		<u> </u>	3	
Mean (*)		9	5 1,423	70.0 197.0 134.3 5	97.0 13	1.3 517.3	9.5	1.08	273 27.867	:	0.11	4.70	0.65	2.83	35.4	4.3	13.7	213	2,230	84
Minimum	*****		6.4 1,380		15.0 1,	2.0 454.0		;	:	:	1	1		•		1		<u> </u>	230	,
Maximum		6.7	7 1,480	_	50.0 290	746.0		:	:		1			:	ŀ	•			79,000	15.000

WET WEATHER (Day 2 after rain)																					
Count			2			1	2	2			2		1	1						2	
Mean (*)			6.7			0 121.7	99.2	623.0			293 26.									2	-
Minimum 6.6			9.9			16.4	13.4	16.4 13.4 587.0	8.3	0.50	289 25.800		0.01 5.	5.96 0.6	0.65 3.8	3.87 26	26.1 4	4.8 10.5	5 169	6	ļ
Maximum			6.7			227.0	185.0	659.0			297 26.	: 1	l	:)	: 1	: 1				0	
WET WEATHER (Day 3) (1 sample)	_	21.0	+	,200	6.0	235.0	194.0	603.0	ļ		29.1	29.800			-				****		9
ND = Not Detected	AM= Not Measured	peritor	Ž	NO ON	NS= No Sample		NA = AM	ALA - NOt Applicable	200		1	120 The medital local red access sistematical	10000	100	100	1	- C				

²age 23

	E. coli	CFU/100mL	₹	Ϋ́	₹	46	210	ო	110	ΑĀ	SN	NS	25	Ą	6	¥	7	14	₹			/ 00	3 ~	210		4	42	က	210		2	15	6	22	Γ	-	•	1			14	
	Fecal Coliform	CEU/100mL	110	ΑN	200	1,800	3,000	140	1,400	Ϋ́	SN	SN	11	ΝΑ	320	Ž	240	1,600	110		,	∞ cγ2	£	3,000		5	733	140	3,000		2	59	11	320		-	240	7			1,600	
-	Zinc	qdd	63	72	92	104	200	59	189	107	NS	NS	98	06	82	107	372	NA	63			12	20	372		9	120	29			4	9	82	107		2	240	107	372		ļ	
-	геэр	`														İ	ĺ		10.6			7 6	L	8		9	4	5.0			4	9.4	7.7	2.9				2 6	72.3			
-	ИіскеІ		JI			L					<u> </u>	<u> </u>	<u> </u>	L	<u> </u>	<u> </u>	l		111.0			2 6	<u>.</u>				3	55.2			4	33.6	53.5	3.6		2			65.9			
-	Copper		~	~	-	_	l						i		1		1	ΙI	20.5 1	1		N M	<u>. </u>	2		ļ,	ı,	16.9			4	7	24.2			2		D 65	53.4			d Fi
	Сһготіит		1				ı								1		1	I	4.98		-	7 5	3 5	9		9	9	4.01	<u> </u>		4	5	44	5		2	1		1.80		ļ	form and
-	Cadmium		32	മ്	72	Ş	ဌ	7	¥	ន្ត	S	ļ	26	20	29	23	.j	≸	0.25 ,			2 5	0.20	43		9	35	0.21	43		4	22	0.20	32		L	۲ ر	2 2	23		ļ	Fecal Coliform
K River	d-tOd		စ္	9	9	೮	96	0	33	ဌ	S	NS	10	36	10	63		Ϋ́	3.76	Ш	ļ	7 5	8 8	23		9	20	2.03	23		4	75	98	2		0	1 6	8 8	.16			
Seekor	N-EON+ZON		66	`	`	٠,	`	`	``	``			,	``	ľ	ľ.,	1		69		;	1 10	22 2			9	45	ឧ	8		4	8	.22 2	48				, 6	2 4			ric meaı
Point wastewater facility (Seekonk River)			Li												i			}	3.			12				9	302 1	780 1			Ιİ		150 0			2	1 6	3 8	700		300	Geometric mean for
tewater	N-SHN		1 :	: :	: :		98 10					E		•	1			: 1	82 14.100			12 90 14 (9	25			4	60 9.7	3				60 6.450				7	95 15.6	19			£
int was	muiboS	7/6w 7/6w	Li				1.79					<u>L</u>	l	Ĺ	<u> </u>	l			.50			72	83	90		<u>. </u>	53	93					1.03			L	Ĺ		1.90		1.94	
Bucklin Po	Magnesium	7/6w										<u>L</u>	<u>L</u>	<u>. </u>	L	L	<u> </u>		1.5		ļ	Vα	3.9	6		9	6	3.9			4	7	2			ļ	ıα	. 0	9			
σL		7/6w	l					Ī							!	1			5.0 14.	$\ \ $		N 6	3.9	0		9	က	3.0 13.	 5		4	0	3.9 19.			2		0	7.0 19		0.	Not Analyzed
discharge from NBC	Chloride	7/6w		: :	: :		:	:	:			:	:	:	:	:	:	:	2.6 165		7	<u>L</u>	13.5 88	j		9	7	3.6 118	5		က	6	.88	0		2		, io	6 167.	L		■ Not A
cnarge	SST SSV		4	0	ഗ	4	0	0	0	m	'n	'n	4	4	in	2	10	60	14.4 12.			7 4	4	0		9	-	5.6 13.	5		[I	<u>.</u>	3.4 14			2	ıα	5.5 13	L		3.3	ž
direct dis	BOD	7/6w 	8.9	NA	15.9 1	34.8 3	36.4 14	15.0	76.0 11	NA 2	NS	NS	9.6	NA 2	10.9	NA 1	9.1	¥	8.9			1 0	9.1	0		5	11.6 5	15.0 15.	6.U 14		2	က	9.6	6		-	7	-	2			
ต⊦	nagyxO bavlossiO	7/6ш	1 :	: :	: :		3.05				: :	:	:		:	:	:	:	2.8		į	7 6	1	: I				2.0			Li		2.4	[2	2.4	1 6	2.8			Sample
SWWZ5 is	Conductivity	шэ/ѕочшш	490	610	720	750	580	412	360	410	SN	SN	462	450	550	900	900	820	490		į	542	360	750		9	572	360) (3)		4	468	410	220		2	900	009	009		820	NS≕ No Sam
	Hq						6.7	i										l	6.7		<u>.</u>	7 Y				9	6.7	9.9	0		4	6.5	6.4	9.9		7	8	6.8	6.9			_
	Temperature	O gəb	15.0	15.5	16.2	15.8	14.0	13.2	12.8	14.0	SN	SS	12.9	15.2	16.5	16.5	17.1	15.0	15.0		atter ra	15.0	12.8	17.1		9	14.6	12.8	10.7		4	14.7	12.9	16.5		2	16.8	16.5	17.1	ŀ	15.0	nred
	Wol	cfs																			and 2																Ī					ot Meas
	Time		1735	10	310	900			1600			410	740	1125		1	•	1900			Days 1									7					_						(e)	NM= Not Measured
	ejsC		11/02/92	11/03/92	11/03/92	11/03/92	11/03/92	11/03/92	11/03/92	1/03/92		11/04/92	11/04/92	11/04/92	11/04/92	1/04/92	1/04/92	11/05/92	(e)		a: Kaın,				rain)					after rain,					fter rain						(1 samp	
-	ung.		P 1		3 1		······	*****	••••••		••••••	28 1.	·				48 1,		1 sampl		All data				during					Day 1 a					Day 2 a	- /					Day 3)	_
	Weather (Dry, rain, days after rain)		Δ	Rain	Rain	Rain	Rain	ļ				24h			ļ	48h		72h	THER (HEK				THER (THER (THER (THER	etected
	Station		BWW25 I	••••••		;									•	······	BWW25	BWW25 7	DRY WEATHER (1 sample)		WEI WEATHER (All data: Kain, Days 1 and 2 after rain)	Count	Minimum	Maximum	WET WEATHER (during	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 1	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum	Maximum		WET WEATHER (Day 3) (1 sample)	ND = Not Detected

Section A15-5

Wet Weather Data - Storm 3

- all Data with Statistics -

2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2	1960 1960	Companies Comp				_	_		_			_	_			_			_		_	_				_	_
The control of the co	Chicago 120 Chicago 12	Chicago 12.00 Chicago Chicag	100 100	•				_		Dissolved		SST	SSA	Chloride	muiolsO		muiboS	N-EHN	N-SON+SON						Zinc	Fecal Colifori		IIO3 :33
1230 38 9.5 6.7 170	10,1289 120	10 12 12 13 14 15 15 15 15 15 15 15	1017203 230 9.5 6.8 150 104 2.9 2.6 0.5 6.47 18 34.7 33 0.046 2.5 0.01 0.5 0.5 3.7 1.5		Date			ე ɓan	шшрогусш		7/ 6 w			7/ 6 w	7/ 6 w		 ¬/в̂ш	_		-			-			CFU/100mL	1000//130	
1220 389 56 66 67 67 67 67 67 67	10 12 12 13 13 14 15 15 15 15 15 15 15	10/12/28 2025 508 50 68 69 104 20 20 50 50 50 50 50 50	10/17/283 28 9.5 6.8 1 99 1 0.5 1 12 10.0 1.2 1 1.0 1.0 1.1 1.2 1.2 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		10/12/93	730			7.	82	l,			54.7	8	47	က္	940	33	<u> </u>		<u> </u>	l	ı		Ĭ		290
200 201	10/1/383 30 63 72 106 14 12 12 16 16 16 16 16 16	10/1398 2025 530 63 72 106 14 12 12 12 12 12 12 12	10/12/28 2025 202		10/12/93	1230	İ		φ.	ļ	i			61.8	<u>.</u>	2.96	<u> </u>	056	2	Ξ		İ	•			İ		520
30 40 10 60 61 71 10 40 24 62 63 64 66 64 60 60 60 60 60	10,1389 420 400 40 40 40 40 40	1477-1892 1491 14	10/17/205 200 10/17/205 200 10/17/205 200 201		10/12/93	2025			<i>ب</i>					16.9	<u>.</u>	1.06	<u> </u>	990	<u></u>	Ξ		<u>.</u>		•		Ĺ	•	00
420 12 12 12 12 12 12 12	10/1383 340 420 420 62 437 430 431 431 432 438 435 432 430 4	10,1339 340 420 420 62 430 4	10 13 13 13 13 13 13 13		10/13/93	30			က	L	<u></u>			14.6	İ	1.53	<u>. </u>	990	Ξ.	Ξ		İ	•	•		Ĺ		8
10 10 10 10 10 10 10 10	10 12 12 12 12 12 12 12	101-1383 12-9 12-	101-1389 219 210 21 21 21 21 21 21 2	!	10/13/93	420			S	L	.i		1	38.5	J	2.26	<u>.</u>	990	9			<u>.</u>		•	1	Ĺ		0
12.0 12.0	10 10 10 10 10 10 10 10	Chicago 122	101-1303 1219 122 122 122 122 123	i	10/13/93	840	1		œ	<u>.</u>	.i		1	50.5	.i	261	<u>.</u>	012	<u>«</u>	ļ.,		1	1	1	1	<u>.</u>	:	
100 100	10/13/25 1626 109 109 109 113 119	Chicago 150	Chicago 1506	.i	10/13/93	1210	1		α	.l	<u>. i</u>		1	2 0	.i.,	2 2 2		4 6	5 2	. <u> </u>			1	- 3 ;	1	Ŀ		
10.00 10.0	10/19/28 10/28 10/28 10/28 10/28 10/28 10/28 11/28 1	10/14/203 10/20 10/20 10/20 11/20	10 10 10 10 10 10 10 10	<u>i</u>	20,000	2007		ı	0 0		i		1	30.	i.	5.5		٥	=				1	: :	ı			3
10 10 10 10 10 10 11 11	10/14/16/3 23 100 67 158 100	101/4483 150 150 151	101/4839 320 48 100 6.8 130 112 13 12 13 13 13 15 25 0.020 0.16 0.01 ND 0.40 6.2 10 0.18	₫.	10/13/93	979	i	ı	57	Ì.	<u>i</u> .		- 1	53.2	<u> i</u>	2.76	[4	9	=		!		•	ı		:	720
1500 100	10/14/393 335 100 30 6.7 1735 10.2 33 2.0 1.0 6.41 13 2.0 2.0 0.006 0.16 0.01 0.04 0.25 0.2 1.6 5.3 1.0 0.10 0.10 0.05 0.05 0.16 0.01 0.05 0.05 0.16 0.10 0.05 0.16 0.10 0.05 0.16 0.10 0.05 0.16 0.10 0.05 0.16 0.10 0.05 0.16 0.10 0.05 0.16 0.10	10/14/393 835 700 90 67 71 81 102 31 20 10 641 11 12 12 12 10 10 10 1	10/14/14/28 35 10 10 10 10 11 12 15 10 10 10 10 10 10 10	1	10/13/93	2018	Ì		ω,	İ				54.3		2.59		020	9	Ξ							;	SS
16.09 76 8.0 6.8 144 112 16 12 16 12 16 45 13 315 25 0.074 0.16 0.07	Salign S	10/14/39 830 76 8.0 6.6 14.0 11.2 1.6 1.6 1.6 1.6 1.7	101-1439 839 76 840 641 112 146 146 148 149 141		10/14/93	32			7	Ĺ	<u>.</u>			54.1	İ	2.62	İ	900	9	=		l		i		l	:	590
1609 76 92 68 NA 109 16 22 16 461 13 315 29 0.014 0.16 0.01 0.07 0.05 2.9 2.9 2.9 1.2 1.100 11	10 15 15 15 15 15 15 15	101/14/39 1609 76 92 68 NA 109 16 22 16 48 13 315 23 0.014 0.16 0.01 0.07 0.51 2.9 2.5 2.5 1.2 NS 101/15/02 NS NS 101/15/02 NS 101/15/02 NS 101/15/02 NS NS 101/15/02 NS 101/15/02 NS 101/15/02 NS NS 101/15/02 NS 101/15/02 NS 101/15/02 NS NS 101/15/02 NS 101/15/02 NS 101/15/02 NS NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/15/02 NS 101/1	101-1502 1	ļ	10/14/93	830			80	İ	<u>:</u>			55.2	İ	3.00	Ĺ	024	9	_		1		1	1	l		S
38 9.5 6.7 178 9.0 4.6 2.6 0.5 64.7 18 34.7 33 0.046 0.25 0.01 0.36 0.35 0.9 14 7.7 6 1,100 11	Coloration St. St. Coloration St. Color	Fig. 1 Fig. 2 Fig. 3 F	Fair, Days 1 and 2 after rain) Fair, Days 1 and 2 after rain) Fair, Days 1 and 2 after rain) Fair, Days 1 and 2 after rain) Fair, Days 1 and 2 after rain) Fair, Days 1 and 2 after rain) Fair, Days 1 and 2 after rain) Fair, Days 1 and 2 after rain) Fair, Days 2 and 2 after rain) Fair, Days 2 and 2 and 2 after rain) Fair, Days 2 and 2 after rain) Fair, Days 2 and 2 after rain) Fair, Days 2 and 2 after rain) Fair, Days 2 and 2 after rain) Fair, Days 2 and 2 after rain) Fair, Days 2 and 2 after rain) Fair, Days 2 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 2 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 after rain) Fair, Days 3 and 2 and 3 and	ļ	10/14/93	1609	•		· ·	İ	1			48 1	1	3.15	<u>. </u>	0.14		Ι_		1	•	1	1	<u>) </u>	:	Ž
38 9.5 6.7 178 9.0 4.6 2.6 0.5 64.7 18 3.47 33 0.040 0.25 0.01 0.38 0.35 0.95 1.4 7.7 5 1.100 1.100 1.2 1.	a: Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain) 2. Rain, Days 1 and 2 after rain and 2 af	1 1 1 1 1 1 1 1 1 1	## Safe for the control of the contr		10/15/02		1		-		ا١		1		1		<u></u>			<u> </u>					1 1	.il	:	2
1	11 11 11 11 11 11 11 1	16 17 17 17 17 17 17 17	Sample S	R (1 samp	(a)	\parallel				6		2	0.5	54.7		3.47		0.040	25	5	88		6		7		00	290
161 11 11 12 11 12 12 14 12 14 14	11 11 10 11 10 11 11 11	11 11 11 11 11 11 11 1	11 11 11 11 11 11 11 1	R (All dat	a: Rain, Da	-	after	(ain)																				
161 161 162	151 151 151 152	150 151 151 152	1561 91 67 137 10.6 13 11.5 12.44 14.6			1	11	=	ļ	10	11	11	1	11	11	11	11	11	11	11	6	L	<u></u>				œ	α
10 10 10 10 10 10 10 10	10 10 10 10 10 10 10 10	10 10 10 10 10 10 11 12 12	106 10.4 6.9 7.1 10.0 1.3 1.2 1.0 1.46 6 1.06 9 0.006 0.16 0.01 0.04 2.7 1.1 2.5 5 5.500 1.6 1.0 1.4 1.0 1.3 1.2				:		7	ļ	က	11.9	4.2	49.6	8	2.44	<u>l</u>	0.033	19	5	25	8			<u>.</u>	4	<u>. </u>	291
104 6.9 190 11.8 12.3 73.0 21.6 98.1 16 3.15 33 0.068 0.30 0.01 0.60 14.40 44.0 7.3 89.2 90 52.000 16 16 18 18 18 18 18 18	530 10.4 6.9 190 11.8 12.3 73.0 21.6 96.1 16 3.15 33 0.066 0.30 0.01 0.60 14.40 44.0 7.3 89.2 90 52.000 16.0 14.40 44.0 7.3 89.2 90 52.000 16.0 14.40 44.0 7.3 89.2 90 52.000 16.0 16.0 14.40 44.0 16.0 16.0 16.0 16.0 14.40 14.0 16.0 16.0 14.40 14.0 16.0 16.0 16.0 14.40 14.0 16.0 16.0 16.0 14.40 14.0 16.0 1	530 10.4 6.9 118 12.3 73.0 21.6 98.1 16 31.5 33 0.068 0.30 0.01 4.40 44.0 4.0 7.3 99.2 90 52.000 16 16 16 16 16 16 16	10 10 10 10 10 10 10 10			÷	:		3	ļ	_	12	10	14.6	<u>.</u>	1.06	<u>. </u>	0.00	9	5	07	40			<u> </u>		<u>.</u>	520
325 9.6 6.4 104 10.5 6.2 32.8 10.4 31.1 10 1.85 18 0.063 0.25 0.01 0.56 8.97 22.9 4.6 4.6 4.6 37 8.78 4. 38 9.0 6.3 71 10.4 2.3 1.2 1.0 14.6 6.1 6.6 33 0.056 0.21 0.01 0.50 8.97 22.9 4.6 4.6 3.0 1.0 1.0 1.0 4	125 10 10 10 10 10 10 10 1	3 3 3 3 3 3 3 3 3 3	325 9.6 6.4 104 105 6.2 2.22 1.2 1.0 1.6 1.0			-	: 1		6	į	12	73.0	21.6	98.1	<u>į</u>	3.15	<u>.</u>	0.068	30	9	60	4		1	<u> </u>	52	.i	000
325 9.6 6.4 104 10.5 6.2 3.2 10.4 10.5 11.5 12.5 10.4 10.5 11.5	10 10 10 10 10 10 10 10	125 9.6 6.4 10.4 10.5 6.2 22.8 10.4 31.1 10.1 1.86 18 0.065 0.25 0.01 0.50 8.97 22.9 4.6 49.5 37 8.78 4.	125 9.6 6.4 104 10.5 6.2 22.8 10.4 31.1 10 1.65 18 0.065 0.25 0.01 0.50 14.0 14.0 17.5 37 15.5 30 10.5																									
175 175	125 35 3 3 3 3 3 3 3 3	125 126 127	1.5 1.5	(during	rain)	-	[.			l l					1 1													П
356 94 64 104 105 62 32.8 10.4 31.1 10 185 18 0.063 0.055 0.01 0.50 8.97 22.9 4.6 49.5 37 8.78 4.8 49.5 37 8.78 4.8 49.5 3.8 3	325 9.6 6.4 104 10.5 6.2 32.8 10.4 311 10 1.86 18 0.065 0.25 0.01 0.50 8.97 22.9 4.6 49.5 37 8.781 4. 4. 4. 4. 4. 4. 4. 4.	325 9.6 6.4 104 10.5 6.2 32.8 10.4 31.1 10 1.65 18 0.053 0.25 0.01 0.56 8.7 12 1.0 14.6 6 1.06 9 0.056 0.21 0.01 0.56 8.7 14.0 44.0 7.3 89.2 90 52.00 16.3 1.5 3.0 1.0 1.5 3.0 1.0 1.5 3.0 1.0 1.5 3.0 1.0 1.5 3.0 1.0 1.5 3.0 1.0 1.5 3.0 1.0 1.5 3.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	325 9.6 6.4 104 10.5 6.2 3.28 10.4 3.1 10 1.85 18 0.063 0.25 0.01 0.55 0.57 3.7 1.5 3.0 1.0 9.30 3.0 3.0 3.0 0.05 0.21 0.01 0.05 0.21 0.01 0.05 0.				i		က					က		က		က	က	 	 	က	 	 			က	က
38 9.0 6.3 71 10.4 2.3 1.2 1.0 14.6 6 1.06 9 0.056 0.21 0.01 0.35 0.50 3.7 1.5 3.0 10 930 1.	38 90 6.3 71 10.4 2.3 1.2 1.0 14.6 6 1.06 9 0.056 0.21 0.01 0.05 0.50 3.7 1.5 3.0 10 9.00 16 4	38 90 63 71 104 23 12 10 146 6 1.06 9 0.056 0.21 0.01 0.65 14.0 7.3 89.2 90 52.000 16	38 9.0 6.3 71 10.4 2.3 1.2 1.0 14.6 6 1.06 9 0.056 0.21 0.01 0.55 0.50 3.7 1.5 3.0 1.0 0.50 1.5 10.4 6.8 16.9 10.6 12.3 73.0 21.6 61.8 16 2.96 3.3 0.068 0.30 0.01 0.60 14.40 4.0 7.3 89.2 90 52.000 1.0 12.5 8.6 6.7 16.4 10.3 2.5 6.7 2.3 60.1 1.2 2.45 2.5 0.012 0.01			ო			4		9	32.		31.1		1.85		063	25	5	22	6	6	ဖ	S.	œ		765
10.4 4 4 4 4 4 4 4 4 4	After rain) 4 <th< td=""><td>After rain) 4 <th< td=""><td> 125 10.4 6.8 169 10.6 12.3 73.0 21.6 61.8 16 2.96 33 0.068 0.30 0.01 0.60 14.40 44.0 7.3 89.2 90 52.000 16 12.5 16.5 14.4 10.5 14.4 18 10.3 19.2 2.49 2.5 0.012 0.16 0.01 0.07 0.78 2.8 1.1 3.9 1.5 2.300 4 4 4 4 4 4 4 4 4 </td><td></td><td></td><td></td><td>i</td><td></td><td></td><td>l</td><td>2</td><td>Ψ.</td><td></td><td>14.6</td><td>İ</td><td>1 06</td><td><u> </u></td><td>056</td><td>21</td><td>0</td><td>35</td><td>50</td><td>7</td><td>ı.</td><td>c</td><td></td><td>L</td><td>520</td></th<></td></th<>	After rain) 4 <th< td=""><td> 125 10.4 6.8 169 10.6 12.3 73.0 21.6 61.8 16 2.96 33 0.068 0.30 0.01 0.60 14.40 44.0 7.3 89.2 90 52.000 16 12.5 16.5 14.4 10.5 14.4 18 10.3 19.2 2.49 2.5 0.012 0.16 0.01 0.07 0.78 2.8 1.1 3.9 1.5 2.300 4 4 4 4 4 4 4 4 4 </td><td></td><td></td><td></td><td>i</td><td></td><td></td><td>l</td><td>2</td><td>Ψ.</td><td></td><td>14.6</td><td>İ</td><td>1 06</td><td><u> </u></td><td>056</td><td>21</td><td>0</td><td>35</td><td>50</td><td>7</td><td>ı.</td><td>c</td><td></td><td>L</td><td>520</td></th<>	125 10.4 6.8 169 10.6 12.3 73.0 21.6 61.8 16 2.96 33 0.068 0.30 0.01 0.60 14.40 44.0 7.3 89.2 90 52.000 16 12.5 16.5 14.4 10.5 14.4 18 10.3 19.2 2.49 2.5 0.012 0.16 0.01 0.07 0.78 2.8 1.1 3.9 1.5 2.300 4 4 4 4 4 4 4 4 4				i			l	2	Ψ.		14.6	İ	1 06	<u> </u>	056	21	0	35	50	7	ı.	c		L	520
4 4	125 8.6 6.7 164 10.9 2.5 6.7 1.2 2.49 2.6 0.027 0.17 0.01 0.07 0.18 2.8 1.8 5.7 1.9 3.933 1.06 4.9 4 4 4 4 4 4 4 4 4	125 8.6 6.7 164 10.9 2.5 5.7 2.3 60.1 12 2.45 2.6 0.027 0.17 0.01 0.15 0.95 3.6 1.1 3.9 1.5 2.300 4.0 4.4 4.5 2.300 4.9 2.5 8.200 4.9 2.9 8.1 3.9 1.5 2.300 4.9 2.9 8.1 3.9 1.0 3.8 3.4 1.1 3.9 3.1	125 8.6 G.7 164 10.9 2.5 5.7 2.3 60.1 12 2.49 26 0.027 0.15 0.95 3.6 3.6 1.8 2.933 1 109 7.0 6.5 147 10.0 1.3 4.6 12.0 3.8 98.1 13 2.76 2.8 0.066 0.21 0.01 0.07 0.78 2.8 1.1 3.9 2.5 8.200 4 140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 2.8 0.066 0.21 0.01 0.07 0.78 2.8 1.0 2.9 8.1 2.5 8.200 4 140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 2.8 0.066 0.21 0.01 0.07 0.08 0.58 3.4 2.5 8.200 4 140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 2.8 0.066 0.21 0.01 0.07 0.08 0.58 3.4 2.5 8.200 4 140 9.5 6.9 190 1.1 1.5 2.9 1.5 2.9 1.5 2.8 0.006 0.16 0.01 0.07 0.08 0.58 3.4 2.5 5 2.00 140 10.0 6.8 140 11.8 3.3 3.4 1.8 5.2 13 3.15 2.8 0.024 0.16 0.01 0.09 0.78 5.2 2.8 5.3 1.5 150 150 150 150 1.5 1.8			5	.i			<u>.il</u>	12	73	:1	61.8	.i[2.96		990	30	0	60	40	0	3 6	2	52	1	000
44 4	125 8.6 6.7 164 10.9 2.5 6.7 2.3 60.1 12 2.49 26 0.027 0.17 0.01 0.15 0.95 3.6 1.8 5.7 19 3.933 1 1	125 8.6 6.7 164 10.9 2.5 6.7 12.3 60.1 12 2.49 2.6 0.027 0.17 0.01 0.15 0.95 3.6 1.8 6.7 19 3.933 1 109 7.0 6.5 147 10.0 1.4 1.8 1.0 38.5 1.1 2.26 2.2 0.012 0.16 0.01 0.07 0.78 2.8 1.1 3.9 1.5 2.300 140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 2.8 0.066 0.21 0.01 0.07 0.78 2.8 1.1 3.9 1.5 8.20 4 140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 2.8 0.066 0.21 0.01 0.07 0.78 2.9 8.1 2.5 8.200 4 140 9.5 6.8 135 11.0 2.0 2.4 1.5 5.29 13 2.59 2.6 0.006 0.16 0.01 0.07 0.40 2.7 16 2.5 5 150 100 10.0 6.8 140 11.8 3.3 3.4 1.8 55.2 13 3.15 2.8 0.024 0.16 0.01 0.09 0.78 5.2 2.8 5.3 1.5 150 100 10.0 6.8 140 11.8 3.3 3.4 1.8 55.2 13 3.15 2.8 0.024 0.16 0.01 0.09 0.78 5.2 2.8 5.3 1.5 150	125 8.6 6.7 164 10.9	R (Dav 1 ;	after rain)																							
125 86 67 164 109 2.5 67 2.3 60.1 1.2 2.49 2.6 0.012 0.16 0.01 0.15 0.95 3.6 1.8 3.9 3.9 3.9 1.0	125 86 67 164 109 25 67 23 60.1 12 249 26 0.027 0.17 0.01 0.15 0.95 3.6 1.8 4 4 4 4 1.0 3.8 3.8 1.1 2.26 2.2 0.012 0.16 0.01 0.01 0.15 0.95 3.6 1.8 3.9 3.933 1.06 4.9 2.9 8.1 2.5 8.200 4 4 4 4 4 4 4 4 4	125 86 67 164 109 2.5 6.7 2.3 60.1 12 2.45 2.6 0.007 0.15 0.01 0.15 0.95 3.6 1.8 5.7 1.9 3.933 1.00 1.3 4.6 12.0 3.8 3.8 1.1 2.26 2.2 0.012 0.16 0.01 0.07 0.07 0.2 2.9 8.1 2.5 8.200 4.9	125 8				ļ	L			L	-	-	-	ļ	-			,	.,	ļ	,					ļ	ľ
123 2.5	123 0.0	123 0.0 0.5 10.0 10.	123 0.00 0.5 0.5 147 10.0 1.4 1.8 1.0 38.5 1.1 2.26 2.2 0.012 0.16 0.01 0.07 0.78 2.8 1.1 3.9 1.5 2.300 4.0			•				,	٢	† †	4 6	4 4	l.	4 (Ì	4 1	4 i	4 3	4	4 .	4 ([4			4
140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 2.8 0.066 0.21 0.01 0.07 0.78 2.8 1.1 3.9 15 2.300 4	140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 28 0.066 0.21 0.01 0.07 0.78 2.8 1.1 3.9 15 2.300 4	After rain) 4 <th< td=""><td> 198 7.0 6.5 147 19.0 14.4 1.6 1.0 38.5 14 2.26 2.2 0.012 0.16 0.01 0.07 0.78 2.8 1.1 3.9 15 2.300 4 4 4 4 4 4 4 4 4 </td><td></td><td></td><td>-</td><td>Ì</td><td><u>.</u></td><td>L</td><td>2 (</td><td>7</td><td></td><td>3.</td><td>200</td><td><u>l</u>.</td><td>2.43</td><td></td><td>027</td><td>_</td><td>5 6</td><td>2</td><td>o D</td><td>ا م</td><td></td><td>, ,</td><td>3</td><td></td><td>828</td></th<>	198 7.0 6.5 147 19.0 14.4 1.6 1.0 38.5 14 2.26 2.2 0.012 0.16 0.01 0.07 0.78 2.8 1.1 3.9 15 2.300 4 4 4 4 4 4 4 4 4			-	Ì	<u>.</u>	L	2 (7		3.	200	<u>l</u> .	2.43		027	_	5 6	2	o D	ا م		, ,	3		828
140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 28 0.066 0.21 0.01 0.33 1.06 4.9 2.9 8.1 25 8,200 4	140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 28 0.066 0.21 0.01 0.33 1.06 4.9 2.9 8.1 25 8,200 4 4 4 4 4 4 4 4 4	140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 28 0.066 0.21 0.01 0.33 1.06 4.9 2.9 8.1 25 8,200 4	140 9.5 6.9 190 11.3 4.6 12.0 3.8 98.1 13 2.76 28 0.066 0.21 0.01 0.33 1.06 4.9 2.9 8.1 25 8,200 4 4 4 4 4 4 4 4 4				1			2		Σ.	Ö.	38.5	<u>l</u>	7.70		012	16	5	.07	78	∞.		6.	7		750
4 4	A 4	A 4	A 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4							=	4	12.0	3.8	98.1		2.76		990	77	2	33				-	80		8
4 4	4 4	4 4	4	R (Day 2:	after rain)																							
75 9.1 6.8 135 11.0 2.0 2.4 1.5 6.2.9 13 2.84 27 0.016 0.16 0.01 0.08 0.58 3.4 2.2 3.5 9 2,100 4.8 8.0 6.7 130 10.2 1.3 1.8 1.0 48.1 13 2.59 26 0.006 0.16 0.07 0.40 2.7 1.6 2.5 5 5 100 10.0 6.8 140 11.8 3.3 3.4 1.8 55.2 13 3.15 28 0.024 0.16 0.01 0.09 0.78 5.2 2.8 5.3 15	75 9.1 6.8 135 11.0 2.0 2.4 1.5 52.9 13 2.84 27 0.016 0.16 0.01 0.08 0.58 3.4 2.2 3.5 9 2,100 48 8.0 6.7 130 10.2 1.3 1.8 1.0 48.1 1.3 2.59 26 0.006 0.16 0.01 0.07 0.40 2.7 1.6 2.5 5 5 1.0 100 10.0 6.8 140 11.8 3.3 3.4 1.8 55.2 13 3.15 28 0.024 0.16 0.01 0.09 0.78 5.2 2.8 5.3 15	75 9:1 6.8 135 11.0 2.0 2.4 1.5 62.9 13 2.84 27 0.016 0.16 0.01 0.03 0.58 3.4 2.2 3.5 9 2.100 48 8.0 6.7 130 10.2 1.3 1.8 1.0 48.1 13 2.59 26 0.006 0.16 0.01 0.07 0.40 2.7 1.6 2.5 5 5 5 1.0 8 1.0 48.1 1.3 2.15 28 0.024 0.16 0.01 0.09 0.78 5.2 2.8 5.3 15 8 1.0 1.0 0	75 9.1 6.8 135 11.0 2.0 2.4 1.5 62.9 13 2.84 27 0.016 0.16 0.01 0.08 0.58 3.4 2.2 3.5 9 2.100 2.7 0.0			_	L	Ĺ	4	L		4	4	4	L		4	4	4	4	L	4	4	2	4	4	-	F
48 8.0 6.7 130 10.2 1.8 3.3 3.4 1.8 55.2 13 3.15 2.8 0.024 0.16 0.01 0.09 0.78 5.2 2.8 5.3 15	48 8.0 6.7 130 10.2 1.3 1.8 1.0 48.1 13 2.59 26 0.006 0.16 0.01 0.09 0.78 5.2 5 5 10 10 10.0 0.00 0.00 0.00 0.00 0.00	(1 sample)	48 80 67 130 102 23 13 10 48 13 259 26 0.006 0.16 0.01 0.07 0.40 27 16 2.5 5 5 5 5 5 5 5 5 5			-		ļ	oc	.i		7 6	7	£2 Q	.l			016	4	3	ğ	20	_		u		. 60	100
100 10.0 6.8 140 11.8 3.3 3.4 1.8 55.2 13 3.15 28 0.024 0.16 0.01 0.09 0.78 5.2 2.8 5.3	100 10.0 6.8 140 11.8 3.3 3.4 1.8 55.2 13 3.15 28 0.024 0.16 0.01 0.09 0.78 5.2 2.8 5.3 7	(1 sample)	(1 sample) NS= No Sample N				1	<u>.</u>	2 1	.i		0		207	.l.			2 6	2 5	5 8	3 5	9 9		, ,	2		3	2
10.01 6.81 1401 11.81 3.31 3.41 1.81 55.21 151 3.151 281 0.0241 0.161 0.011 0.091 0.781 5.21 2.81 5.31	1 100 10.0	(1 sample)	(1 sample) 100; 10.0;			ľ	ľ		- 0	İ		- c		- 0	<u>i</u> .			000	٥ (5 8))	04.0		٥	00			T
	2	(1 sample)	(1 sample)				_		اة			3.4	Ö	2000				024	اق	5	3	9	7	 Ø		5		

Page A15-93

age 3

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM III

Page A15-94

E. coli	CEN\100WF	160	110	5,900	30	1.700	1,600	830	310	SN	420	NSS	SS		160		8	524	30	5,900		7	096	207	5.900		1	4 .	212	310			1	420		
Fecal Coliform	CEU/100mL	210	1,000	16,000	20	3.200	4,100	2,000	700	SN	1 100	NS	SS		210		8	1,263	20	16,000		100	7 P	5 6	16,000		ļ	4 (2,070	7,00	t,		1	1,100		
əniS	qdd	17	20	5	12	56	48	5	5	61	38	19	17		17		7	26	2	61		٦	٠ ٤	2 4	20		1	4 6	ŝ	ဂိဗ္ဗ	3		4	34	17	61
реәд	qdd	3.0	1.3	Ϋ́	24.0	20.9	12.6	Q	4.9	9.3	4 6	3.0	31.2		3.0		6	12.4	1.3	31.2		Ċ	127	7 0 7	24.0		i	20 6	12.8	4 C	50.3		4	12.0	3.0	31.2
Nickel	qdd	8.1	7.6	Ž	8.5	9.5	9.7	5.9	7.7	6.2	8	7 9	12.7		8.1		10	8.4	5.9	12.7		č	7 0	, c	8.5		Ï	4 6	8	0 0	9.		4	8.8	6.2	12.7
Copper	qdd	11.6	6.5	Ϋ́	36.0	22.0	13.9	5.8	11.5	12.5	113	86	11.8		11.6		10	14.1	5.8	36.0		c	7 0 70	5.1.3 2.2.3	36.0		ļ	4 6	73.3	22.0	24.0		4	11.4	9.8	12.5
Chromium	qdd	1.82	0.85	ž	18.00	4.16	3.24	0.47	1.71	1.79	2 60	1 92	2.32		1.82			:	0	18		č	7 0	200	18.00		j	4 (2.40	74.0	<u>-</u>			2.16		
MuimbsO	qdd	0.41	0.45	¥	1.10	0.59	0.51	0.18	0.27	0.38	0.17	0.31	0.34		0.41		10	0.43	0.17	1 10		Ċ	700	9 4	1.15		1	4 6	S .	0 0	2		4	0.30	0.17	0.38
d-40q	7/6w	0.48	0.41	0.22	0.19	0.28	0.25	0.22	0.25	0.25	0.29	0.25	0.39		0.48		11	0.27	0.19	0.41		- 1	1	•	0.41		- 1	:	•	77.0			4	0.30	0.25	0.39
N-SON+SON	7/6w	2.80	2.07	1.75	0.77	0.86	0.94	1.22	1.18	1.30	1.59	1 34	1.71		2.80		11	1.34	0.77	2.07		c	ر 4	3 1	2.07		;	4 .	60.0	1 22	<u> </u>		4	1.49	1.30	1.71
N-EHN	7/6ա	0.160	0.134	0.240	0.654	0.482	0.244	0.090	0.122	0.214	0.142	0.160	0.144	-	0.160		1	0.239	0.090	0.654		c	0 243	2 2	0.654		ļ	4 .	0.235	0.090	0.405		4	0.165	0.142	0.214
muibo2	7/6w	20	52	2	28	30	30	33	35	36	36	43	37		20		10	36	28	25		Ċ	7	2 0	22		ļ	4 6	3 6	25.	3		4	33	36	43
muisəngsM	7/6ш	3.18	3.10	2	2.04	2.11	1.75	2.03	2.80	2.50	2.62	3.06	3.00		3.18		10	2.50	1.75	3.10	ļ	ç			3.10		ļ	4 [7.75	2 80	200		4	2.80	2.50	3.06
Calcium	7/6ա	16	15	က	5	9	7	1	12	12	1	12	13		16		1	9	က	15		ç	၁ ရ	ۍ د	15		Ţ	4 0	6	2 ٥	<u> </u>		4	12	7	13
Cloride	7/6ш	80.6	89.2	63.4	52.1	48.8	50.1	53.2	58.5	60.9	649	71.2	73.8		80.6		1	62.4	48.8	89.2		3	683	50.4	89.2		j	4 1	07.7	0 0 0 1	3		4	2.79	6.09	73.8
SSV	7/6 ա	1.4	0.5	36.2	23.4	26.0	3.4	3.6	2.4	2.6	1.4	2.2	2.0		1.4		11	9.4	0.5	36.2	i	1	200	3 0	36.2		Ī	4 0	0 0	4.4	2.04		4	2.1	1.4	2.6
SST	¬ /6ա	3.0	0.5	129.2	74.0	26.6	8.2	4.4	6.2	0.9	4.2	2.6	2.0	-	3.0		11	24.0	0.5	129.2		ř	2 0	5 6	129.2		ļ	4 4	- 7	4 9 4 9	2.5		4	3.7	2.0	9.0
аов	7/6ա	7.0	3.1	13.5	5.0	2.8	4.5	3.8	6.8	4.1	4.2	1.3	NS		7.0		10	4.9	1.3	13.5		,	2 6		13.5		ļ	4 ,	9 0	ν « «	2	•	က	3.2	1.3	4.2
Dissolved Oxygen	7/6ա	9.5	10.5	10.5	12.5	11.5	11.2	10.8	10.9	10.9	9.4	10.6	10.2	<u> </u>	9.2		11	10.8	9.4	12.5		,	14 0	, c	12.5		Ţ	4 4	- 0	7 C	2		4	10.3	9.4	10.9
Conductivity	шэ/ѕочшш	249	240	240	155	179	160	180	212	160	210	185	220		249		11	195	155	240			242	155	240		Ī	4 6	3	213	1		4	194	160	220
Hq		6.7	6.9	6.5	6.5	9.9	9.9	6.7	6.9	6.8	9.9	7.0	6.8		6.7		11	6.7	6.5	7.0		0			6.9		Ī	1 1	0.0	0 0	3		4	8.9	9.9	7.0
Temperature	O gəb	11.0	11.2	=	12.5	10.0	8.5	10.0	12.0	10.0	10.0	9.0	11.8		11.0	2 after rain)	11	10.6	8.5	12.5			77	7	12.5		Ī	4 4	9	10.0	2		4	10.2	9.0	11.8
Flow	cis	109	109	746	541	378	246	271	277	230	215	173	187		109	d 2 afte	11	307	109	746		c	ARE	2 0	746		-	4 6	227	378	Š		4	20-1	173	230
	əmiT		1315	2155	120	505	921	1300	1700	2100	:	:	1645	: 1		ays 1 and		-	_																	
	Date	10/12/93	10/12/93	10/12/93	10/13/93	10/13/93	10/13/93	10/13/93	10/13/93	10/13/93	10/14/93	10/14/93	10/14/93	10/15/02	(6)	: Rain, D					lain	anni					ter raın)			***************************************		ter rain)				
	Run	<u>_</u>	0		<u></u>		<u>. </u>	Ĺ		İ	İ	İ			sample	III data					dirina mini	Similar					ay 1 a					ay 2 ai				
eysb ,nisn ,yn	Weather (D after rain)	ΡΟ	Rain	Rain	Rain	24h	24h	24h	24h	48h	48h	48h	48h	72h	HER (1	HER (A					W 03n.					֡֜֜֜֜֜֜֜֜֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֓֓֡֓֜֜֜֓֓֓֓֓֡֓֜֜֜֓֡֓֜֓֜֓֡֓֜֜֓֡֡֓֜֜֜֜֓֡֓֜֜֜֜֓֡֓֜֜֡֡֡֡֓֜֜֜֜֡֓֜֜֜֜֡֓֜֜֜֜֡֓֜֜֜֜֜֜	HER (L					HER (C				
	noitst8	BWW04	BWW04	BWW04	BWW04	BWW04	BWW04	BWW04	BWW04	BWW04	BWW04	BWW04	BWW04	BWW04	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Ð		Maximum	WET WEATUED	1	Mean (*)		Maximum	1000	WEI WEATHER (Day 1 after rain)	Moss *	√ [Maximim		WET WEATHER (Day 2 after rain)	Count	Mean (*)	MINIMUM	Maximum

(*) Geometric mean for Fecal Coliform and E. Coli

NA = Not Analyzed

NS= No Sample

WET WEATHER (Day 3) (1 sample)

ND = Not Detected NM= Not Measured

Page A15-95

age 5

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM III

15-9				-	-		\vdash	-	-	\vdash	-	-	-		_						\mid	-	ŀ		
oven, rain, days				Flow	Temperature	Hq	Conductivity	Dissolved Dissolved	800	22T	VSS Cloride	muioleO	muisəngsM	muibo&	N-EHN	N-SON+ZON	d-þOd	muimbsO	Сһготіит	Соррег	Nickel	рве	Zinc	Fecal Coliform	E. coli
Weather (Date	əmiT		⊃ gəb						-		7/6w	7/6w	7/6w	7/6ա	7/6ա	qdo	qdo	qdo	qdc	qdo	qdc	Jm001/U3C	Jm001/UJC
BWW05S Dry		10/12/93	835	l	10.0	<u> </u>	ı		<u> </u>						0		ı	⊥	0.25	2	10.8	1,6	Q.		NS
BWW05S Ra		10/12/93	1348	<u> </u>	10.5	<u>.</u>	1						1		0			.i	Q	Q	1.6	QN	S	SN	S S S
BWW05S Ra		10/12/93	1235		10.1		ì				:		1		0			.i	2	14	1.5	1.6	Q	SN	SZ
BWW05S Ra		10/13/93	200	Ĺ	12.5	İ	•				:		1		0		ŀ	.i	0.32	10	12	2.0	S	Z	Z Z
BWW05S 24h	h 16	10/13/93	540	26	10.0	6.6	•		Ν				14 3.99	9 40	0.012	7 0.03		S	0 29	20	. 0	, -		Z Z	2 0
BWW05S 24	:	10/13/93	952	<u>l</u>	8.2	<u> </u>	1		1		:		1]		.	0.45	S	2 -	3	2	2 2	2 2
BWW05S 24	: :	10/13/93	1325	<u> </u>	10.0	İ.	1					1	1					i	0.37	2 0	- 0	200	S	2 0	2 V
BWW05S 24	:	10/13/93	1723	İ	11.0	İ	•										ļ	i	0 21	S	S	S	Ş	Ž	2
BWW05S 48	: :	10/13/93	2128		10.01	<u> </u>							1		0	0		i	0.33	2	2	14	2	SN	Z Z
BWW05S 48		10/14/93	145		9.0						:		1		0	_		.i	0.62	9.0	0.8	2.1	2	NS	NS
BWW05S 48h		10/14/93	920		9.0						:		1		0	0		. i	0.22	0.7	9	1.5	9	SS	NS
		10/14/93	1713	<u> </u>	10.2	<u> </u>				1			1		0		i	. i	0.51	0 8	0.7	0 6	NS.	S S	N N
BWW05S 72h	ļ	10/15/02					1.			1	1		1			Ì		i	 5			2	2	2	2
DRY WEATHER (1 sample)	₹ (1 sam	(aldı		 	10.0		200	8.2			57	140	18 4.02	2 40	0.048	0.0		0 22	0.25			4			
			ı										IJ]] [
WEI WEATHER (All data: Rain, Days	K (All di	ta: Rain, D.	-	and 2 after rain)	rain)			-	-		-		l												
Count				11	11		i	1		œ.	i							4	6	7	∞	6			
Medii ()			_	3	0.0		i	10.4		6			<u>س</u>		0	0		0.14	0.37	8.0		1.6			
Maximila				6	2.0	4.0				0.0	7.2	Ì	11 2.79	37	0.005	0.03	i	0.06	0.21	0.5	0.7	9.0			
Machine				200	12.3]		12.0		5]				2	9		0.23	0.62	4.	1.6	3.0	_	[
WET WEATHER (during rain)	R (durin	g rain)																				İ			
Count			_	L		<u>.</u>	L	3			L			<u> </u>		L		8	=	2		~			Ī
Mean (*)				ļ	11.0	<u>l</u>	İ	10.9	ļ	6	<u>i</u>		6		0	0		0.16	0.32		14	, c		1	
				6	10.1	9.9	218	6.6	-	9.0	<u>!</u>	70.1	12 2.87	7 38	0	0.03		0.10		0	12	9			
Maximum					12.5			12.5		4	1.2 78		3	Į		O	<u> </u>	0.23	<u> </u>	1.4	1.6	2.0		ļ	
WET WEATUED (And a grant and	, (Doy 6	offer work																							
Count	(Day	aitei iaili)		L.,		L	- 1		-								ľ	ŀ	ļ	ŀ	ļ	ļ	•	ļ	
Mean (*)				İ	τα σ	<u>i</u>		10.0		? 4	<u> </u>	4 6			C	٩	-		4 6	7 0	n (n (
Minimum				L	8.2	1		10.0	-	3 0	i	2 0	3 0		5 0	9 0			5 5	ب د د	0.0	٥ ٢			
Maximum				30	11.0	8.9	248	10.5		4.0	14 78	, -	3 99	41	0.012	300	<u></u>		0.45	2 0	, t	3 0			
				J			1								ľ	Ì					-	3			
WET WEATHER (Day 2 after rain)	R (Day 2	after rain)						 																	
Count				:	4			4	ļ	2	-		L		Ĺ	ı		-	4	3	2	4	ļ		
Mean (*)			-	24	9.6	9.9	198	10.3		2.3	2.0 78	78.6 1	13 3.17	7 41	0.051	0.03	<u></u>	90.0	0.42	0.7	9.0	1.4		ļ	
Minimum			+	•	0.6			10.0		7			i		0				0.22	0.6	0.7	9.0			
Maximum			-	- 1	10.2		- 1	10.8		2.4			1	- 1	9				0.62	8.0	0.8	2.1			
WET WEATHER	(Dav 3	(1 sample)	-										ļ	[-			-		-			
ND = Not Detected	Pe		NM= Not Measured	leasure	<u> </u>	NS.	NS= No Sample	amne	-	NAN.	= Not Analyzed	harvien	_		(*)	Geometric mean for Feral Coliform and E	oon for	1000	-liferm,			-			
	}			222	3	<u> </u>)	מייוים		Ę	521	laiyedu				Herrican	ean Io	<u>5</u>	E LIDIIIC		<u>=</u>				

56 90 3,500 1,600 830 830 1,000 370 NS NS NS CFU/100mLE. coli 420 CFU/100mL Fecal Coliform 12 ouiZ 5.0 read Nickel Copper 0.38 0.45 0.45 8.14 1.74 1.76 2.13 2.03 0.38 Chromium 0.38 Cadmium 0.54 d-40d 2.30 2.30 2.54 2.554 1.06 1.12 1.12 1.434 1.45 **շ/**ճա N-EON+ZON 0.162 0.093 0.346 0.346 0.084 0.086 0.079 0.073 0.162 ¬/ճա N-EHN 448 332 332 334 43 62 48 ٦/6w muibos 3.56 Magnesium 16 Calcium ¬/ճա 7/0 mg/L 252.8 252.8 253.9 770.3 73.8 73.8 8.97 Cloride 0.5 SSA 9.0 SST 5.2 BOD 8.2 Oxygen Dissolved 240 6.7 6.8 6.7 6.8 6.8 6.8 6.8 6.7 Ηđ 10.8 Temperature 86 Flow əmiT Date 10/12/93 10/12/93 10/13/93 10/13/93 10/13/93 10/13/93 10/13/93 10/14/93 10/14/93 10/14/93 10/14/93 10/14/93 10/15/02 **DRY WEATHER** (1 sample) uny moibat2

BWWW06

BWWW06

BWWW06

BWWW06

BWWW06

BWWW06

BWWW06

Count 11 11	11	11	1	11	11	9	7		11	L	11:		17	1	<u></u>	L				11:	11:	α	
Mean (*)		10.2	6.7	204	10.7	4.1	18.0	7.3	64.6	7	2.77	40	0.162	1.59	0.35	0.49	3.18	16.6	88	12.9	32	1.759	775
Minimum	98		9.9	150	9.1	1.2	2.0	1.0	51.9	<u>L</u>	2.21		0.073	1.06	<u>. </u>	İ	1		.l	1.5	5	140	6
Maximum	456	14.0	6.8	271	14.0	6.7	99.2	28.8	86.7	<u>. </u>	3.52		0.346	2.59	<u>i</u>	<u>.</u>	1	ľ	<u>.</u>	37.9	79	6,100	3,50
WET WEATHER (during rain)																							
Count	8	33	က	3	3	3	3	ı	3	ı	3	L	ı	ı		ł	L	ı	L	3	3	3	
Vean (*)	261	11.7	6.7	253	11.2	3.8	36.2	10.3	78.5	7	2.86	46	•	1	0.53		<u> </u>		i	2.4	18	741	9
Minimum			6.7	220	9.1	3.0	2.0		73.5	:	2.50	ļ			1	•	<u>. </u>		i	2.5	15	140	0,
Maximum	456	14.0	6.8		14.0	4.6	99.2		86.7	:	3.35		0.155	2.59	1	0.64	6.25	28.0	10.0	23.0	22	4,100	3,500
WET WEATHER (Day 1 after rain)	(u																						
Count	4	4	4	4	4	4	4	4	4	4	4		4	4	L	ļ	ı	1	ı	4	4	4	
Vean (*)		9.6	6.7	185	10.9	5.3	15.9	7.4	53.1	6	2.42	32	0.274	1.23	0.30	0.63	4.13	20.7	10.01	17.6	48	3.298	æ
Minimum	216	7.0	9.9	<u> </u>	10.3	4.0	6.4	4.2	51.9	İ	2.21		0.084	1.06	<u>.</u>	ļ	1	1	i	6.3	26	2,100	37
Waximum	_	11.5	6.8	200	11.5	6.7	29.4	11.2	53.9	<u>L</u>	2.63		0.346	1.67	.L	ļ	•	1	1	17.9	79	6.100	1,600
WET WEATHER (Day 2 after rain)	2											Ιİ			IJ	.]	1					5	1
Count	4	4	4	4	4	33	4	4	4	ļ,	4	L	4	L		1	1			4	4	-	
Mean (*)		9.6	6.7	185	10.2	2.8	6.5	4.9	65.7	<u>!,</u>	3.04	İ	0.085	į	1	•				8.6	27	1.900	290
Minimum	110	9.0	6.7	150	9.4	1.2	2.6	2.6	58.2	İ	2.62	Ĺ	0.073	İ	•					1.5	5		
יחשי	110	9.0	6.7	150	9.4	1.2	2		5 2.6		2.6 58.2 12	2.6 58.2	2.6 58.2 12 2.62 34	2.6 58.2 12 2.62	2.6 58.2 12 2.62 34 0.073 1.23	2.6 58.2 12 2.62 34 0.073 1.23 0.24	2.6 58.2 12 2.62 34 0.073 1.23 0.24 0.26	2.6 58.2 12 2.62 34 0.073 1.23 0.24 0.26 1.76	2.6 58.2 12 2.62 34 0.073 1.23 0.24 0.26	2.6 58.2 12 2.62 34 0.073 1.23 0.24 0.26 1.76 8.7 6.4	2.6 58.2 12 2.62 34 0.073 1.23 0.24 0.26 1.76 8.7	2.6 58.2 12 2.62 34 0.073 1.23 0.24 0.26 1.76 8.7 6.4	2.6 58.2 12 2.62 34 0.073 1.23 0.24 0.26 1.76 8.7 6.4 1.5 5

	WET WEATHER (Day 2 after rain)																						
	Count	4	4	4				l		İ		4	4	4	3	4	ı	l	L			-	
		206	9.6			10.2	2.8	6.5	4.9 65.7	, 12	3.04	45	0.085	1.36	0.24	0.33	2.19	11.6	7.4 8	8.6	27 1,	1,900	29
		110	9.0		150						ŀ	8	0.073	1.23	0.24	0.26			<u> </u>			•	
Pa	Maximum	: 1	10.4	6.8				`				62	0.102	1.45	0.24	0.39	•		<u> </u>		7	<u></u>	
ige																							
A	WET WEATHER (Day 3) (1 sample)				 .	ļ													ļ			 -	
15-97	ND = Not Detected NM= Not	NM= Not Measured	D	8	NS= No Sample	ımple		¥ V	NA = Not Anal	alyzed			(*) Geon	netric mo	an for	ecal Co	Geometric mean for Fecal Coliform and E. Coli	nd E. C.	 				

E. coli	Jm001/U3C	75	70	98	310	420	480	200	380	OS U	400	SN	SN	SN	75		α	241	202	480		ľ	n (123	310			4	352	480] [1	_	400			ſ	
moiiloO lso9	Jm001/U7C	260	290	1.100	510	5.200	3.400	2,000	1,600	OSO,	2300	SN	SN	SN	260	-	α	1 465	290	5,200		Ī	n (040	290			4	2,743	200,5	(יוברי	ļ		2,300				
oniz	qdo	22	24	14	10	64	57	45	37	27	30	23	24	8	22		1	7	10	57		į	n (9	10 24		-	4	47	57		ļ	4	5 6	23	30		ş
pea-	qdo	6.4	4.7	5.4	7.1	19.2	23.1	12.1	12.0	11.0	9.2	7.4	8.8	7.6	6.4		<u>+</u>	110	4.7	23.1			n !	٥.(7.1			- 10	16.6	23.5	il li	-	4	9.5	7.4	11.5	16	3
Vickel	qdo	9.5	8.5	9.5	10.5	12.9	9.2	9.0) o	10.0	0.6	6.4	8.7	29.1	9.5		1	76	6.4	12.9		ŀ			10.5		-	4	10.0	12 0.0		;	4	9.6	6.4	10.2		
Copper	qdo	14.2	10.5	17.2	24.0	30.2	19.0	18.1	17.0	16.0	17.9	10.2	12.1	14.7	14.2		4	17 G	10.2	30.2		ŀ	n (7.7	10.5 24.0		ŀ	4	21.3	30.5		;	4	14.3	10.2	17.9	14.7	and E.
muimotdS	qdo	2.41	0.64	2.20	3.84	2.5	4 00	3.77	3.75	3.78	3.56	1.92	3.15	3.45	2.41		1			8.11		ľ	γ (2.23	0.64 3.84		İ	4	90	٥.72 8 11	;	;	4	3.10	1.92	3.78	2 45	Coliform
muimbsO	qdo	0.43	0.47	0.38	0.35	0.67	0.44	0.49	0.42	0.33	0.45	0.40	0.50	0.38	0.43		1	0.45	0.33	0.67		7	γ (0.40	0.35	1	ŀ	4	0.51	0.42			4	0.42	0.33	0.50	30	Fecal
d-40d	7/6u	0.39	0.43	0.43	0.43	0.39	0.25	0.25	000	0.29	0.25	0.22	0.11	0.11	0.39		11	0 30	0.11	0.43		i	ر د	5.43 5.43	0.43		ŀ	4	0.30	30		;	4	0.22	0.11	0.29	44	
N-SON+ZON	7/6u	2.28	2.28	2.32	244	2.60	1.18	1.26	1 22	1 18	1.4	1 30	0.41	1.26	2.28		14	1.58	0.41	2.60		ï	n .	2.50	2.48			4	1.57	2 60	; i	,	4	1.0	0.41	1.30	1 26	
N-EHN	7/6ս	0.053	0.050	0.105	0.115	0.166	0.255	0.401	0.303	0.200	0.105	0.069	0.078	Š	0.053		+	0 175	0.050	0.401		č	γ (c	0.030	0.050			4	0.281	0.401		ļ	4	0.133	690.0	0.280		
muibos	7/6u	50	20	20	48	45	33	35	3 2	34	31	37	39	36	20		11	40	31	20		į	ν (5	50		-	4 [37	S 4		,	4	32	31	39	36	₹ 8
muisəngsM	7/6և	3.49	3.27	2.81	3.37	3.35		:1≿	: : :	2 39	ွှဲ့ဖွ	3.30	3.30	3.00	3.49		11:	2	2.37	3.37			, i	2 .	3.37		ŀ			3.35		ļ			2.39		2 00	
muiolsO		5	.I	. L	.i	=		1 .	· i			:	•		15		11	+	6	14			ى د	7	- 4		-	4 ,	F ^c	12		,	4	7	9	12	10	j pa
Cloride	7/6ա	75.2	87.1	76.5	83.2	75.2	58.5	57.8	56.9	56.6	55.8	63.8	71.8	75.7	75.2		11	67.6	55.8	87.1			ۍ د د د	5.5	75.3 87.1			4	62.1	75.2			4	62.0	55.8	71.8	75.7	Not Analyzed
SSV	7/6ա		4.2	6.0	4.0	5.8	19.2	5.4	3.0	4 6	3.6	2.8	3.6	3.8	1.2		11:	5.7	2.8	19.2			7 1 0	•	4 0 0 0		ŀ	4 ,	4.0	19.2		ļ	4	3.7	2.8	4.8	30	NA = No
881	7/6ա	8.4	6.8	8.2	9.9	18.6	14.8	11.0	8 4	110	8.0	4.2	8.4	7.2	4.8		1		4.2	18.6			ر د	7.7	0.0 8.2		ŀ			18.6			4	7.9	4.2	17.0	7.9	<u>آب</u>
BOD	7/6w	6.5	2.1	2.2	3.0	4.3	7.4	6.3	6.5	4 2	2.9	2.0	ž	¥	6.5		101	4.1	2.0	7.4		,	ۍ د	4 .	3.0		-	4 4	0. 7	7.5		ï			2.0			
Dissolved Oxygen		8.8	8.8	9.5	9.6	10.6	9.6	14.4	123	12.4	13.0	10.0	10.8	10.0	8.8		111	110	8.8	14.4		č	၇ ရ	† c	0 6		ŀ	4 1	7.1.7 0.6	14.4		Ţ	4	11.6	10.0	13.0	10.01	NS= No Sample
Conductivity	шэ/ѕочшш	300	300	280	275	270	180	221	230	142	170	208	220	240	300		1	227	142	300		Ċ	200	200	300		- 1	•		270	1 1	,	4	185	142	220	240	S= No
Hq		6.8	6.7	6.8	6.7	6.7	6.8	6.7	6.7	99	9.9	6.7	6.7	NA	6.8		1	6.7	9.9	6.8		Ċ	۰ ۲	100	0.9 0.8			4 1	7.0	8.9			4	6.7	6.6	6.7		. Z
Temperature	O gəb	10.0	10.0	10.0	10.5	9.5	11.0	10.0	10.0	10.0	9.0	10.5	11.0	11.0	10.0	r rain)	Ξ	10.1	9.0	11.0		ç	ر 10	2 0	10.5			4 4	0.5	11.0		ļ	4	10.1	9.0	11.0	110	. g
Wol	sto	144	144	201	421	570	300	278	287	265	249	238	144	144	144	and 2 after rain	1		144			Ġ	326	007	421					570		ļ	À.		144		144	Measu
	əmiT		: :	: :	:	645		•	•		•		÷			-	·I	÷	T				+	-				Ť	\pm				T		+	7		NM= Not Measured
	Date	12/93	12/93	12/93	13/93	10/13/93	13/93	13/93	13/93	13/93	14/93	14/93	14/93	15/93		in. Dav										roin)	(uib)					rain					(1 sample)	Ž
	ote(I	ļ	ļ	į	ļ		<u>. </u>	ļ		.į	<u>.</u>	ļ	ļ	ļ	sample)	lata: Re					ries se	ng rain				1 offer rain	-				1000	(Day z aner rain						
	after rain) Run					h 16		******	.,		******		Ĺ	il	R (1 sar	R (All o) (dimi	ע (סמוני				760/6	100				() (K (Uay			***************************************		VDav.	ted.
rain, days				7 Rain	İ	-		Ī	1	Ť	Ť		†	1	ATHE	ATHE		:	:		ATUE	AINE	-	,		ATUE				٦		AIDE				إ	ATHE	= Not Detected
98	Station	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	BWW07	DRY WEATHER (1	WET WEATHER (All data: Rain. Days	Count	Mean (*)	Minimum	Maximum	MET MEATUED / Minima rain	WE WE	Moan	Model	Maximum	WET WEATHER /Day		Count	Minimum	Maximum	MET MEATUED	WE WE	Conuit	Mean (Minimum	Maximum	WET WEATHER (Day 3)	ND = Not

E. coli	Jm001/U7C	37	,	2 2	òį	170	250	730	380	1,200	NS	620	SN	SN	SN	37		٥	319	87	1,200		c.	127	87	170		4	537	250	1,200		T	- 6	920			
Fecal Coliform	Jm001/U40	130		320	2/7	310	1,900	4,600	3,400	2,900	NS	2,000	NS	NS	NS	130		0	1,134	190	4,600		3	251	190	310		4	3.047	1,900	4,600		÷	- 00	2,000			
			İ		l						40					21		Ì	69				.3	29	24	34		4		45	ļ		,	<u>.</u>		56	47	26
		<u> </u>	Ĭ.	i	İ.	i]									5.1		_	9					9	2	_					_			<u>.</u>		[6
Гезд		1	1	1	- 1	•	- 1			•	1	1				7.7 5	<u> </u>	_	18.				3:		2	2 10		1	1	2 14.1			L.			8.00		9
Nickel	•	1		- 1		:				:	1	:	:	:	1	7.0 7			5	4	5		33	<u>.</u>	<u>. </u>	9 10		ļ	.ļ	4 10.2	<u> </u>			c	מ (9 (5	.2 15.1
Copper	qdo	1	i	1	1	•						•	ì					•	'n.		6			9	ဇ	17			42	20	97			7	2	= {	19	4 8
Chromium	qdo	١ــــــــــــــــــــــــــــــــــ	.i	l	l.	l.			L	İ	3 4.78	i	İ	İ	İ	0.37			8.48					4	2	6.83		<u></u>	16	4.75	47			٠	3	1.88	4	2.84
 Muimbs ጋ	qdo	10	9	2 0	<u> </u>	٥	0	0	0	0	0.46	0	0	0	0	0.45		٩	0.55					0	0	0.87			0	0.46	0			٥	-	0.46	9	0.26
d-†0d	7/6ս	10	10	2 0	2 0	0	0	0		0	0.32	0	ŀ	0	0	0.36		•	0.33	0	<u> </u>			0	0	0.39			0	0.32	0			٥	5 0	0.11	기	0.25 0.11
N-SON+SON	7/6u	2.45	2 54	40.7	200	2.45	2.54	1.87	1.68	1.49	1.40	1.25	1.05	0.83	0.25	2.45	1	- 1	7.77	0.83	2.54		3			2.54		4	1.90	1.49	2.54		- 1	1	- 1	0.83	- [0.25
N-EHN	7/6u	0.105	0 0 0	7 7 7	0 0	0.098	0.095	0.288	0.314	0.307	0.164	0.190	0.110	0.020	N	0.105	1	- 6	0.165	0.020	0.314		3			0.179		4	0.251	0.095	0.314		4	124	171.0	0.020	0.190	
muiboS	-	51	2	3 5	2 .	42	45	4	36	36	35	33	34	39	38	51	1	- 5	9	33	20		3	48	45	20		4	40	36	45		L	<u>. i</u>		33]	38
muisəngsM	7/ 6u	3.51	000	000	0 0	3.24	2.52	2.69	2.42	2.73	2.59	2.37	3.08	3.16	2.88	3.51	<u>+</u>	- 6	7.87	2.37	3.39		3	3.14	80	3.39		4	59	2.42	7.3		Į.			2.37		2.88
muiolsO		J	.i	<u>i</u>	<u>i</u>	I.	<u>i</u>				æ	<u> </u>	.	<u> </u>	i	16	1	<u>l</u>	-	<u>l</u>			3	13	<u> </u>			4	<u>!</u>	8			 	<u>. i.</u> .		χ ζ]	12
Cloride		1		1												76.5	÷	- 6	02.0	(./	7.4		3	79.8	4.4	7.4		4	9.9	59.2	=		4	0	1 .0	2/./		Not Applyzed
		~	ā)))	5	4	œ	0	4	4	9	7	0	7	0	2.2 7		÷	2.7	i	- 1		3	İ	<u>.</u>	4.4		ļ	6	2.4 5	8		ļ	- 4	o c	3.0	, ,	3.0 7
SSA		2	α	2 0		٥	9	9	2	9	7	9	0	5		7	\perp		0.0	ľ	٦		L	<u> </u>		9.6		4	0	9	6			·α	0	Ŋ.C	7	9
		1	•	1												8	I L.	İ	i	I]	!	<u></u>	8	_	9		4	ļ	8 13						, a		20
BOD Oxygen		1	:	•	•	- 1					: :				: 1	4		ı	2.0					0	7	2			5	2	7		<u> </u>	1		1.1		200
Dissolved	լյսև															0.6		i	7.0	i .				6	∞	6			:	9.6	: 1		L	.1		10.0		230 10.2 NS= No Sample
Conductivity	шэ/ѕоүши	<u> </u>	l.	.i.	.i.			<u> </u>								300	1	1	077	1			<u>[</u>	274	<u>. </u>			ı		210			L	.i	l.	700]	230 NS= N
Hd		Į									9.9					6.9	1		0				İ		9	9				9.9						0.0		
Temperature	O geb		1		1	1			- 1							10.0	er rain		2 0				3	10.2	İ	iJ		1	•	10.0			L	1		0 0	0:0	10.5
Flow	sto							:		:	: :	:	:	:		152	and 2 after rain	207	707	/7	414		3	180	127	229		4	365	332	414		4	290	200	203	3	266 † Measi
	əmiT	955	1425	2215	350	607	630	1210	1545	1810	2215	220	1250	1755	1120	П	1-	Ī	Ī															Ť	1) 266 10 NM= Not Measured
											10/13/93						in, Da										rain)					rain)		***************************************				(1 sample)
	Date	İ	1	Ĺ	.i.		i	- 1	- 1	1		1		- 1	- 1	(əldı	sta: Ra					g rain)					after					offer rain						(1 sa
	Run	ļ	ļ	.Ļ	<u>.i</u>		ļ	ļ		ļ	32					(1 sample)	(All de					(durin					(Day 1					(Day 2	7					(Day 3
ry, rain, days	Weather (D after rain)	Du	Rain	Ç	2	E C	24h	24h	2 4 h	24h	48h	48h	48h	48h	72h	THER	THER					THER					THER					THER						THER
	Station	BWW08	RWWNR	BWW	00/444/0	DVVVVO	80000	BWW08	BWW08	3WW08	BWW08	BWW08	BWW08	BWW08	BWW08	DRY WEATHER (1	WET WEATHER (All data: Rain, Days	Moon (*)			Maximum	WET WEATHER (during	Count	Mean (*)		Maximum	WET WEATHER (Day 1 after rain	Sount	Mean (*)	Minimum	Maximum	WET WEATHER (Day	Count	Mean (*)	(1)	Maximum	Maximum	WET WEATHER (Day 3) ND = Not Detected

age 9

E. coli	CEU/100mL	53	29	5	160	120	170	9	49	NS	61	NS	NS	NS	53		70	0 3	o (170		က	79	54	160		4	88	49	170		-	61				7
Fecal Coliform	CFU/100mL	34	4	82	200	430	290	270	140	NS.	82	SN	NS	NS	34		•	0 (2 5	430		3	88	41	200		4	262	140	430		Ţ	82				
Zinc	qdd	2	S	9	2	2	QN	2	S	S	Q	S	2	2					- -	-			}						-							-	
реэд	qdd	0.8	1	2.1	1.3	4	0.7	1.6	1 6	60	1 9	2.2	6.0	4.	8.0	ŀ	-	= ;	• C	22		3	1.5	1.1	2.1		4	1.3	0.7	1.6		4	1.5	0.9	2.2		4.
Mickel	qdd	0.7	S	0.8	2	0.7	6.0	Q	90	13	Q	Q	Q	2.7	0.7		ü	Ö	9 0	13		-	9.0				က	0.7	9.0	0.9		-	1.3		-		2.7
Copper	qdd	Q N	Š	2	2	0.5	9	1.6	10	G	17	17	12	1.9			9	0 (1.7		}					33	1.0	0.5	1.6				1.2			1.9 1
Chromium	qdd	0.18	0.37	Q	0.26	2.15	0.53	0.48	0.76	0.83	0.85	0.49	0.95	0.62	0.18		,	2	36.0	2.15		2	0.32	0.26	0.37	٠	4	0.98	0.48	2.15		4	0.78	0.49	0.95		0.62
muimbeD	qdd	0.21	0.05	0.05	2	0.20	2	Q	0.06	0.05	Q	90.0	0.05	QN	0.21		7	- [200	0.20		2	0.05	0.05	0.05		7	0.13	90.0	0.20		3	0.05	0.05	90.0		<u>C</u>
d-t0d	7/6w	0.26	0.23	0.33	0.26	0.26	0.26	0.24	0 24	0 24	0.24	0.24	0.24	Ϋ́	0.26		7			0.33		8		0.23			4	0.25	0.24	0.26		4	0.24	0.24	0.24		
N-EON+ZON	7/6ш	0.13	0.13	0.13	0.13	0.13	0.13	0.08	0.08	0.08	0.08	0.08	0.08	ž	0.13		*			0.13		က	0.13	0.13	0.13		4			0.13		4	0.08	0.08	0.08	-	Goometric mean for
N-EHN	7/6w	2	0.028		2	2	Q	2	S	Q	2	2	2	QN				- 60	0.020	<u></u>												ļ	<u></u>				*
muiboĉ	7/6w	13	4	13	12	13	12	13	12	13	12	4	13	12	13		7	- 5	2 0	4		3	13	12	14		4	13	12	13		4	13	12	4	,	17
muisəngsM	7/6w	2.31	2.28	1.88	2.20	2.41	2.03	1.85	2 08	1.99	2 00	2 42	2.36	2.14	2.31	•	4	- 7	1 85	2.42				1.88			4	2.09	85	2.41		4	2.19	1.99	2.42		2.14
muiols0		Į	.i	7	<u> </u>	.i	<u> L</u>	i	.i	. <u>i</u>	i	J	l	<u>i</u>	7		77	-	0 4	· ·		3	9	5	7		4	7	9	80		4	9	5	9	ļ	5
Cloride	ე/ 6ⴍ	19.3	23.3	20.1	17.3	19.3	21.0	22.2	22.5	21.5	21.2	23.5	24.7	22.7	19.3		14	- 2	17.3	24.7		3	20.2	17.3	23.3		4	21.3	19.3	22.5		4	22.7	21.2	24.7	; ;	1.2 22.7 = Not Analyzed
SSV	ე/ <u>ნ</u> ш	9	9.0	2	1.2	2.0	1.2	7.0	3.0	10.2	2	1.4	1.0	1.2			ö	0 4	; C	10.2		2	6.0	0.0	1.2			3.3				3	4.2	1.0	10.2		1.2 NA = NO
SST		1.6	2.2	2.0	3.0	3.0	1.6	4.0	3.0	11.2	1.2	4.	1.0	3.8	1.6		7		, - -	11.2		3	2.4	2.0	3.0		4	2.9	1.6	4.0		4	3.7	1.0	11.2		8 8 8
вор	7/6w	1.7	1.2	2	1.6	1.3	1.7	1.1	1.7	1.0	1.8	2	Ą	A	1.7		α	5	. C	1.8				1.2			4	1.4	1.1	1.7		2	1.4	1.0	1.8	-	
Dissolved Oxygen		9.8	9.4	9.4	10.4	10.0	9.8	14.0	12.2	13.2	13.2	11.0	10.8	10.3	8.6		14:	- 5	7.0	14.0		3	9.7	9.4	10.4		4	11.5	9.8	14.0		4	12.1	10.8	13.2	:00	SOUT SOUR
Conductivity	шэ/воүшш	150	120	06	8	100	75	111	105	162	80	215	80	85	150	ŀ	11		İ	215		3	100	06	120		4	98	75	=======================================		1 3	•		215	- 1	
Hq			. ፤	6.4	<u>.</u>	i	<u>:</u>	≛			1		:	:	7.0		11	≟		6.9		3	9.9	6.4	8.9		L	6.7	<u>:</u>	il		L	İ	9.9	<u>.</u>		Z
Temperature	O gab	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.5	9.0	11.0	10.0	10.5	10.0	rain	11	- 6	ο σ	11.0		3	10.0	10.0	10.0		4	10.0	10.0	10.0		4	10.1	9.0	11.0		20.5 6
wola	efs	17	23	39	4	37	18	30	30	26	26	27	25	27	11	and 2 affor rain	11		18					23]		L	28	İ	<u></u>			ļ	25			Apasilir Apasilir
	əmiT	945	1400	2250	225	605	1140	1530	1745	2200	200	1230	1735	1105		7	-	1		-							H		_			_				-) NM≕ Not Measured
				10/12/93												Doin Day	Valli, Va				rain)	-				after rain)					er rain)					101000	samble
 				9		•		•		1		:	1	: 1	sample)	l data.	Cata.				ring ra					1	1 .				y 2 aft						딕
eysb ,nisn ,yn				Rain											IER (1 s	IEP (A)	<u>ב</u>				IER (du					JER (Da					IER (Da					20/ 02/	PER (Va
. ,====================================			!	BWW09	•		ļ	İ	l	†····	İ	i	†	İ	DRY WEATHER (1	WET WEATHER (All data: Pain Daus	Count	Moon (*)	` ⊑		WET WEATHER (during	Count		Minimum	Maximum	WET WEATHER (Dav	Count	Mean (*)			WET WEATHER (Day 2 after rain,	Count	Mean (*)		ا ــ ا	MAKET MAKE A TAN	WEI WEALNER (Day 3) ND = Not Detected

DECECTOR AND AND AND AND AND AND AND AND AND AND	ND 62.9 10 2.77 38 0.006 ND ND 0.19 ND 0.7 1.4 2.6 ND ND 60.3 46 2.83 30 0.006 ND ND 0.6 ND ND 1.3 0.0 ND	69.5; 10 2.83 39 0.020 ND 0.06 ND ND 1.2 0.9 ND 59.5; 9 2.35 36 0.046 ND ND 0.08 ND ND ND 2.9 ND	61.0 8 2.52 35 0.037 ND ND 0.26 1.4 ND 2.2 ND	59.9 10 2.74 36 0.015 ND 0.10 1.10 1.5 ND 2.9 ND	64.31 8 2.34 34 0.015 ND ND 0.20 0.6 ND 0.5 12	63.1 10 2.19 35 0.037 ND ND 0.06 ND 1.0 ND 2.8 ND 64.2 8 2.43 35 0.004 ND ND ND ND ND ND ND ND 0.7 ND	8 2.43 35 0.004 ND ND ND ND ND 0.7 ND 9 2.44 36 0.016 ND ND ND 0.32 ND 0.8 1.2 ND	8 2.32 34 0.060 ND ND ND 0.34 ND 0.8 1.2 ND 8 2.32 34 0.060 ND ND ND 0.84 ND ND 3.0 ND	9 2.90 39 0.022 ND ND ND 0.5 ND 0.9 ND	7 2.71 35 0.013 ND ND 0.34 0.9 0.6 2.3 7 2.40 36 NA ND ND ND 0.34 1.7 1.7 3.2	0.19 0.7 1.4 2.6		11 11 11 6 6	2.52 36 0.026 0.08 0.51 1.0 0.9	7 2.19 34 0.004 0.06 0.20 0.5 0.6 0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.2] 1.1] 1.10] 1.10] 1.2] 1.2] 1.2] 1.2] 1.2]		3 3 3 3	2.35 35 0.020 0.06 0.06	2.83 39 0.046 0.08 2		4 4 4 2	34 0.004 0.06 0.20 0.6	2.74 36 0.037 0.10 1.10 1.5		4 4 4 3 2 2	2.59 36 0.028 0.50 0.7 0.7	9 2.90 39 0.060 0.84 0.9 0.8 3.0	7 2.40 36	(*) Geometric mean for Fecal Coliform and E. Coli
qddd qddd qddd qddd qddd qddd qddd qdd	ND 62.9 10 2.77 38 0.006 ND ND 0.19 ND 0.7 1.4 2.6	69.5; 10 2.83 38 0.020 ND 0.06 ND ND 1.2 0.9 59.5 9 2.35 36 0.046 ND ND 0.08 ND ND ND ND 2.9	61.0 8 2.52 35 0.037 ND ND 0.26 1.4 ND 2.2	59.9 10 2.74 36 0.015 ND ND 0.10 1.10 1.5 ND 2.9	64.3 8 2.34 34 0.015 ND ND 0.20 0.6 ND 0.5	63.1 10 2.19 35 0.037 ND ND 0.06 ND 1.0 ND 2.8 64.2 8 2.43 35 0.004 ND ND ND ND ND ND ND ND 0.7	8 2.43 35 0.004 ND ND ND ND ND 0.7	8 2.32 34 0.060 ND ND ND 0.34 ND ND 3.0	9 2.90 39 0.022 ND ND ND 0.5 ND 0.9	7 2.71 35 0.013 ND ND 0.34 0.9 0.6 2.3 7 2.40 36 NA ND ND ND 0.34 1.7 1.7 3.2	9 10 2.77 38 0.006 0.19 0.7 1.4 2.6		11 11 11 6 6	2.52 36 0.026 0.08 0.51 1.0 0.9 1.8	2.19 34 0.004 0.06 0.20 0.5 0.6	1.2] 1.1] 1.10] 1.10] 1.2] 1.2] 1.2] 1.2] 1.2]		3 3 3 3	2.35 35 0.020 0.06 0.26 1.4 1.2 Z	2.83 39 0.046 0.08 2		4 4 4 4 2 2 3 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	.19 34 0.004 0.06 0.20 0.6 0.5	2.74 36 0.037 0.10 1.10 1.5		4 4 4 3 2 2	2.59 36 0.028 0.50 0.7 0.7	2.90 39 0.060 0.84 0.9 0.8	7 2.40 36 0.34 1.7 1.7	Geometric mean for Fecal Coliform and E.
qddd qddd qddd qddd qddd qddd qddd qdd	ND 62.9 10 2.77 38 0.006 ND ND 0.19 ND 0.7 1.4 ND 66.3 10 2.8 30 0.001 ND ND 0.06 ND ND 4.3	59.5 9 2.35 36 0.046 ND ND 0.08 ND ND ND	61.0 8 2.52 35 0.037 ND ND 0.26 1.4 ND	59.9 10 2.74 36 0.015 ND ND 0.10 1.10 1.5 ND	64.3 8 2.34 34 0.015 ND ND ND 0.20 0.6 ND	63.1 10 2.19 35 0.037 ND ND 0.06 ND 1.0 ND A4.2 8 2.43 35 0.004 ND ND ND ND ND ND ND	8 2.43 35 0.004 ND 0.060 ND ND ND 0.32 ND 0.8	9 2.90 39 0.022 ND ND ND 0.5 ND	7 2.71 35 0.013 ND ND ND 0.34 0.9 0.6 7 2.40 36 NA ND ND ND 0.34 1.7 1.7	9 10 2.77 38 0.006 0.19 0.7 1.4		11 11 11 6 6	2.52 36 0.026 0.08 0.51 1.0 0.9	2.19 34 0.004 0.06 0.20 0.5 0.6	1.2] 1.1] 1.10] 1.10] 1.2] 1.2] 1.2] 1.2] 1.2]		3 3 3 3	2.35 35 0.020 0.06 0.26 1.4 1.2 Z	2.83 39 0.046 0.08 2		4 4 4 4 2 2 3	.19 34 0.004 0.06 0.20 0.6	2.74 36 0.037 0.10 1.10 1.5		4 4 4 3 2 2	2.59 36 0.028 0.50 0.7 0.7	2.90 39 0.060 0.84 0.9 0.8	7 2.40 36 0.34 1.7 1.7	Geometric mean for Fecal Coliform and E.	
qddd qddd qddd qddd qddd qddd qddd qdd	ND: 62.9: 10: 2.77 38: 0.006: ND: ND: 0.19: ND: 0.7 1.4	59.5 9 2.35 36 0.046 ND ND 0.08 ND ND ND ND	610 8 2.52 35 0.037 ND ND ND 0.26 1.4 ND	59.9 10 2.74 36 0.015 ND ND 0.10 1.10 1.5 ND	64.3 8 2.34 34 0.015 ND ND 0.20 0.6 ND	63.1 10 2.19 35 0.037 ND ND 0.06 ND 1.0 ND 64.2 8 2.43 35 0.004 ND ND ND ND ND ND ND	8 2.43 35 0.004 ND 0.060 ND ND ND 0.34 ND	9 2.90 39 0.022 ND ND ND ND 0.5	7 2.71 35 0.013 ND ND 0.34 0.9 7 2.40 36 NA ND ND 0.34 1.7	9 10 2.77 38 0.006 0.19 0.7		11 11 11 6 6	2.52 36 0.026 0.08 0.51 1.0	2.19 34 0.004 0.06 0.20 0.5	1.10 1.10 1.30 1.10 1.30 1.		3 3 3 3	2.35 35 0.020 0.06 0.06	2.83 39 0.046 0.08		42 25 0000 0000	19 34 0.004 0.06 0.20	2.74 36 0.037 0.10 1.10		4 4 4 3 2	2.59 36 0.028 0.50 0.7	2.90 39 0.060 0.84 0.9	7 2.40 36 0.34 1.7	Geometric mean for Fecal Coliform and E.	
qddd qddd qddd qddd qddd qddd qddd qdd	ND 62.9 10 2.77 38 0.006 ND ND 0.19 ND	61.0 8 2.52 35 0.037 ND ND 0.26	59.9 10 2.74 36 0.015 ND ND 0.10 1.10	64.3 8 2.34 34 0.015 ND ND 0.20	63.1 10 2.19 35 0.037 ND ND 0.06 ND 64.2 8 2.43 35 0.004 ND ND ND ND ND	8 2.43 35 0.004 ND ND ND ND ND 9 9 2.44 36 0.016 ND ND ND 0.32	8 2.32 34 0.060 ND ND ND 0.32	9 2.90 39 0.022 ND ND ND ND	7 2.71 35 0.013 ND ND 0.34 7 2.40 36 NA ND ND ND 0.34	9 10 2.77 38 0.006 0.19		11 11 4 6	2.52 36 0.026 0.08 0.51	2.19 34 0.004 0.06 0.20	2.80; 38; 0.000; ; 0.10; 1.10;		3 3 3 3 1	2.35 35 0.020 0.06	2.83 39 0.046 0.08		42 25 0000 0000	19 34 0.004 0.06 0.20	2.74 36 0.037 0.10 1.10		4 4 3	2.59 36 0.028 0.50 0	2.90 39 0.060 0.84 0	7 2.40 36 0.34	Geometric mean for Fecal Coliform and	
qddd	ND 62.9 10 2.77 38 0.006 ND ND 0.19	59.5 9 2.35 36 0.046 ND ND 0.08	61.0 8 2.52 35 0.037 ND ND ND	59.9 10 2.74 36 0.015 ND ND 0.10	64.3 8 2.34 34 0.015 ND ND ND	63.1 10 2.19 35 0.037 ND ND 0.06 64.2 8 2.43 35 0.004 ND ND ND ND	8 2.43 35 0.004 ND ND ND ND 9 2 44 36 0.016 ND ND	9 2.32 34 0.060 ND ND ND ND	9 2.90 39 0.022 ND ND ND	7 2.71 35 0.013 ND ND ND 7 2.40 36 NA ND ND ND	9 10 2.77 38 0.006 0.19		11 11 4	2.52 36 0.026 0.08 0	2.19 34 0.004 0.06 0	Z.80 38 U.060 U.10		3 3 3 2	2.35 35 0.020 0.06	2.83 39 0.046 0.08		4 4 4 2	19 34 0.004 0.06 0	2.74 36 0.037 0.10 1		4 4	2.59 36 0.028	2.90 39 0.060 0	7 2.40 36	
/6w 6 /6w 7	ND 62.9 10 2.77 38 0.006 ND ND ND ND 69.3 10 2.83 30 0.020 ND ND	59.5 9 2.35 36 0.046 ND ND	61.0 8 2.52 35 0.037 ND ND	59.9 10 2.74 36 0.015 ND ND	64.3 8 2.34 34 0.015 ND ND	63.1 10 2.19 35 0.037 ND ND 64.2 8 2.43 35 0.004 ND ND	8 2.43 35 0.004 ND ND 9 2.44 36 0.016 ND ND	8 2.32 34 0.060 ND ND	9 2.90 39 0.022 ND ND	7 2.71 35 0.013 ND ND 7 2.40 36 NA ND ND	9 10 2.77 38 0.006		11 11	2.52 36 0.026 0	2.19 34 0.004 0	. Z.8U; . S8; . U.00U;		3 3 3	2.35 35 0.020 0	2.83 39 0.046 0		4 4 4	19 34 0.004 0	2.74 36 0.037 0		4 4	2.59 36 0	2.90 39 0	7 2.40 36	
/6w/c/c/c/c/c/c/c/c/c/c/c/c/c/c/c/c/c/c/	ND 62.9 10 2.77 38 0.006 ND ND 60-3 10 2-83 30 0.000 ND	59.5 9 2.35 36 0.046 ND	61.0 8 2.52 35 0.037 ND	59.9 10 2.74 36 0.015 ND	64.3 8 2.34 34 0.015 ND	63.1 10 2.19 35 0.037 ND 64.2 8 2.43 35 0.004 ND	8 2.43 35 0.004 ND 9 2.44 36 0.016 ND	8 2.32 34 0.060 ND	9 2.90 39 0.022 ND	7 2.71 35 0.013 ND 7 2.40 36 NA ND	9 10 2.77 38 0.006		11	2.52 36 0	2.19 34 0	2.90 39 0		3 3	2.35 35 0.020	2.83 39 0		42 4	19 34 0	2.74 36 0		4 4	2.59 36 0	2.90 39 0	7 2.40 36	
/6w/6/	ND 62.9 10 2.77 38 0.006	59.5 10 2.83 38 0.020 59.5 9 2.35 36 0.046	61.0 8 2.52 35 0.037	59.9 10 2.74 36 0.015	64.3 8 2.34 34 0.015	63.1 10 2.19 35 0.037 64.2 8 2.43 35 0.004	9 2.43 35 0.004	8 2.32 34 0.060	9 2.90 39 0.022	7 2.71 35 0.013 7 2.40 36 NA	9 10 2.77 38		11	2.52 36 0	2.19 34 0	2.90 39 0		3 3	2.35 35 0	2.83 39 0		42 4	19 34 0	2.74 36 0		4 4	2.59 36 0	2.90 39 0	7 2.40 36	
/6w 5	ND 62.9 10 2.77 38	59.5 9 2.35 36	61.0 8 2.52 35	59.9 10 2.74 36	64.3 8 2.34 34	63.1 10 2.19 35 64.2 8 2.43 35	8 2.43 35 9 2.44 36	9 2.44 30 8 2.32 34	9 2.90 39	7 2.71 35 7 2.40 36	9 10 2.77 38		11	2.52 36 0	2.19 34 0	2.90 39 0		3 3	2.35 35 0	2.83 39 0		42 4	19 34 0	2.74 36 0		4 4	2.59 36 0	2.90 39 0	7 2.40 36	
/6w 5	ND 62.9 10 2.77	59.5 9 2.35	61.0 8 2.52	59.9 10 2.74	64.3 8 2.34	63.1 10 2.19 64.2 8 2.43	8 2.43	9 2.44 8 2.32	9 2.90	7 2.71	9 10 2.77		11	2.52	2.19	7.90		۳ ر	2.35	2.83		4 5	9 6	2.74		4	2.59	2.90	7 2.40	_
/6w 3	ND 62.9 10 2	59.5 9 2	61.0 8 2	59.9 10 2	64.3 8 2	63.1 10 2 64.2 8 2	2 0	8 8	9 2	7 2	01			7	2 0	<u> </u>		٢	1 ~	7		4 6	2.19	2			S) C	7 2	7	
/6w 5	ND 62.9	59.5	61.0	59.9	64.3	63.1					6		1	6	~ c	2			!	 		•		+	ŀ	4	00	- 6		ı
/6w	2 2			1 1	- 1	•	04.7 7.4 ×	61.5	65.6	70.9 52.7	97.9	ı		•		- 1		က	n co	7		4 0	9 00	10		:				/zed
	Ì	2.0	2.6	တ ၊	77			1	1 1	- 1	۱۳	Н	1	64.0	59.5	70.9		က	59.5	69.3		4 0	59.9	64.3		4	65.7	70.9	62.7	= Not Analyzed
	····j···				Z ç	12.c	0.1	1.0	2.2	22			80	3.2	1.0	14.0		7 6	2.0	2.6		ო ლ т	. 6	12.0		3	6. 0	2.4		Ž = Y N
			1 1	1 1	:			•	1 1	0.0	1.0		11	2.4	1.0	9.6		က	0	5.2		4 6	1.2			4	 	2.8	0.6	_
/6w	₹ 2	₹¥	¥	¥:	Ž.	Υ Z	ΣŽ	₹	¥	₹₹																				Φ
/ɓw °	ο α γ	8.2	8.8	0.6	× .	11.3	- C	1.8 5.6	9.8	10.0	8.2		1	10.0	42.0	20.02			8 2			4 6	80.	11.3		4	11.2	13.0	10.6	Sampl
uu c	200	190	200	195	1/2	212	165	175	165	175 185	250		17	187	165	7 7		۳.	190	200	<u> </u>	4 4	120	212		4	170	175	185	NS= No Sample
۵	ی م	9	9	9	9	ဖ	2 6	စ	9	6.5 NA	9.9		7	6.3	6.0	0	1 1	•	6.1 6.1			4 4	6.0			4	4. 6	6.7		_
		<u>į</u>	<u>. </u>			İ	L		ll.		8.5		er rain) 11	9.5	8.0	<u> </u>		ლ r	9.0	10.0		4 0	9.5	10.0		4	0.6	10.0	10.5	nred
210											6	i k	~	12	o (2		ر 4	6	13		4 5	12	13		4	12	13	14	t Meası
niT g	340	2300	235	610	1150	1540	2200	200	1230	1735		ŀ	~														T		П	NM= Not Measured
5 0 €	0/12/03	0/12/93	0/13/93	0/13/93	0/13/93	0/13/93	0/13/93	0/14/93	0/14/93				Rain, De				in)				er rain)				er rain)				sample	<u>-</u>
		į	Ji	Į	<u>i</u>		<u>į</u>		<u></u>		sample)		II data:				ıring ra								ty 2 aft				1y 3) (1	
atte		L	<u> </u>	<u>i</u> .,	<u>ļ.</u>		<u>L</u>		<u>l l</u> ,		IER (1 8		ER (A								IER (DE				IER (De				ER (D	ected
			<u>ا</u> .	<u>:</u>	1		Ł		<u></u>	4	RY WEATH		NET WEATH	1	inimum aximim	aviillaili	ET WEATH	ount	imum		WEATH	14 (*)	nimum	ximum	ET WEATH	ount	ean (*)	aximum	ET WEATH	Not Def
- u	Wes Afte Date Date Cfs	Wee Run Data Black Run Data Black Run D 10/12/93 945 9	Wind Day Fig. 19	W 信 之	We e u Dy P 10/12/93 945 9 C Dy P 10/12/93 1405 9 C Dy Rain 9 10/12/93 2300 12 Rain 12 10/13/93 235 13 24h 16 10/13/93 610 13	We 记	We 记	We 记	Wife 記	We 記載	24	 登 信 立	Wing 記	 登 会 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点 点	 登 信 立	英章	 登電 記 記 記 記 記 記 記 記 記 記 記 記 記 記 記 記 記 記 記	3 분	第章	(24) (25) (25) (25) (25) (25) (25) (25) (25		第 倍	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	第章	\$\text{\$	3 倍 2	25 倍	2

		<u></u>	<u></u>	ίυ	ō	ō	0	0	0	S	0	S	S	S	1	38	l	_	T
E. coli	CEN\100WF	"	7		38	1	સ	340	27	z	35	Z	Z	z		6			
Fecal Coliform	CFU/100mL	110	66	230	330	200	400	1,200	1,900	SN	1,100	SN	SN	SN		110			
	qdd	15	20	25	27	24	74	45	42	44	57	37	27	72		15			
Juiz	<u> </u>	<u>.</u>	İ	Ĺ	<u>.</u>		<u> </u>	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	<u>. </u>	<u>L</u>	<u> </u>		5.8			ŀ
Гезд	İ	l	İ	<u> </u>	İ			İ						1					ŀ
Nickel		.	<u> </u>	<u> </u>	<u>. </u>		<u>. </u>	<u> </u>	<u>.</u>	<u>.</u>	<u></u>	<u></u>	<u>L</u>	<u> </u>		9.8			
Соррег		L	<u>. </u>	İ	<u>. </u>		<u>.</u>	<u>.</u>		<u>. </u>	İ	<u>. </u>	İ	İ		6.9			ŀ
Сһготіит		ļ	ļ	į	į		į	į	L	Ĺ	į	ļ	į	<u> </u>		0.44			
muimbsO		<u> </u>	<u> </u>	<u>!</u>	<u>. </u>		<u>. </u>	<u>!</u>		<u> </u>	l	l	<u>.</u>	<u> </u>		0.51			
d-†0d	7/6ш	0.33	0.30	0.30	0.30	0.23	0.23	ž	0.23	0.26	0.26	0.26	0.29	0.22		0.33			
N-EON+2ON	ე/ ნ ш	2.11	2.49	2.24	0.34	0.34	0.34	0.34	0.34	0.34	0.34	0.43	0.08	0.08		2.11			ĺ
N-EHN	7/6ພ	0.011	0.014	0.039	0.011	0.026	0.084	0.104	0.175	0.231	0.122	0.209	0.113	Ϋ́		0.011			ľ
muiboS	7/6ш	20	51	43	41	43	46	43	39	36	35	34	35	36		20			ŀ
muisəngeM	7/6ш	2.65	3.37	2.80	3.04	3.40	3.03	2.78	2.83	2.60	2.57	3.00	2.85	2.84		2.65			ľ
Calcium	7/6ш	15	4	10	12	13	10	13	11	,	11	9	9	6		15			Ì
Cloride	7/6ш	73.7	80.3	70.3	0.69	73.3	78.9	70.1	65.5	65.3	60.8	58.4	65.0	65.3		73.7			
SSV	7/6ш	2.0	1.8	3.2	2.8	3.8	10.8	25.8	6.0	5.2	4.8	3.8	2.8	1.2		2.0			
SST																5.8			
BOD	7/6w	5.2	2.1	1.4	2.3	1.5	3.2	3.2	5.2	4.5	4.5	4.0	Ϋ́	Ν		5.2			
Dissolved Oxygen								11.7					10.3	10.0		6.5			1
Conductivity	шэ/ѕочшш							265					180			350			[
Нq								9.9				6.7	6.6	NA		6.7			[
Temperature	O gəb	10.0	10.0	10.0	10.0	10.0	10.0	10.5	10.0	10.0	9.0	10.0	10.5	10.5		10.0		er rain)	1
Flow	cfs	202	149	372	143	188	341	494	460	346	288	267	235	228		202		d 2 aftı	1
	əmiT	910	1330	2230	215	550	1115	1510	1725	2135	145	1215	1720	1100				vs 1 an	
	Date	0/12/93	0/12/93	/12/93	/13/93	/13/93	/13/93	10/13/93	13/93	13/93	14/93	10/14/93	0/14/93	10/15/93				WET WEATHER (All data: Rain, Days 1 and 2 after rain)	
	-,	`				Ì	Ė	Ì	Ė	Ì	Ì	`	Ì	`		mple)		Jata: R	
	after rain)					ļ		h 24								R (1 sa		R (All t	
ry, rain, days		۵	Ra	Ra	Ra	24	24	24h	24	48	48	48	48	72		ATHE		ATHE	
	Station	BWW11	BWW11	.WW11	BWW11	BWW11	WW11	.WW11	BWW11	.WW11	BWW11	BWW11	W.	BWW11		DRY WEATHER (1 sample)		VET WE	
 2		ω.	Ω,	Φ;	<u>m</u>	<u>a</u> ;	Θ.	B	<u>m</u>	ω.	<u>m</u>	Δ.	m;	m	ı	Ω	Į	5	9

Count	11	1	11	11	11	ı	1		11	11	11:	11:	ı	ı	ı	L	ı	L	L.,	14:		ä	٥
Mean (*)	298	10.0	9	230	10.7	30	13.5	8 4	888			.i	0 103	0 60	2 20		•	İ	70	- C	20	944	90
······································	2		5		3	1		i	2	1		_	- 1	1	•	- 8	:			> 0	ဝိ	į	20
Minimum	143	9.0	9.9	160	9.0				58.4	10										4.2	20	66	47
Maximum	494	10.5	6.8	300	13.5				80.3		3.40	51 0	1	Ī	1	1.06 16.	16.43 4	41.2 1	Ĺ	57.4	74	1,900	390
WET WEATHER (during rain)																11	1 1						
(-	1		-		-			ļ	1		L	-1			ı	Į	L	-		-	-	
Count	_	က	33	3	3	က	က		က						-				- 3	က	က		က
Mean (*)	221	10.0	6.7	265	9.6	1.9	4.7		73.2							İ	<u>.</u>	<u></u>	ĺ	3.4	24	196	111
Minimum		10.0	9.9	240	9.0	4.	2.8	1.8	0 69	10 2	ļ	<u>. </u>	•	•	1	i	<u>.</u>	<u>.</u>		4.2	20	66	47
Maximum	372	10.0	6.8	300	10.8	2.3	6.0	<u>L</u>	90.3		3.37	51 0	0.039	2.49 (0.30	0.51	3.60 1	14.0	10.0	25.2	27	330	390
WET WEATHER (Day 1 after rain)				-		ΙI	H	lľ		Ιī			ΙL	Ιl	ıΙ	l							
Count	_	4	4	4	4	- 1			4											4	4	4	4
Mean (*)	_	10.1	9.9	252	11.1				72.0							ļ		<u></u>	ļ	5.1	46	654	264
Minimum	188	10.0	6.6	240	9.4	1.5	6.0	3.8	65.5	10 2	2.78	39 0	0.026 (0.34	0.23 0	İ		13.5	İ	6.8	24	200	170
Maximum	494	10.5	9.9	265	13.5	.			78.9				i	<u>.</u>		1.04 16.	6.43 4		13.1 2	25.8	74	1,900	340
WET WEATHER (Day 2 after rain)																							
Count		4	4	4	4				4				l		<u></u>	L	ŀ	Ĺ			4	_	-
Mean (*)	284	6.6	6.7		11.2	4.3	10.5	4.2 6	62.4	11 2	2.76	35 0	0.169 0	0.30	0.27 0	0.57 4.	4.42	17.8	8.8	24.3	41	1,100	350
Minimum	235	9.0	9.9	160	10.1				58.4					L	İ				i	ĺ	27	ļ 	
Maximum	346	10.5	6.7	200	12.4				35.3						<u>,</u>			Ĺ	١		57		
																I	ı	l	ı	I			1

7.9

(*) Geometric mean for Fecal Coliform and E. Coli

36

9 2.84

2.2 1.2 65.3 NA = Not Analyzed

200 10.0 NS= No Sample

WET WEATHER (Day 3) (1 sample) 228 | 10.5 | ND = Not Detected

E. coli	DFU/100mL	4	32	300	120	75	83	71	6	NS	190	SN	NS	NS	41		α	a	3 8	300			3	105	32	300		4	79	7.1	90		T	- 6	2]		
Fecal Coliform	CFU\100mL	29	130	360	380	90	290	130	130	NS	230	NS	NS	NS	29		ļ.	19	8	380			3	261	130	380		4	145	06	290		+	- 666	067				
Zinc	qdc	12	4	5	11	18	15	20	23	2	26	37	18	2	12		11	12	٦,	37			3	10	2	14		4	19	15	23			1 6	77	37	5	2	
реэq	qdc	5.1	1.3	4.0	4.0	4.8	4.0	11.8	6.2	QN	9.9	10.7	13.3	4.0	5.1		101	7		13.3			3	3.1	1.3	4.0		4	6.7	0.4	11.8		٣	ر د	2 0	0.6 13.3	2	4.0	
Nickel	qdo	7.4	9.8	7.1	7.2	8.3	7.7	8.9	8.9	8.7	7.8	7.9	7.8	9.1	7.4		17	ο		8.6			3	8.0	7.1	9.8		4	8.5	7.7	8.9			•	0 1	87.8	5	9.1	Coli
Copper	qdc	6.1	9.5	3.3	7.4	9.2	9.5	13.4	14.7	13.0	12.2	14.1	12.6	4.1	6.1		11	40	3 %	14.7					3.3			4	11.7	9.2	14.7		Ţ	, ,	2 9	12.2	<u>-</u>	4.1	and E.
Сһготіит	qda	0.30	1.17	1.40	1.82	2.63	2.40	3.76	3.99	3.50	2.87	3.95	3.73	0.74	0.30		1	2 84	1 1	3.99			က	1.46	1.17	1.82		4		2.40			V			3.95		0.74	Geometric mean for Fecal Coliform
muimbsD	qdd	0.32	0.82	0.40	0.26	0.30	0.21	0.55	0.27	0.14	0.13	0.56	0.86	2	0.32		11	7	0	0.86			က	0.49	0.26	0.82		4		0.21			4	2	24.0	0.13	3		Fecal C
d-40q			:	:	:	:	:	:	:	:	0.30	: .	:	: 1	0.36		10,	2 5		0.36					0.30				0	0.24	이		V) (2) (3)		0.30	an for
N-SON+SON	7/6 w	2.25	2.29	1.85	1.85	1.77	1.81	1.85	1.77	1.77	1.85	1.65	1.85	1.13	2.25		1,1	ä	1 65	2.29	•		က	2.00	1.85	2.29		4	1.80	1.77	1.85		Ā	7 20	0 2	1.03 85	<u> </u>	1.13	etric me
N-EHN	_	056	051	042	990	039	012	053	038	028	0.000	181	193	≨	0.056		14	0.70	0 0 0 1 2	0.193			က	0.054	0.042	0.068		4	0.036	0.012	0.053		A	770	2 0	0.028	; ;		
muibo8	¬J/ɓw	46	49	43	42	42	4	43	40	40	39	38	35	37	46		17	14	35	49			က	45	42	40		4	4	40	43		4	r 00	9	გ 4	į	37	€
muisəngsM	7/6ա	3.46	3.61	2.26	3.07	3.36	2.79	2.84	3.01	2.64	2.82	3.20	2.90	2.42	3.46		11	295	2.26	3.61			က	2.98	2.26	3.61		4	3.00	2.79	3.36		1	00 6	20.7	3.20		2.42	
Calcium	7/6ա	15	13	6	1	12	9	13	12	7	1	12	10	8	15		1.1	Ŧ	6	13			က	7	6	13		4	12	10	13		4	7	= \$	12	į	8	ged
Cloride	7/6w	68.8	76.7	63.9	69.3	72.0	67.3	66.5	64.7	68.3	68.6	65.4	66.3	55.0	68.8		17	68 1	63.9	7.97			က	70.0	63.9	76.7		4	9'.29	64.7	72.0	Ì	4	67.2	7.70	4.00 68.6	3	55.0	= Not Analyzed
SSV	7/6w	1.6	1.6	3.2	3.0	2.6	2.0	3.2	3.8	8.6	2.6	6.2	4.2	3.0	1.6		17	3.7	1.6	8.6			က	2.6	1.6	3.2		4	2.9	2.0	3.8		4	7 4	† 0 0	0.2 8.6	;	3.0	NA = No
88T	7/6w	4.6	2.4	3.6	3.6	5.2	4.4	4. 4.	3.8	13.4	4.4	12.0	8.2	3.4	4.6		17	G	2.4	13.4	_		က	3.2	2.4	3.6		4		3.8			4	9	9 4	13.4	:-	3.4	Z
вор	7/6w	2.4	2.1	1.2	2.7	1.9	1.5	1.6	2.4	2.0	2.1	3.3	Ϋ́	ž	2.4		10	2.1	12	3.3					1.2					1.5			33			3.3			_
Dissolved Oxygen	7/ 6ⴍ	10.5	9.6	9.4	10.2	10.2	10.2	12.9	12.4	13.5	12.8	11.6	10.5	10.7	10.5		11	11.2	9.4	13.5			3	9.7	9.4	10.2		4	11.4	10.2	12.9		4	104	10,	13.5	<u>:</u>	10.7	NS= No Sample
Conductivity	шроѕ/сш	250	300	220	240	250	205	270	250	170	220	215	180	175	250		11	229	170	300					220			4	244	205	270		4		•	220		175	S= No
Hq		6.9	6.9	6.7	6.7	6.7	6.7	6.9	6.8	6.7	6.7	6.9	6.9	Ϋ́	6.9		11	8	6.7	6.9		ŀ			6.7			4	8 .9	6.7	6.9		4			6.9		•	~
Temperature	O gəb	8.8	10.5	10.0	11.0	10.0	10.0	10.0	10.0	10.0	9.0	10.0	10.0	10.5	8.8	r rain)	11	10.0	0.6	11.0			က	10.5	10.0	= 		4	10.0	10.0	10.0		4	σ	9 0	10.0		10.5	eq Lec
Flow	sts	228	177	423	186	223	378	580	530	495	379	320	299	259	228	and 2 after rain	11::1			. 2			က	262	177	423		4	.	223	280	ŀ	4	272	200	495	<u> </u>	259	Measn
<u> </u>	əmiT	905	1305	2205	148	530	1057	1455	1710	2120	135	1200	1710	1045		is 1 and	-		Ť	•					-			_								Ť	1	H	NM= Not Measured
	ang	10/12/93	10/12/93	12/93	13/93	13/93	13/93	13/93	13/93	13/93	10/14/93	10/14/93				in. Dav	, m					ام					rain)					rain)	, , , ,					ample)	Z
	Date								: :						mple)	lata: R						ng rain					1 after rain,					2 affer rain	a l					3) (1 Si	
	after rain) Run	ļ									h 36				R (1 sar	R (All o						R (duri					R (Day					(Dav	2					R (Day	ted
ery, rain, days	Weather (D			•				•••••	••••		48h	••••			ATHE	ATHE				: 1		ATHE		_		اء	ATHE			_		ATHE		1				ATHE	t Detec
	Station	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	BWW13	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain Days 1	Count	Mean (*)	Minimum	Maximum		WET WEATHER (during rain	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 1	Count	Mean (*)	Minimum	Maximum	WET WEATHER	Count	Mean (*)	Minim	Maximum		WET WEATHER (Day 3) (1 sample)	ND = No.

Page A15-103

-10	-						}	\mid	-	-	F	-	L	-						\mid	-	ŀ	-		
24	ry, rain, days			Flow	Temperature	Hd	Conductivity	Dissolved Oxygen	BOD		VSS Cloride	Calcium	Magnesium	muibo8	N-EHN	NOS+NO3-N	d-40q	muimbs	Сһготіит	Copper	Nickel	геза		Fecal Coliform	E. coli
noitst2	after rain)	Run Date			O geb		шэ/ѕоцшш			_			7/6w	7/6ш	7/6ш	7/ճա	7/6ա	qdd	:	qdd			qdd	ברטייססשנ	JM0001/U3C
BWW14							150						_	L	0	0	2	0.21	9	2	ļ,	<u></u>		1.800	210
BWW14							150	İ	:		İ				0	0	2	90.0	Q	Q	ļ	<u>l</u>		1 300	1 000
BWW14	Rain	9 10/12/93	3 2350	0 62	10.0	6.4	100	i	:		İ		6 1.41	1 14	0.081	0.08	9	0.19	09.0	9	Ĺ	<u> </u>		1.100	740
BWW14			34		L		110	Ĺ		i	İ		<u> </u>	<u> </u>	0	0	2	2	0 30	10	<u>.</u>	<u>l</u>		460	280
BWW14			3 70		İ		105	İ	•		İ		Ľ	Ĺ.,	0	0	2	0.09	1.29	1.3	<u>.</u>	1		5.800	1,300
BWW14			3	•	Ĺ		90	<u> </u>	:		i					C	CN	S	0.71	10	Ĺ	<u>l</u>		1 200	240
BWW14		1	3 161	1.	İ		111	1	3				1			0	S	S	0.65	10	.i	<u></u>		460	0,7
BWW14		į	3 1830	1	1		115	<u>.</u>		1	i		1	L) () (Ŝ	Š	000	7				340	100
BWW14		•	3 224	1	L		165	.!		1) (2		2 2	9 0	5 6	.į		1	2 0	2 4
BWW14		1	300	1	1		2 %	1	•						2			2 2	0.0	7 7	İ.,			200	25
BWW14		i	3 132		ı		3 6		•		ì				0	9	֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֟֝֟֟֝֟֝֟֟֝֟֟ ֓	2 2	000				-	3	2 9
BWW14		i	1826				200	i		1	- 1		_[`		2	0	2 2	2	0.08	4.	<u> l</u> .			2	S
BWW14	724	72 10/15/02	201	1			, ,	i	•	•	- 1		1		3	>	2	2	0.8/ 	C	İ.			S	SS
	I		1					-																1	
DRY WEATHER (1 sample)	HER (1 s	ample)		4	11.5	6.9	150	9.1	2.2	2.6	1.0 23.	5	5 1.67	71 17	0.011	0.08		0.21			9.0	1.1		1,800	210
WET WEAT	HER (A)	WET WEATHER (All data: Rain. Days	4-	and 2 after rain	er rain)																			İ	
ţ i			٠Į	11	17	1	14:	14:	L.	L	L	ľ	ļ.,			7.4		6			ļ		ļ.		6
Mean (*)				9	7.7	7		- 6	. u		Č	- 6			•	•			2 5	S .	0 1	= ;		o i	o g
:				43	10.0	6.4		9 4			10	5 0			5 0	2			200	- 0	5 C	. c		200	770
:				62	12.0	6.9	340	13.4	2.2	20.2	3.6 28	38	6 1.76	3 17	0.098	0.48		0.19	1.29	1.5	10	2.8		5.800	1 300
									ı]															201
WET WEATHER (during	HER (du	ring rain)															į								
Count				3	3	3	3	3	3	3	5		L		<u></u>	[2	2	7			-		6
Mean (*)				55	11.2	6.5	120	9.5	1.7	7	0		Ľ		0	0	<u>+</u>			10	80			870	592
Minimum				43	10.0	6.4	100	9.4	13	Ö	9	0	Γ		C	-					9	0 2		460	280
Maximum				62	12.0	6.7	150	9.8	2.0	2.8	2.4 28	3	6 1.69	17	0.081	0.08	<u> </u>	0.19	09.0	<u> </u>	6.0	2.8	ļ	1.300	1.000
WET WEATHER	HER (Day	v 1 after rain	-																						
Coint				4	4	4	4	V		<u> </u>		ĺ	ļ.,	ı					-			-			1
Mean (*)				48	400	6.7	ļ	7 7 7	.i	r u	L.	re	l.		٩						7	4 (4 6	4 6
₹E				45	10.0	9		ασ	5 0	200	200	5 0	7 7	72.1	2 0	200		300	200	ų (-	2 0	707
١.				_	2 5	9 0	2 4	5 6	. L		L.	5 0		İ	٥			3 8				<u>.</u>		3/0	
I I I I I I I I I I I I I I I I I I I				5	12.0	0.0	11	12.0	1]]	ا اق] [기							2.8		5,800	1,300
WEI WEATHER (Day 2	HEK (Ja	y 2 after rain			ļ		-		}					İ											
Count				4	4	4	j	4	7			4							4	4	<u>.</u>	4	<u></u>	-	-
					11.3	8.9		1.8	1.4			_	_		0	0	<u></u>		0.76	1.2	1.0	1.3		230	120
Minimum				45	10.0	6.7	82	10.3	1.3	10	1.0 24.	7	_		0	0.35		-	0.58	0.7	<u>. </u>	1-1	-	ļ	
Maximum				45	12.0	6.9		13.4	1.5		1.8 27	9	6 1.76	91	<u> </u>	0			0.91	1.5		1.7	ļ	<u>.</u>	
WET WEATHER (Day 3)	HER (Da	y 3) (1 sample)	(e)		•••••												ļ	ļ	ļ	ļ					
ND = Not Detected	tected		Z	NM= Not Measured	Ired	_	NS= No Sample	Sample		₹	li	Not Analyzed			(*) Geor	Geometric mean for Fecal Coliform and	ean for	Fecal C	oliform &	шi	Soli				
																		:		i					

	noitat2	BWW15S	BWW15S	BWW15S	BWW15S	DVAVATEC	BYANA 133	BVVVV 133	BVVVV 33	BWW15S	BWWW 133	BWW15S	BWW15S	BWW15S	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count			Maximum	WET WEATHER	Count		Minimum	Maximum	WET WEATHER	Count		Minimum	Maximum	WET WEATHER	Count	Mean (*)	Minimum	Maximum		WEI WEATHER (Day 3) (1 Sample)
ry, rain, days		L	i	ż	.i	<u>i</u>	<u>i</u>		i	<u>i</u>	İ	i	48h	i1	THER (THER (THER (THER (1					THER (1					2	WEA! HEK (
	Run		:	:			:			•		•	52	:	samp	411 data					(during					(Day 1 a					(Day 2 a						Jays
	Date	10/12/93	10/12/93	10/12/93	10/13/93	40/49/09	10/12/02	10/12/02	10/13/93	10/12/02	10/14/02	10/14/93	10/14/93	10/15/93	(e)	1: Rain, De					rain)					after rain)					after rain)						(1 sатріе,
	Time	840	1315	2145	130	272	1105	7 00	1005	2210	2200	1105	1705 o F	1030	ž	1				1																	
WOIT	sts	o Flow	o Flow	o Flow	Flow		A C					A C	o Flow		No Flow	and 2 afte			1			ļ												į			1.
Temperatur	O gəb	9.6	11.5	110	110	5 5	7 .0	2 2	5.0	0 0	D 0	0 0	12.0	11.0	8.6	after rain)	1	10.8	8.5	13.5	ŀ	3	11.2	17.0	11.5		4	11.3	10.0	13.5		4	10.1	8.5	12.0		21.0
Hq		5.8	5.9	6.2	9	2 4	0 4	0.0	000	0.0	0.0	2.0	5.9	NA	2.8		1	6.1	5.9	6.4		3	0	5.9	7		4	6.1	6	3		4	6.1	5.9	6.4		
Conductivity Dissolved	wwposycw	138	138	125	134	10.	133	200	200	125	130	130	150	160	138		11	140	125	180		3	131	125	138		4	150	135	180		4	136	130	150		160
Oxygen			6.3	7.6	7.4	ţ. Ţ.	7.4	4.0	0. 6	0 7)) (7.0	8.0	4.7	5.3				4.7			3	7.1	6.3	7.6		4	9 .8	4.7	8.1		4			8.0		4.7
BOD		\ \ \											ζ×					_		4		 	-		4					Ť		ļ	77		28.		
SSV															8.0				2.2]		3	_		7		4	7.6 3.	7	4		4		2.2	8.0 26.		6.6
Cloride			1	1	1	- 1	- 1	- 1	1	- 1	•		1	1	3.2 32			က	9	4		L	<u> </u>	2.4 29.			4	3.4 33	0	9		4	9	9	38.		3.4 36.0
muioleO				<u>.</u>	ļ.,										32.2				29.9			3	4.	6.6	80		4	0.	Τ.	6.		4	7	0	6.9		36.0
muisəngsM		13 2	7	٦	1	4 0	N	4	Ŋ	V C	٦	46	7 2.5	2	13 2.74		Ĺ	8	7 2.0	7		<u></u>	7	8 2.1	7			8 2.2	2	7		L	2	7	9 2.6	ľ	8 2.47
muibo8		4	.5		2 5	<u>.</u>	4 2	4 7	Ω c	2 0	1 2	2 5	59 19	7	4 20		<u> </u>		05 18					10 19				28 19				<u></u>	_	<u> </u>	60 20		7 19
N-SHN	7/6ա	<u> </u>	İ	<u>.i</u>	.i	İ				Ţ	ı.				0 0.674			0	0				0	0			<u> </u>	9 1.043	0			<u></u>	0	0	0.982		
N-EON+2ON	¬ /6u													IA 1.81	1.30		<u></u>	_	626 1.14				_	.626 1.14			L	13 1.42				<u>[</u>	_	Γ	32 1.89		
d-\$0d	7/6u	l		1	1	1	-	1	1						0		<u></u>	4	4	6		3	9	4	5		4	2	0	5		4		9	6		
Cadmium		ı	•	1	1	•	1	- 1	- 1	- 1					0.18			0.0	0.05	0.0				0.05			 	0.06	0.0				<u> </u>	ļ	<u> </u>		
Сһґотіит		1	i	. i	.1	i	i	i					0.33		QN 8		L	0	5 0.27			Ĺ	5 0.37		2		<u> </u>		O	-		4	0.31	0.27	0.35		0.47
Соррег	qdc						i	I		i	I			1.3	1.6			~	0.5	7			1.5					1.3	0	2			0	0	<u> </u>		
Nickel	qdc	i	į			1	1	-	1	ì		İ		3.5	0.5			o	0.5	_		3		0.5			2	0.7				2	14	12	1.5		3.5
гева	qdc													180	6.0				0.8			3	1.9	1.0	2.7			2.8				4	2.1	0.8	3.8		
Zinc	qdo	2	16	Ş	2 2	2 2	2	2	2	2 2	2	2 2	2 2	2			-	16				<u></u>	16												ļ		••••
Fecal Colifor	Jm001\ U 73		Z	Z	Z	2 2	Z	Z	Z	Z	Z	Z 2	ZZ	Z																							
E. coli	JM001/U3C													NS NS	-		-	ļ					ļ		_		ļ	ļ				_	ļ	-			

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM III

Page A15-106

E. coli	CFU/100mL	800	570	3.600	7 300	1,000	900	1,000	100	SN	3.800	NS	NS	NS	800		8	1.573	570	7,300		-	2	604,7	2 300			4	6	3			-	3 800				7
Fecal Coliform	CFU\100mL	63	78	1,000	1 200	460	94 000	71,000	90.000	NS	13,000	NS	SN	SN	63		8	4.708	84	94,000			2	6	1 20 ¢		ŀ	4	20,717	000	94,000		-	13 000) [-	•
Zinc	qdd	9	Č	15	18	Q	13	Q	18	2	21	S	2	2			2	17	13	21			7 [2	3		ŀ	7	9	2 0	2		-	21	21	21		
геза	qdd	1.3	000	7.5	3.3	7.3	4 4	4.6	5.6	2.7	6.8	2.0	4.8	2.6	1.3		11		2.0	7.5		į	2 6	4. 9.	2.5		ŀ			4.4					2.0			7.6
Nickel	qdd	0.5	14	1.5	17	0.1	0	1.0	14	2.2	1.1	1.1	0.9	3.1	0.5		11	12	0.1	2.2		ï	ν,	C.	1.7		ľ	4	8 7	- T	<u>;</u>		4	13	60	2.2		
Copper	qdd			i	ì	1		1			1	1		ŀ	2.2		11	2.2	0.5	3.8		ï	2 0	7.0	3 0		ľ	4	2.5		9		4	2.2	1.7	3.0		×IШ
Сһготіит	qdd			1	1	, _	10	"	٦	10	Γ	_	٦		-		6	0.58	0.20	1.17		Ţ			0.32					0.20			4	69 0	0.47	1.17	-	oliform
muimbeO	-	ľ		0.11	1	1		ľ		1					0.23		7	0.11	0.05	0.26		C			0.0			4	0.13	0.00	0.20		-	0.05	0.05	0.05	ľ	Geometric mean for Fecal Coliform and
d-\$0d	¬/6w		1	1	1		•		1	1		•					••••	•				-			Ī		Ī			<u> </u>	***		ļ	†····	<u> </u>		ľ	ean for
N-SON+SON	7/ 6ա	0.59	0.59	0.51	0.51	0.51	0.59	0.46	0.59	0.51	0.42	0.42	0.42	0.38	0.59		11	20	0.42	0.59		Ċ	2	40.0	0.5			4		0.40			4	4	0.42	51		etric m
N-EHN	7/6ш	0.028	0.023	2	0.029	0.005	0.054	0.041	0.047	2	0.058	0.051	0.050	ΑN	0.028		6	0.040	0.005	0.058		Č	7 000	0.020	0.023			4	0.037	0.000	50.0		3	0.053	0.050	0.058		
muibo8	7/6ເພ	24	26	22	22	24	21	22	20	17	17	20	21	18	24		1	21	17	26		Č	ა წ	3 8	7 %			4	77	07	, t		4	19	17	21	۶	<u>ي</u> اع
muisəngeM	7/6w	3.24	3.26	2.50	2.75	3.35	2.73	2.34	2.42	2.27	2.41	3.05	3.40	2.86	3.24		11	2.77	2.27	3.40		ï	7	7.0	3.26		-	4	2.77	2.34	 		4	78	2.27	8	1.00	7.8b
muiəlsƏ	ე /მⴍ	10	1	- -	80	11	8	6	80	∞	7	8	10	7	10		1	6	7	7		č	ე (ם מ	۲ ٥		ŀ	4	5	۲ ٥	=		4	6 0	7	9	ŗ	, paz
Cloride	7/6ഡ	39.9	45.2	34.4	33.9	37.0	39.7	33.3	31.7	29.4	25.8	32.3	36.8	42.6	39.9		1	34.5	25.8	45.2			o 1	0.00	33.3 45.2		ŀ	4	400	30.7	99.1		4	31.1	25.8	36.8		= Not Analyzed
SSA	 7/6ա	1.8	1.8	18.0	2.6	6.2	9.9	2.6	18.2	54.8	7.6	1.6	2.0	2.2	1.8		1	11.1	1.6	54.8			2 1		180		ŀ			4.0 2.0			4	16.5	1.6	54.8	ç	AA = No
2ST	7/6w	3.4	3.0	440	3.4	16.8	0.6	3.2	53.4	56.0	13.0	2.0	3.6	2.4	3.4		11	18.9	2.0	56.0		Ċ			o 4		ŀ	4 6	٥.0	53.Z	7		4	18.7	2.0	56.0		4.4
вор	7/6ա	6.8	3.5	6.4	4.0	4.0	4.4	5.9	6.8	6.1	5.7	4.5	¥	NA	8.9		10	5.1	3.5	6.8		,			6.4		:			1, α Ο α			3	5.4	4.5	6.1	-	
Dissolved Oxygen	7/6w		1	8.4			•					•			6.3		1	7.7	6.8	9.8		,	? .	1 0	0 8 0 4		;	4 1	6.7	ς α	<u></u>		4	8.1	7.6	9.8	6	NS= No Sample
Conductivity	шэ/ѕочшш	152	155	9	130	142	190	135	120	105	115	120	360	155	152		11	152	100	360		ö	730	9 0	155	•		4 [190	100	3		4	175	105	360	100	S= No
Hq		6.1	6.1	6.3	6.3	6.1	6.2	6.2	6.3	6.4	6.4	6.5	6.4	N A	6.1		11	6.3	6.1	6.5		Ċ	0 6	2 7	93			4 0	7.0	- 6	3		4	6.4	6.4	6.5		
Temperature	O gəb	8.8	9.3	10.0	9.5	8.0	9.0	10.4	9.5	8.5	7.3	8.2	10.0	11.0	8.8	r rain)	Ξ	9.1	7.3	10.4		ç			10.0		;	4 (7,0	10.0	:- 2		4	8.5	7.3	10.0	5	<u>ة</u> وا -
Flow	ets	7	2	7	4	4	4	4	က	က	က	က	5	7	2	and 2 after rain	1	4	2	7		0	2	t c	7 /			4 (3 0	0 4	F		4	4	3	5	*	Measu
•	əmiT	855	1305	2125	120	520	1045	1425	1655	2105	115	1140	1635	1000		1	ı		-	-		r	Ť	Ī			ľ		+								r	NM= Not Measured
		33	:	33	:		:	:		: :	:	: :				Rain, Day					2					offer rotal	i iaiii)					r rain)					(olemen	Sample,
			İ	9 10	İ	İ	İ								sample)	data:					ring rain	113				1 040	1 0110					/ 2 afte					10.	<u>-</u>
iry, rain, days	after rain)		•	Rain		:	:	:	•	: :		48h 4				ER (All					ER (din	1 2 2					[[[]					ER (Da)					- CO / Oa	acted
onep dies /di			ļ	BWW16		ļ	ļ	ļ	ļ						DRY WEATHER (1	WET WEATHER (All data: Rain, Days	Count	Mean (*)	E	: _I	WET WEATHER /during	, and	Moss /*)	` {	Maximum	WET WEATUED (Day 4		Count	Minimum	Maximum		WET WEATHER (Day 2 after rain)	Count	Mean (*)		1	WET WEATHER (Day 3) (1 cample)	ND = Not Detected

Fecal Coliform E. coli	CFU/100mL	l					-		į	1	NS NS					.000		1 [829 395							2,000 6,100		4	613 28	150 150			1	50 374				
Fecal Coliforn	CEN\100WF	l		Ι`	l					i						1						12																	
Zinc		l	į		:	•	1	2 0	•	- 1							*			19				6	30	11	57		4	15	9	77		[15	L			12
рвад	-	1	1	1	:	1	1	- 1	- 1	- 1	- 1				i I	1	2		Ξ	10.2	4.3	44.8		8	222	44	44.8		4	4.8	4.3	5.2		4	6.7	5.5	9.6		7.8
Nickel	qdd	6.9	7.4	5.6	8.0	8 4	7	. «	0 0	8.6	8.2	7.5	7.1	8.4	8.1		0.0		Ξ	7.7	5.6	8.6		8	7.0	5.6	8.0		4	8.0	7.0	8.6		4	7.8	7.1	8.4		8.1
Copper	qdd	ြ	4	14	9	10	٥		י מ	19	6	9	5	13	7		0		Ξ	10.2	4.7	14.0		7	2 6	4 7	14.0			6.6	6	위		4	10.9	9.5	13.4		11.6
Chromium	qdd		:		:	:	:	7.75	•		•		:	•	: 1	000	20.7		9	2.51	1.72	3.30			~	٥	3.30		4	2.24	1.72	2.86		4	2.55		3.08	1	2.35
Cadmium	qdd	0.38	0.22	0.29	0.26	030	0 33	20.0	42.0	0.22	0.19	0.0	0.36	0.32	0.21	00	25		7	0.26					0.26	0.22	0.29		4	0.27	0.22	0.32		4	0.24	18	0.36		0.21
d- 1 0d	7/6 w	90.0	90.0	0.04	90 0	0.06	8	9 6	9 6	90.0	0.06	0.0	0.09	0.04	0.06	000	0.0		Ξ	90.0							0.06		4	90.0	0.08					c	0		90.0
N-SON+SON	7/6ш	2.09	2.09	1.41	2.17	2.25	2 13	4.0	3	1.85	1.85	1.77	1.77	1.85	1.48		2.03 1		7	1.92	1.4	2.25		~	1 89	141	2.17		4	2.04	1.85	2.25		4	1.81	1.77	1.85		1.48 0.06
N-EHN	7/6w							0.00						0.005		.,	0.021		10	0.039	0.002	0.085		3	0 029	0.025	0.032		4	0.050	0.013	0.079		3	0.035	0 005	0.085		
muibo8	7/6w	44	43	27	43	45	CF	75	3 5	43	4	40	4	40	38	•	ŧ		7	41	27	42			33	27	43		4	43	42	45		4	4	40	41		38
muisəngeM	7/6ա	3.28	3.23	2.13	3.17	3.70	2 85	37.0	2 0	3.10	2.88	2.78	3.30	3.32	2.52		9.40		7	3.01	2.13	3.70		8	2.84	2.13	3.23		4	3.09	2.70	3.70		4	3.07	78	3.32		2.52
muioleO	7/ 6w	13	13	6	13	13	1	2 7	- 5	17	12	Ξ	7	6	10		2		Ξ	7	6	13		3	12	0	13		4	12	10	13		4	Ŧ	6	12		9
Cloride	7/6w	63.9	75.8	47.0	9.69	73.0	73.3	65.2	7.00	9.79	70.9	68.4	68.6	78.4	6.09	3	2.2		7	68.9	47.0	78.4		3	64.1	47.0	75.8		4	8.69	65.2	73.3		4	71.6	68.4	78.4		. 60.9
SSV	7/ 6ա	2.4	1.0	4.0	2.8	2.4	9 6	4.2	7,7	4.	4	3.6	4.4	4.	1.3		; ;		7	3.4	1.0	6.4			26	10	4.0		4	3.9	2.4	6.4		4	3.5	14	4.4		1.3
SST	ე /6ພ	4.2	1.8	30.6	3.6	11.8	6	7. Z) 1	9.0	11.2	10.2	4.9	5.8	5.6				Ξ	8. 8.	1.8	30.6		3	12.0	1 8	30.6		4	7.3	5.4	1.8		4	8.0	6 4	11.2	j	5.6
BOD	7/6ա	2.3	2.7	2.2	2.4	1.8	0 0	γ τ	0 0	2.3	2.0	2.2	4.	ž	¥		3		9	2.5	1.4	2.9		3	2.4	2.2	2.7		4	2.2	1.8	2.9			1.9	4	2.2	ŀ	
Dissolved Oxygen	1/00	10.6	9.6	9.2	10.4	10.0	11.2	13.4	5 ¢	13.0	13.2	13.8	10.6	11.8	10.8		2		7	11.5	9.5	13.8			9.7	9.2	10.4		4	11.9	10.0	13.4			12.4		: 1		220 10.8
Conductivity																900	900			232		- 1		3	243	180	300		4	246	220	763		4	209	172	230		220
Hq		6.9	6.8	6.7	6.8	8.9	6.7	. «	0 0	9.9	6.7	6.7	6.8	6.8	ΝΑ		6.9			6.7				3.	6.7	6.7	6.8		4	8.9	6.7	6.8		1.	8.9	:	: 1	-	
Temperature	O gəb	11.0	11.5	10.0	11.0	10.0	110	10.0	2 0	10.0	10.0	0.6	10.0	10.0	10.5		2	rain)	7	10.2	9.0	11.5			10.8	10.0	11.5		4	10.3	10.0	11.0		4	8.6	9.0	10.0		10.5
Wola	efs	165	172	204	246	207	223	420	707	/6/	551	416	416	406	280	707	- 1	121		369				L	207		<u>.</u>		L	412	!						551		280 10
i								1425									1	1						-	-							\dashv			+				-
	Date	10/12/93	10/12/93	10/12/93	10/13/93	10/13/93	10/13/93	10/13/93	10/13/93	10/13/93	10/13/93	10/14/93	10/14/93	10/14/93	10/15/93	3	(2)	WET WEATHER (All data: Rain, Days					roin)					fter rain)					ffer rain)						(1 sample
 -	Run	а.	Ö	6	12	16	20	24	2 00	87	32	ဗ္တ	4	52	72	i da	dille	4// dat					Juring	S. I				Jav 1 a)av 2 a						Jay 3)
ry, rain, days	Weather (D after rain)	Ω	Rain	Rain	Rain	24h	24h	24h	47.0	74U	48h	48h	48h	48h	72h	F/ 030.		THER (V dan.					HER (1					HER //						HEK (2
	Station	BWW17	BWW17	BWW17	BWW17	BWW17	RWW17	BWW17	0,00047	Bww1/	BWW17	BWW17	BWW17	BWW17	BWW17	DDV WEATUED (4 comple)		NET WEAT	Count		Minimum	Maximum	WET WEATHER (during rain	Count	€		Maximum	WET WEATHER (Day 1 after rain	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 2 after rain	Sount			Maximum		WET WEATHER (Day 3)

ilos .∃	JW001/NJC	28	30	160	130	12	250	950	390	NS	79	SN	SN		28		ď	156	30	920	ſ	(n 6	6	160] [4	291	020	200		-	79				7																															
Fecal Coliform	7W001/NJC	220	360	4.800	1 600	1.500	1 400	10,000	1.400	NS	260	NS	SN		220		α	1 464	260	10,000			2 4	404,	4.800			4	2,329	10,000	0000		-	260																																			
Zinc	qdo	1 4	23	15	20	26	21	27	22	5	22	15	5		4		+	18	5	27			İ.	İ	23	IJ	L	1					4	12	5	22		-																															
резq	qdo	3.7	44	4.5	4.5	6.9	9	7.6	6.5	5.6	4.9	5.7	6.5		3.7		11	5.7	4.4	7.6		ě			. 4			4	8 0	0.0	5				6.4		-																																
Nickel	qdc	8.9	5.2	5.9	6.9	6.7	6.4	7.6	8.1	7.7	7.7	7.1	7.5		6.8		17	7.0	5.2	8.1		i	ۍ د	2 C	9.0	1		4	7.2	ο α	5		4	7.5	7.1	7.7	ŀ	 	;																														
Copper	qdc	12.2	6.3	4.4	13.6	11.0	11.8	13.7	12.4	10.7	10.0	6.5	11.2		12.2		11	10.1	4.4	13.7			0 4	• •	13.6			4	12.2	13 0			4	9.6	6.5	11.2	-	and E	!																														
Chromium	qdc	1.40	1.20	1.00	1.75	2.17	2.16	2.14	2.47	2.08	2.03	0.46	2.09		1.40		17	1.78	0.46	2.47		ï	າ ເ	3 5	1.75			4	2.24	2.14	1,1		4	1.67	0.46	5.09	-	Coliform and																															
Cadmium	qdo	0.50	0.31	0.29	0.30	0.34	0.31	0.30	0.23	0.24	0.09	0.22	0.08		0.50		11	0.25	0.08	0.34		Ġ	n (2 0	0.31			4	0.30	0.23			4	0.16	0.08	0.24	-	Fecal																															
d-#0d	7/6և	0.46	0.46	0.36	0.41	0.52	0.46	0.41	0.46	0.35	0.30	Ϋ́	0.25		0.46			1	O	이		ï	3 6		0.46		Ì	4	0.46	ر 14.0 15.0	70.0				0.25		-	aan for																															
N-SON+SON	7/6u	2.58	2.62	2.46	2.79	2.91	8	28	2.58	25	18	2.00	2.00		2.58		11	2.46	2.00	2.91		Ġ	2 6	20.2	2.79		ľ	4	2.74	2 20	2		4	2.06	2.00	2.25		Geometric mean for																															
N-EHN	7/6ս	0.010	0.025	0.020	0.035	0.020	0.500	0.485	0.185	0.165	0.240	0.275	0.265		0.010		11	0.201	0.020	0.500		ï	0 007	0.00	0.035		ľ	4	0.298	0.020	5000	•	4	0.236	0.165	0.275	-	4																															
muibo&	7/6u	49	50	43	48	48	49	43	53	49	46	49	49		49		1	48	43	53			ာ 🕻	107	20		ŀ	4 (84	5 2 2	3		4	48	46	49			;																														
muisəngsM	7/6u	3.16	3.22	2.68	3.20	3.41	2.69	2.58	3.03	2.88	2.72	3.08	3.22		3.16		11:	97	2.58	4		į			3.22			4	2.93	3.41	5		4	2.98	2.72	3.22		-																															
muiolsO		5	:	:	:		:	1		:	1	: :			13		11	7-	6	12		,	٠ •	- 0	12			4		2 2	<u> </u>		4	1	1	=	-	- g																															
Cloride	7/6ա	74.0	79.3	66.5	74.5	76.8	80.9	70.4	78.4	81.8	73.5	75.9	87.3		74.0		11	76.8	66.5	87.3			22.7	1 : 14	79.3		ŀ	4 6	76.6	4 0		ŀ	4	79.6	73.5	87.3		Not Analyzed	•																														
SSV	7/6և	2.8	1.6	1.4	3.4	2.6	3.2	3.6	7.4	9.9	3.2	3.2	2.6		2.8	}	=	3.5	1.4	7.4		Ċ	0 4	7	3.4		ľ			0.7 7.0			4	3.9	2.6	9.9		NA = No																															
88T		4	4	3	Ξ	ဖ	5	5	Ξ	9	i	5	5		4.6		17	6.8	3.6	1.8		Č	? 4	9 0	118			4 1	7.7	11.2			4	9.9	4.9	10.2																																	
вор	7/6w	2.3	1.9	0.5	2.3	1.3	1.9	3.5	2.3	2.3	1.8	0.5	ž		2.3		10	8	0.5	3.5		Ġ			23		ľ	4 (7.7				3	1.5	0.5	2.3	"																																
Dissolved Oxygen	עומ/ד :	9.1	10.3	9.7	9.0	9.5	10.0	9.4	10.0	11.2	10.3	9.6	10.2		9.1		11	6.6	9.0	11.2		Ġ	0	• 0	10.3		İ	4 1	, o	10.0		Ì	4	10.3	9.6	11.2		NS= No Sample																															
Conductivity	шэ/ѕоүшш	270	282	222	285	255	291	245	225	265	240	240	340		270		11	263	222	340		č	262	222	285		1	4 2	204	294			4	271	240	340		N=S																															
Hq										i			6.8		9.9		11	6.7	6.5	6.9		-	1	1	6.7		- 1			. « . «		Ì	4	8 .9	6.7	6.9																																	
Temperature	O gəb	13.0	13.0	12.0	12.0	11.8	12.7	12.5	11.5	10.5	10.5	9.3	11.0		13.0	er rain)	1	÷	•			Ċ	19.2	100	13.0			4 4	14.1	12.7		Ì	4	10.3	9.3	11.0		red																															
Wol	sto	<u>l</u> .	ļ	İ		İ.	ļ	İ			420				240	and 2 after rain	1	362	218	682			250	218	280		ľ	4 6	236	682			4	396	338	429		NM= Not Measured																															
	əmiT	915	:	:	•	:	ŧ	•	•	•	240	830	1845			-	٠																					W=N																															
	Date	10/12/93	/12/93	/12/93	/13/93	10/13/93	/13/93	/13/93	/13/93	/13/93	/14/93	/14/93	10/14/93	/15/02		ain. Da					-					regin	lann					rain)					(4 cample)) de la composition della >	<u>.</u>		<u>. </u>		52 10/		sample)	data: R					ing rai	iiig raii				14 offer	0110					(Day 2 after rain)							
of the firm of	after rain)	1	:		:	:	:		:	: :	: :		48h 5		-R (1 se	WET WEATHER (All data: Rain, Davs					WET WEATHED (Auring rain	ממו				WET WEATHER (Day 4 offer rain)	120					R (Da)					WET WEATHER (Day 2)	cted																															
ry, rain, days		 	ļ	<u></u>	ļ		 		ļ						DRY WEATHER (1	/EATH		:			/EATUE		(*)	, E	I_	/EATHE	5	1*		١_		WET WEATHER		.		Ę	FATHE	= Not Detected																															
	Station	BWW1	WET W	Count	Mean (*)	Minimum	Maximum	WETW			Minim	Maximum	WETW		unos l	Mean ()	Maximum		WETW	Count	Mean (Minimum	Maximum	WETW	N = Q																																												
108														_		-				_	-					_						_																																					

E. COII	DEU/100mL	52	21	340	700	120	120	06	400	SN	540	SS :	2	1	52		8	185	21	700	ſ	ľ	<u>ب</u>	13	700			4	151	8 6			-	540]			
		<u> </u>	20	80	70	90	40	30	061	NS	8	SN.	2		20			501	20	00			e :	54	770		-	4	65	90 80 90		ŀ	- 5	8					
Fecal Coliform	DFU/100mL										Ψ,							4,		1,9			ľ	,,,,					4	- "			ľ	٦ 1					
Sinc	qdd	5	10	18	1	18	22	5	23	16	28	23	1		9			17				ľ	ς,	13	3 0			4	17	23			4	8	28				
Pead	qdd	4.1	3.3	6.0	4.0	4.4	5.5	4	9.4	7.5	6.7	6.2	9.6		4.1		11	6.1	3.3	9.6		ľ	Ω,	4 c	ა 0.9			4	5.9	1.4		ĺ	4	7.5	7.0 9.6				
Nickel	qdd	5.2	4.9	5.6	5.3	6.0	5.7	6.3	8.0	7.6	6.7	9.9	6.)		5.2		11	6.4	4.9	8.0		ľ	£ (5.3	5.6					5.7			4	7.2	7.9		- 1	.	
Copper	·	ြ	4	9	2	Ξ	2	9	15	73	73	1	4		9.8		11	1	4.5				ľ	× ×	10.7			4	12.1	10.5			4	13.0	10.9 6.9			n and E	
Сһготіит	qdd		:	•	:	:	:	:	:				•		0.91		L	1.88				L	1.	İ	2.30	J	- 1	:		1.38			ľ	7	2.41			Fecal Coliform	
muimbsD	qdd	0.30	0.20	0.27	0.22	0.20	0.21	0.20	0.31	0.25	0.10	0.18	0.0		0.30		11	8	0.07	8					0.27					0.20			4	0.15	0.07				
d-†0d	¬ /6ա	0.44	0	0	0	0.33	0	0	0.41	0.78	0.89	0.89	0.84 4		0.44		1		0	9			ľ	9	0.37					0.33			•	5 (0.89			lean for	
N-EON+ZON	¬/6ա	7	1.96	2.09	2.01	1.96	2.22	2.33	2	7	7		-		2.01	ŀ	1	2.27	-	85			ကျွ	38	2 09			4	2.25	1.96			4 (2.49	2.85			Geometric mean	
N-EHN	J/6w	0.170	0.190	0.265	0.305	0.270	0.565	0.205	0.250	0.080	0.190	0.345	0.315		0.170		1	0.271	0.080	0.565			3	0.253	0.305			4	0.323	0.205			4	0.233	0.080				
muibos	7/6w	53	52	48	46	4	4	45	44	46	49	64	94 9		53		11	47	44	52		ŀ	χ (4	52			4	4	4 4		}	4 (2	04 04 04	-		Đ	
muisəngsM	7/6w	3.12	3.22	2.51	3.02	3.49	2.69	2.66	3.12	3.04	2.83	3.49	3.24		3.12		11	3.03	2.51	3.49		ŀ	ກຸ	2.92	3.22			4	2.99	3.40		-	4	3.15	3.49				
MuisleD		<u>س</u>	i	<u> </u>	<u>:</u>	<u>.</u>	<u>l</u>	<u> </u>	i	<u> </u>		=	<u>i</u>		13		11	1	6	12		ŀ	, ,	-	12		-	4	7	100	:		4 ,	=	===			ge g	
Cloride	7/6ա	79.3	87.1	72.1	72.0	7.17	73.9	70.3	8.99	77.6	76.3	76.9	85.2		79.3		1	75.4	66.8	87.1		ŀ	3	72.07	87.1		-	4	70.7	66.8 73.9			4	0.6	70.3 85.2			Not Analyzed	
SSV	7/6ш		1.0	4.0	2.8	2.4	2.6	4.2	6.4	4.4	3.6	4.	4.		1.8		1	3.4	1.0	6.4		i	χ, (7.0	0 4		-:	4		2, 6 4, 4		,	4 .	ç.,	- 4 4 4		- 1	NA = No	
S\$T	7/6ш	3.8	2.0	11.8	5.0	5.6	9.0	6.0	26.4	12.0	8.0	9.4	ο Θ		3.8		1	9.3	2.0	26.4		ŀ			118			4	17.8	5.6		-			12.0			۷	
BOD	7/6ա	3.1	1.4	0.5	2.0	0.5	2.0	1.6	3.1	2.1	1.9	4.	<u>Z</u>		3.1		10	1.6	0.5	3.1		ŀ	უ (. c	20		-			3.1		ŀ	e (, ,	2.1			a s	
Dissolved Oxygen	7/ßw	9.2	11.1	10.9	9.4	9.5	13.2	10.7	8.2	12.0	10.5	10.3	9.0		9.2		11	10.6	8.2	13.2		,	7	10.5	11.1		-	4	10.4	13.2		•	4 (6.01	12.0			Sample	
Conductivity	шэ/sоцшш	272	252	265	250	250	280	240	235	205	255	225	007		272	•	11	247	205	280		i	n (907	265			4		232		;	4 6	957	260			S= No	
Hq		9.9	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	6.7	۵./		9.9		11	6.7	6.7	6.7			ကျ	7.0	6.7		ļ	4	6.7	9 6		ţ	4 1	2	6.7			Z	
Temperature	O gəb	12.0	13.0	12.0	12.3	11.8	12.6	12.6	11.0	11.0	11.3	10.0	C:	-	12.0	r rain)	11	11.7	10.0	13.0			2	12.4	13.0		-	4	12.0	120		;	4 (0.17	11.5			De d	
Flow	cís	255	300	231	300	250	323	437	746	464	455	363	47/	-	255	and 2 after rain	11			746		Ì	۲ و د	117	300	1	ļ	4	439	250		ļ	4 [774	202 464			NM= Not Measured	
	əmiT	940	1435	2245	205	555	1145	1610	2005	2335	310	915	200		П	-	_					ľ	1				ŀ	İ	Ť	Ť		f						M= 1001	
		12/93	2/93	2/93	3/93	3/93	3/93	3/93	10/13/93	3/93	4/93		0/15/02	300		iin, Day											rain)					raın)					sample)	Z	
	Date	l									į	` [`	ľ	1	(aldu	ata: Ra						ng rain)					1 after rain					z arter raın				H	디		
	after rain) Run												25 III		? (1 sar	R (All d					100	(nan)					(Day					(Day					(Day	ted	
ry, rain, days		ļ									48h	<u>†</u>	72h	-	ATHEF	ATHE			_	ا	AT A	1 L					ATHE					AIHE				$ \ $	ATHE	t Detec	
	Station	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	BWW20	2	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Mean (*)	Minimum	Maximum	JAYET 1875	WEI WEATHER (during	i conu	Mean	Maximum		WET WEATHER (Day 1	Count	Mean (')	Maximum		WEI WEATHER (Day 2	Count	Mean ()	Maximum		WET WEATHER (Day 3)	ND = Not Detected	
														_	_						_		•	•	•					•	تا د							5-10	9

E. coli	Jm001/U3C	15	31	6.100	1 000	300	000	707	71	8	NS	390	S Z	2 0	2	15		α I	343	31	6,100		က	711	31	001.'9		4	160	71	390		T	- 1	390					
Fecal Coliform	Jm001/U3C	19	13	2 500	8 900	1 100		007,1	650	610	NS	650	S N	Z	2	19		ļ~	725	13	006'9		က	809	13	9,900		4	851	610	1,200		ļ	-	650					
oniZ	qdo	2	12	20	24	, e	2 4	2	2	2	5	29	22	200	3	2		17	4	2	29		က	19	15	74		4	10	5	16		ļ	4	13	2	59	.		
реэд	qdc	3.6	5.9	8.9	2 4	r «	0 0	9.0	4.9	4.5	5.6	8 9	α α	2 0	3	3.6		1	ď	38	6.9				5.4					3.8				4	6.3	5.6	6.9	ŀ		
Nickel	qdo	5.0	4.8	4	r.	2.5	2 6	4	5.1	0.0	5.0	6.1	9	9 0	3	5.0		ı			9.9		က	4.8	1.4	0.0				4.3			;,	4 :	פַּ	5.0	ဖျ	ŀ		i je
Copper	qdc	8.4	9.0	9.4	0	7 0	5 0	0 0	7.9	9.9	10.1	113	σ	12.5	7.	8.4		1	4	7.3	12.5		က	9.3	0.0	9.0		4	8.7	7.3	9.9		,	- 10		9.8		ŀ		and F
muimordƏ	qdc					285										0.92		11:	1 73	1 20	2.41			_	1.20	1.04		4	1.60	1.38	2.05		- 1	•	•	1.83	- 1	ľ		Geometric mean for Fecal Coliform
muimbeO	qdo	0.34	0.29	0.23	0.21	0 10	9 0) (0.18	0.17	0.16	0.31	0.28	77.0	5	0.34		11	76 0	0.16	0.41		က	24	0.21	0.48		4	0.18	0.17	0.19		Ī	4	0.29	0.16	0.41	•		Fecal
d-†0d	7/6ա	0.39	0.41	0.41	0.37	0.42	21.0	24.0	0.36	0.36	0.42	0.42	0.48	95	3	0.39		11	0 40	0.36	0.48		က	0.40	0.37	4.0	•	4	0.39	0.36	0.42			•	0	0.36	0.48	ľ		lean for
N-SON+SON	7/ճա	1.98	2.07	2.03	2 07	2 17	2 24	7.7	2.13	2.25	2.61	2 65	2 81	1.57	5	1.98			•	· -	2.81		က	2.06	2.03	70.7		4	2.19	2.13	2.25		Ī	4	4	1.57	2.81			netric m
N-EHN	7/6ա	0.006	0.357	0.199	0.050	100	0.00	0.0	0.054	0.046	0.132	0.110	0 120	0 0		0.006		11	0 116	0.043	0.357				0.050			4	0.068	0.046	0.100		Ī			0.043		*		
muibo&	7/6ա	54	52	49	47	47	72	3 4	4	43	46	42	48	8	2	24		11:	46	42	52		က	49	47	32		4	45	43	47		Ţ	4 (9	45	48	-		€
muisəngsM	7/6ա	3.02	3.20	2.52	3.01	3.30	5 6	1:9	797	Ξ	3	2.89	3.56	2.50		3.02		7			3.56				2.52			4	2.89	2.66	3.30		Š	4 6	3.23	2.89	3.56	-		
Calcium	7/6w	12	11	6	10	12	10	מ פ	10	13	112	1	7	-	2	12		11	20	6	112	ŀ	က	5	6	=		4	7	6	13		Ţ	4 6	36	9	112	-		,ed
Cloride	7/6w	74.6	89.6	75.3	787	73.0	2 2	0 0	7.99	61.8	73.3	68.6	73.2	288		74.6		=	74.8	61.8	89.6	ŀ	3	81.2	75.3	0.60		4	0.69	61.8	74.8			4 (5.3	68.6	88.4	-		Not Analyzed
SSA		2.0	1.6	3.4	21.8	10	2.0	770	2.8	5.6	4.	7.2	4	3.0		2.0		1	20	1.0	21.8	ļ	33	8.9 6.9	1.6	0.17		4	2.9	1.0	5.6			4 (7.4	4.	7.2	ŀ		NA = NO
SST																5.0		Ξ	8	18	31.4	ľ	დ:	14.1	3.0	<u>;</u>		4	5.3	1.8	9.8			4 .	х 4	6.2	1.0			_
вор	7/6w	2.3	2.0	1.0	23	10	7		1.6	2.3	2.1	18	15	ΔN		2.3		10	17	1.0	2.3		က	1.8	1.0	5.5		4	1.6	1.0	2.3			7	2.	.5	2.1	ŀ		ď
Dissolved Oxygen	7/6w	9.7	11.1	11.8	8 6	10.0	7 0	5 6	10.2	10.2	12.1	111	10.4	10.6		9.7		11	110	9.8	13.8	İ	33	10.9	9.8	<u>;</u>		4	11.1	10.0	13.8		-	7	11.1	10.4	12.1	ŀ		Sample
Conductivity	шшүөгүсш	260	295	260	243	255	280	000	235	220	250	231	248	265	2	260		11	252	220	295	ľ	က	266	243	297		4	245	220	269		Ī	1 0	243	231	765	-		NS= No Sample
Hq		6.5	6.8	6.7	69	9	6.7	5 0	0.0	6.8	6.8	6.8	7.0	8		6.5		17	8.9	6.7	7.0	ı		1	6.7					6.7			Ī	1 (0.0	9.9	Ö:	-	"	_
Temperature	O gəb	12.8	13.0	12.8	12.0	12.0	12 g	2 0	2.0	11.8	11.9	11.3	10.5	120		12.8	er rain)	1	12.1	10.5	13.0	Ī	က	12.6	12.0	5.5		4	12.4	11.8	12.8		7	1	11.4	10.5	12.0	ľ	-	ired
Flow					1					i						254	id 2 aft	11			999		က	321	264	500				290			-	7 7	916	402	999			NM= Not Measured
	əmiT	1000	1500	2315	230	615	1205	1045	1040	2045	10	315	935	1920			ys 1 an																				1			
	Date	10/12/93	/12/93	10/12/93	/13/93	10/13/93	13/03	0 0	13/93	/13/93	13/93	14/93	14/93	14/93	10/15/02		ain, Da					٦					after rain)					luica	14111						sample)	_
		1		ì	ì		1	-		- 1		•	•	•	1	sample)	data: R					ing rair		***************************************			1					2 offer rain	4 0114					[디	
	after rain)	آ خ	ain	ain	ain 1	4	4h 2	4	7 14	4h 2	3h 3	3h 3	3h 4	37	72h 72	R (1 sa	WET WEATHER (All data: Rain, Days 1 and 2 after rain)					WET WEATHER (during rain)					R (Day					() ()	1					c,	17 (<u>7</u> .	cted
ry, rain, days				İ		†	†"	†	7	†			†	Ť	1	DRY WEATHER (1	EATHE		ļ_			EATHE		, ,			EATHE		*)	Ε	Ē	EATHE	<u>:</u>	*	:		<u></u>		EAI ne	Not Detected
	Station	BWW21	BWW2	BWW2	BWW2	BWW2	BWW/2	2,444	2000	BWW2	BWW2	BWW2	BWW2	BWW21	BWW2	DRY W	WETW	Count	Mean (*)	Minimum	Maximum	WETW	Count	Mean (Minimum	MIGAILIA	WET WEATHER (Day	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day	1	* 2000	Wean	Minimum.	Maximum	181 T-1181	WEI WEATHER (Day 3)	ž = QZ

BLACKSTONE RIVER WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM III BWW22 is the CSO facility in Worcester.

E. coli	ברו/ווססשר		7.800	46	110	18.000	QN	S						П	7	5	40	18,000		4	918	46	18,000				\rceil					[46
Fecal Coliform	CEU/100mL))	13,000	06	40	i	1	1	1 1						7	1,249	40	22,000		4	1,249	40	52,000										04
SuiZ	qdo	 	ļ	ļ	<u>.</u>	. 09		ļ	<u>.</u>		-				÷	1	76			L	98	İ	<u></u>]		-	25							09
реза		1	2.9	57.6	2.0	2.9	Š	S							4	16.4	7.0	97.6		4	16.4	2.0	97.6								<u></u>		2.0
Nickel	qdc	 	İ	.l	.l	2.9	.j	<u>.i</u>	<u>j</u>						4 .		6.7	=		4		<u>.</u>			ļ								Coli
Copper	qdc	1	10.6	67.1	38.4	13.8	2 6	Š							0	6.72	9.7	67.1			27.9	9.7	67.1		ļ						-	į	and E. (
muimordO	qdc	1	.i	. i		0.35	. .	.i	.ii						•	- 1	0.35			4	2.49	0.35	7.89										0.35 oliform
muimbsO	qdo	1	0.62	0.88	0.25	0.20	0.10	0 12	!					-	o	95.0	0.10	0.88		<u>ب</u>	0.41	0.10	0.88		-	0.12							Fecal Coliform
d-†0d	7/6ա	4	0.34	0.34	0 29	0.23	0.29	0 23			Ť			1	0	67.0	0.23	0.34			0.30	0.23			-	0.23			Ť		+	- 1	9an for
N-EON+ZON	7/6ա	4	0.21	0.17	0.17	0.17	0.17	0 17	ļk					ë	P	0.18	0.1	0.21		5	0.18	0.17	0.21		<u></u>	0.17							Geometric mean for
N-EHN	7/6u	1	1.500	0.670	0.220	0.360	0.00	0.640								0.577	0.070	1.500		5	0.564	0.070	1.500			0.640							
muibos	7/6ա	1	16	15	12	1 00	14	12			<u>i</u>			i i	0 (5	σ,	<u>.</u>		.5	13	80	16		-	12						i	£
Magnesium	7/6ս	4	0.83	0.25	0.39	0.37	0.41	0 38						Ğ	Ö	0.44 2	0.70	0.83			0.45	0.25	0.83			0.38							0.25
muiolsO	7/6ս	4	4	Q			2	20		 	1	<u>i</u>			0 0	7	=	4		4	2	+	4		-	7						,	zed
Cloride	7/6և	4	30.5	444	113	17.3	Ϋ́	ΑN		·····				;	4	6.07	11.3	44.4	1	4	25.9	11.3	44.4										13.8 11.3 NA = Not Analyzed
SSA	7/6ա	1	24.0	38.3	33.6	22.4	13.8	26.2						4	0	4.07	23.0	38.3		7.	26.4	13.8	38.3		-	26.2			Ť				13.8 NA = N
SST	7/6և	1	67.3	96.0	83.2	73.4	474	52.0						i e	Ö	9.9	4.74	96.0		2	73.5	47.4	96.0		_	52.0							4.74
ВОР	7/6և	1	51.7	41.7	24.7	7.8	16.7	8						o o	0	24.5	9 7	51.7		.5.	28.5	7.8	51.7		1	8			1				<u>e</u>
Dissolved Oxygen		1				Ž																											NS= No Sample
Conductivity	шэ/ѕочши	1	120	80	9	50	9	85									200			5.	74	50	120		1	82							N=SN
Hd			9	9	9	6.2	9	œ						1_1	1		0.0					9	9		-	6.1						- [6.1
Temperature	O gəb) 	11.0	10.0	95	8.0	8.5	8					ļ	after rain	0 (7.6	0.0	11.0			9.4	8.0	11:0		-	8.0							8.0 sured
Wola	eic	1												and 2 af						L					L) #KEF1; 8 NM= Not Measured
	əmiT		1	1	1	2212	i	1	1 1					ays 1 a																			N =WN
	Date	10/12/93	0/12/93	10/12/93	0/12/93	0/12/93	0/12/93	0/12/93	10/13/93	10/13/93	10/13/93	0/14/93		Rain, D	***************************************				in)					er rain)				after rain)					Sampic
	uny	Ι.	Ĺ	J	.l	İ	<u>.i</u>	Ĺ	20 1		Ĺ		sample	II data:					urina ri	,				av 1 aft				ay 2 aft				i	ો જે જો
ry, rain, days	after rain)	4	ļ	<u>.i</u>	. <u></u>		<u>. I</u>	. <u>l</u>	24h 24h	<u>ii</u>	<u>ļ</u> .	48h 48h	HER (1	HER (A		***************************************			HER (d)					HER (D)				HER (D					HER (V)
	Station	† ····	†	†	†	·†····	†	†***	BWW22 BWW22	†***	<u>†</u> .	BWW22 BWW22	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days 1		Mean ()	MINIMUM.	Maximum	WET WEATHER (during rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day 1 after rain)	Count	Mean (*) Minimum	Maximum	WET WEATHER (Day 2	Count	Mean (") Minimum		100	WEI WEATHER (Day 3) (1 sample) ND = Not Detected

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM III BWW23 is the UBWPAD wastewater treatment facility in Worcester.

	-	-	-		-		-	;	20000	200		ODIVI AD Wastewater treatment facility in Wolcester	5	3		3	<u> </u>								
112	aysb ,nisi ,yı(-		WOIA	Temperature	Hq		Conductivity Dissolved Oxygen	BOD	SST	SSV	Sloride	Calcium	Magnesium	muibo&	N-EHN	N-EON+ZON	d-40d	Cadmium	Сһготіит	Copper Nickel	реэд	Zinc	Fecal Coliform	E. coli
	Weather (C after rain)	Run Date		Time cfs	-		шшрогусш	ე/ 6ⴍ	7/6ա	7/6w	7/6w	ე/6ⴍ	7/6w	 ე/ნш	7/6w		_	7/6w	qdd	qdd	qdd		qdd	CFU/100mL	CEU/100mL
				715	_		.2						4	3.33	5	1.740	ı		23 3	ဖ္တ	l		<u>.</u>		<u>l</u>
****							-					-		3.35	:	0.070	:		18 1	<u>. </u>	1		İ		<u>.</u>
BWW23	Rain	9 10/1	10/12/93	2130	33 14	14.0	6.1 3	35 NA				Τ,	10	3.02	23	1.640	4.50	1.93	0.91 6.	07			.2 28		90 33
							<u>က</u>					Τ.		2.85	:	0.800			20 4	20		l	<u> </u>		<u> </u>
							Ψ.		<u></u>	1			•	2.52	:	2.080	•	1	70 4	39			<u> </u>		<u> </u>
					<u> </u>	<u> </u>	-		<u></u>			1	1	1.85	:	0.146	•	i	61 3	39	1	ì	<u>l</u>	Ĭ.	<u> </u>
!·····		İ		İ	İ	<u>.</u>	0		<u> </u>	1	1	•	1	2.24	:	0.632	1	1	42 2	74	1		İ		<u> </u>
	i,,	į			Ĺ	ļ	7	l	Ĺ	1	1	:	1	2.51	:	0.846	1	1	41.3	9	1				
†	÷	į		<u> </u>	<u> </u>	<u> </u>	2		<u>!</u>	1		:	1	2.18		0 172	ì	1	40 6	12	1		<u> </u>		Ĺ
†····	÷	İ			L.	l			İ	1		:	1	2 60	•	0 156	1	1	67	1.	i	Ī	1	ľ	
1	. .	<u>.</u>			1		4		.l	1			•	3.25		0.00	i	1	56 4		1				
BWW23	÷	<u> </u>	•	1557	18		<u> </u>		<u> </u>	1	•		1	3.27	•	0.00	1	1	66	3 4	1	1	<u>. i</u>		
 	72h	10	ļ	1			ļ		J	i	1	1	1				1		3	<u></u>	1		1		
	, i						ΙI		l le								╎├	JL		1	JL	.			$\left.\right $
DRY WEALHER (1 Sample)	E E	sample)		-		_	6.2	290	10.3	2.6		93.3	4	3.33	92	1.740	7.32 1	1.65 0	23	8	30.0 24.	6	0.8 16		30
WET WEATHER (All data: Rain, Days	HER (A	Il data: Ra	in, Day	rs 1 and 2 after rain	after ra	in)																			
Count				_	l	ŀ		11	10		6	11	11	11	1	11	l	10	L	1	11	1			
Mean (*)				_	•			8	11.3		4.2	86.8	10	2.69	<u> </u>	683	٦	32	61	•	!	0			2
Minimum					30 14	14.0	6.0 25	255	4.5	4.	<u>4</u> .	63.5	8	1.85	23	0.064	4.16 0	.99	9	1.30 2	22.4 19.	5	.1		
Maximum								35	29.5		6.8	112.0	13	3.35		080		86	20	1	!	0	3.4		90 250
WET WEATHER (during	HER (d)	uring rain)			ŀ	- 1	- 1											Į I	li						
:						-	. 1	3				က	က	က		က					3				3
Mean (*)		***************************************						2	16.6		S	105.0	1	3.07		837				•	o ဝ	2	<u> </u>		<u> </u>
Minimum	***************************************		***************************************		33 14	6.0	6.1	300	7.2	1.6	4.1	101.0	9	2.85	- 23	0.070	4.16	1.60	0.18	1.30	22.4 19.	5	1.5 16		35
Maximum						- 1	-	35	29.5		ω	109.0	13	3.35]	640					7	=			0 250
WET WEATHER	HER (Dav	av 1 after rain	rain)									İ													
Count		1		_	L		4	4			6	P	Į.	4	Į.		L.,	-				ļ.,	L		L
€				7	<u>i</u>	l	<u>. I</u>		10.5	4	3	68.1	<u>.i</u>	2.28	<u>.</u>	1 92E	2		24	· c	- I	, , ,	1		
ΞĘ					İ		<u></u>	5	69	_	3.0	63.5	.i	1 85	<u>.</u>	146	20.	1	41 2	3 2	ة ا		Ĺ		Ĺ
Maximum					75 16.5		6.2 312	2	17.0	5.6	8,4	76.1	10	2.52	55	2.080	9.02	134	70 4	30	29 1 23	9	34 35		20 16
WET WEATHED (Day 3 after zain		14.3 affor				Н]	$\left\{ \ \right\}$					JI					11					J۱		
ברי הברי הברי הברי הברי הברי הברי הברי ה	1	מא ד מוובו	l all l	-	L.	L			ľ	1	ŀ	-		ŀ	-	-	- 1			ŀ					
Count		***************************************		-	I			4	e.	į		4	- 1	4		4	4	į	4	4	4	4			_
Mean (*)								9	7.0			92.0		2.83		7.324	23		57 5	ဓ	7	7		_	8
				_	31 17.0		6.1 280	S	4.5	1.8	2.0	80.5	ω	2.18	93	0.064	4.62 1.	1.04	40 4	6	25.7 24	80	1.1		ļ
Maximum								5	8.6			112.0		3.27		7.904	02	ΙI	9 29	11		0		3	
1	i.	3									ľ	-	-		-										
WEI WEATHER (Day 3)	1 K	디	sample)																						
ND = NOt Defected	Jecien		Ξ	NM≕ Not Measured	asnren		N N	NS= No Sample	ble		NA = N	Not Analyzed	zed		Đ		Geometric mean for	for Fe	Fecal Coliform	form and	d E. Col	=			

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM III BWW24 is the Woonsocket wastewater treatment facility.

E. COII	JW001/03	100	Q	2	Ź	3	3 8	2 0	3 5	PΥ	2 5	Ž	2		19		2	25	7	25		T	- 6	10	2		T	Ţ	7	⊋ £	7		Γ]	Г]
		1												-			9	4	4	92		2	1 4	> 4	. 9		<u> </u>	rç	3 0	0 9	ğ		ļ	<u></u>	ļ	ļ	-		_
Fecal Coliforn		1										ZZ																	7										
Sinc	qdd	1	İ	<u> </u>	.i		.1	.i.	<u>. i.</u>	.i	<u>!</u>	<u>. I</u>	1		324.0		2	120	77	191		6	144	106	191		V	1007	2 0	137	5		3	97	77	109	-		
Геад	qdo	31.4	30.0	27.0	24.5	21.4	26.7	20.c	20.6	20.00 00.00	24.0	20.5	2		31.4		2	23.8	20.5	30.0		3	27.0	245	30.0		4	rocc	2.22	26.7	20.7		3	21.5	20.5	2 2	i		1
Nickel	qdo	10.6	7.3	6.9	7.1	7.3	. r.	2 6	òα	2 0	9 0	6 4	5		10.6		_	8.9	J.	8		150	7.1	9	7.3		Ā	1	2 0	0.0	2.0		3			8			
Copper	qdo	97.1	72.5	72.2	0.84	75.8	7 7 2	2 2	82.5	70.4	74.3	71.1			97.1		2	77.4	71.1	84.7			76.2	70.2	84.0		Ā	0 70	0 0	0.2	5		3	72.6	711	74.3	<u> </u>	••••	and E.
muimordO	qdo	5.28	4.31	5.37	7 20	6.58	7 28	7.40	7 08	7.64	7 69	6.38	2		5.28		9	6.79	4.31	7.98			LC.	4	7.20			1	٠.	7.00	1		1	_	۳	7.69	-		oliform
muimbsO	qdo	1.84	2.73	1.76	164	1 66	9	1 43	1 40	100	1 62	1 78			1.84		9	1.68	1.08	2.73		٣	2.04	1 64	2.73		4	7 27	5 5	5.6	3		3	1.49	1 08	1.78		·····	Fecal
d-þOd	7/6u	6.86	6.14	5.11	5.11	5 01	5.07	5 22	4 81	4 30	4 8 4	4		1	98.9		9	5.04	4.39	6.14			5 45	5 11	6.14		Ā	50.	5 3	100	77.0		3	4.67	4 30	481			ean for
N-SON+2ON	7/6ս	1	1	1	1		-1-	- 1	-!-	7	7	13.50	``		9.27		9	13.32	8.88	14.65			12.73	88	14.65		4	1262	o c	13.74	5		3	13.51	i e	13.52			Geometric mean for Fecal Coliform and
N-EHN	7/6ս	ž	0.498	0.528	0.530	0 374	256	0.426	0.416	0 236	0.356	0.202					9	0.382	0.202	0.530			0.519	0.498	0.530		4	0 269	9 0	0.230	0.450		3	0.265	0 202	0.356			
muibo2	7/6u	217	158	236	229	282	299	300	272	300	303	297	<u> </u>		217		9	269	158	309		3	208	158	236		4	288	27.0	300			3	303	297	309			Đ
Magnesium		3.65	2.84	2.65	2.51	2.55	1 93	1 85	000	200	1 97	2 50	ļ		3.65		o	2.29	1.85	2.84		3	67	2.51	2.84		4	2 11	1 05	2 55	3		3	2.16	1 97	2.50			
muiolsO	¬ /6u		5	5	4	4	4	٠,٠) (°	2	2 6	7	<u> </u>		7		9	4	2	2		3	40	4	5		4	-	rc	ט ע				<u>!</u>	<u>. </u>	7	.]		ed
Cloride	7/6ա	224.0	308.0	281.0	314.0	399 0	386.0	359.0	364.0	373.0	374 0	393.0					9	355.1	281.0	399.0		3	301.0	281.0	314.0		4	27.0	0	300.0			33	80.0	173.0	393.0			Not Analyzed
SSV															22.0			20.1							23.6		4	7	. 0	27.6	5		3	ĸ	4	23.2	il .		NA = Not
SST	უ/ 6ⴍ	29.2	34.4	30.8	25.2	26.4	413	30.8	33.7	25.6	30.4	13.3			29.2		10	29.2	13.3	41.3		3	30.1	:'∾	34.4		4	33.1	7 90	413			1	•		30.4	1		Z
вор	7/6w	29.0	21.7	11.5	13.0	0 6	15.4	20.6	29.0	13.2	12.1	6.0			29.0		10	15.2	0.9	29.0		 ω	. 4	i C	21.7		4	12.5	0	29.0	s I		3	10.4	0.9	13.2			
Dissolved Oxygen	7/6w	Ϋ́	ž	ž	ž	Ϋ́	¥	Ą	ž	Ϋ́	ž	ž	<u> </u>									ļ	<u> </u>	-				<u>.</u>	-	. <u></u>				<u></u>	<u> </u>	<u></u>			Sample
Conductivity	шэ/вочшш	069	720	720	800	1 100	1.080	1.150	400	1 200	880	800	-		069		9	985	720	,400		3	747	720	800		4	1 183	080	400			3	096	800	,200			NS= No Sample
Hq		2	7	Ψ.	2	-	9	-	5.7	5.7	5.7	5.6	<u> </u>		3.5		2	5.3		5.7		3	8.4	4.2	5.2		4			571			3	5.7	5.6	5.7 1			Ž
Temperature	O geb	Ϋ́	¥	Ϋ́	¥	ž	¥	Ϋ́	Ϋ́	Ϋ́	AN	NA	ļ			rain)							ļ	ļ			ļ	ļ	-	ļ	-				ļ	ļ			pa
Flow	cfs					-	ļ	ļ		-	ļ	-	ļ			and 2 after rain						ļ	<u> </u>		-		ļ	ļ	-						<u></u>	ļ			Measur
i	əmiT				i,			<u></u>	-	.L			<u></u>					-	-			-			\parallel		-			-								Н	NM= Not Measured
	Date	10/12/93	10/12/93	10/12/93	10/13/93	10/13/93	10/13/93	10/13/93	10/13/93	10/13/93	10/14/93	10/14/93	10/14/93	10/15/02	(6	Rain, Da					ain)					after rain)						ter rain)						1 sample)	2
	unЫ	Li			Ĺ	Ì	<u> </u>	Ì	28	١	.I		52		sample	II data					uring					~						ay 2 ai						ay 3) (
)ry, rain, days	Weather (Caffer (C	Dry	Rain	Rain	Rain	24h	24h	24h	24h	48h	48h	48h	48h	72h	1ER (1	HER (A					HER (d					TER (D						ter (D						IER (D	tected
	noitst2	BWW24	,,,,,		BWW24	-		Ī	ī	Ī''''	Ī	BWW24		·····	DRY WEATHER (1 sample)	WET WEATHER (All data: Rain, Days	Count	Mean (*)	Minimum	Maximum	WET WEATHER (during rain)	Count	Mean (*)	Minimum	Maximum	WET WEATHER (Day	Count	Mean (*)	Minimim	Maximum		WET WEATHER (Day 2 after rain)	Count	Mean (*)	Minimum	:		ET WEATH	ND = Not Detected

Page 23

BLACKSTONE RIVER WET WEATHER WATER SAMPLES ANALYSIS RESULTS Water Quality Data For STORM III

			ι_	:00	:	:-	im	·	:_		:/0	:~	:/0	170		1 F	_
	E. coli	ԴШ0001/03			6	Ş	3		i` !	-	ž		SN	ž			į
	Fecal Coliform	CFU/100mL	-	6	006	180	82	110	32	110	SN	40	NS	NS			-
	Sinc	qdd	16	25	50	21	24	25	18	23	12	37	46	37		1 4	2
	резд	qdd	2.7	3.2	9.2	4.0	3.5	3.4	3.2	2.7	3.2	2.9	2.5	7.3	1	1,0	1.1
	Nickel	qdd	27.1	19.8	31.6	30.0	24.7	23.5	24.4	24.4	33.7	34.4	30.5	30.9		27.4	7
	Соррег	qdd	6.6	4.5	12.8	16.0	9.9	8.2	13.2	15.3	12.5	12.6	12.4	14.0	1		3.5
	тиіточі	qdd	1.21	1.17	3.04	4.36	3.24	2.61	2.47	2.79	3.16	3.68	3.42	8.14	-	1.21	- 1
	muimbsO	qdd	0.21	0.08	0.35	0.08	2	0.05	0.08	2	8	0.06	0.05	0.22	-	24	,
River).	d-40d	7/6ա	1.83	1.95	5.64	5.64	3.25	1.22	0.67	0.85	0.91	0.97	0.91	0.97	Ť	1 83	3
ekonk	NO2+NO3-N	7/6w	0.86	0.78	S	Q	S	0.14	0.14	2	9	2	0.34	0.34		98	3
discharge from NBC's Bucklin Point wastewater facility (Seekonk River)	N-EHN	7/6ш	23.200	20.600	25.100	12.500	8.940	10.500	12.200	12.500	12.200	16.800	Ϋ́	18.000		23 200	
water f	muibo8	7/6ш	77	77	98	8	85	73	75	88	66	102	103	117	ļ		
nt waste	muisəngaM	7/6ш	2.99	3.01	2.49	2.49	3.04	1.90	1.87	2.25	2.20	2.24	2.60	2.68	}	2 99	*
din Poir	muiolsO	7/bw	21	17	7	5	12	10	12	16	15	16	17	15		2	i
S's Buck	Cloride	7/ɓw	87.1	95.0	116.0	112.0	108.0	85.6	80.6	93.4	119.0	119.0	122.0	149.0		87.1	,
om NB(SSV	7/6w	6.0	3.8	33.2	18.8	7.2	6.2	19.2	10.7	28.0	4.2	12.4	10.0		0.9	•
arge fr	SST	·							:			: :	: :			10.0	1
	вор	7/6ш	15.0	26.2	8.0	14.5	9.0	7.9	10.6	15.0	6.7	8.9	6.0	Ä		15.0	1
s a dire	Dissolved Oxygen	7/6w	5.2	5.0	2.4	4.6	4.5	3.6	3.1	3.0	3.6	2.9	2.7	2.3		5.2	
BWW25 is a direct	Conductivity	шшрогусш	220	520	900	595	200	550	435	420	200	658	500	720		550	
B	Hq		9.9	6.6	6.9	6.8	6.4	6.6	6.7	6.8	6.8	6.9	6.8	6.6		9.9	
	Temperature	⊃ gəb —	18.0	17.0	19.0	18.0	17.8	17.3	16.5	17.5	16.5	17.3	15.5	18.0		18.0	1
	Flow	cfs	23	24		16	12	24	21	22	16	4	23	23		23	
		əmiT	1020	1515	2323	240	620	1220	1700	2115	35	335	950	1930			
		Date	10/12/93	10/12/93	10/12/93	10/13/93	10/13/93	10/13/93	10/13/93	10/13/93	10/13/93	10/14/93	10/14/93	10/14/93	10/15/02	(əlc	
		Вun	۵.	0	6	12	16	20	24	78	32	38	44	52	72	1 sam	
ļ	eys, rain, days	Weather (D	Δ	Rain	Rain	Rain	24h	54h	2 4 h	24h	48h	48h	48h	48h	72h	THER (
		Station	BWW25	BWW25	BWW25	BWW25	BWW25	BWW25	BWW25	BWW25	BWW25	BWW25	BWW25	BWW25	BWW25	DRY WEATHER (1 sample)	

Count	9	11	11	1	<u>-</u>		ł			ı	<u> </u>	1	1	1		ı		1	ı	1	ľ	
Mean (*)	19	17.3	6.7	545	3.4	•				1	1	:		:	1	i		1			108	ο σ
Minimum	12	15.5	6.4	420	2.3	•	:			ì	<u>.</u>	:	1	:	1	•	ŀ	1			38	
Maximum	24	19.0	6.9	720	: 1	26.2	43.2 3	33.2 14	149.0	17 3	3.04	117 25	25.100	0.78	5.64	0.35 8.	8.14 16	16.0 34	34.4 9.2	2 50	900	93
WET WEATHER (during rain)																		1 1				
Count	2	3	3	3	3	ı	1				l	3		1	ŀ	1	1	1	ı	1	6	
Mean (*)	8	18.0	8.9	572	4.0	16.2	21.7	18.6 10	107.7	10 2	2.66	90 19	1	1	1	1	į	1			244	
Minimum	16	17.0	9.9	520	2.4	•	ŧ			:		77 12	•	•	•	•	1	•			6	
Maximum	24	19.0	6.9	009	5.0	•				:		98 25	25.100 (0.78 5	5.64 0	0.35 4	4.36 16	16.0 31	31.6 9.2	2 50	006	93
WET WEATHER (Day 1 after rain)																						
Count	4	4	4	4	4	1	1		ı	1			1	1	1		1	1	l		4	
Wean (*)	20	17.3	9.9	476	3.5	10.6	18.6	10.8	91.9	13 2	2.26	80 11	11 035 (0.14	1.50 0	0.07	2.78 1	11.7 24.3	3 3 2	2 23	75	
Minimum	12	16.5	6.4	420	3.0	1	1	:		:	Ĺ		:	•		•	1	1	<u>.</u>		32	
Maximum	24	17.8	6.8	550	4.5		1			:	1		:	1	•	:	:	1	L		110	Ĺ

WEI WEALHER (Day 2 aner rain)																	
Count			i														
4 4 4		3		4	4	4			2	4	3	4		4	4	4	
9 16.8 6.8	595 2.9	7.2	15.5 13	13.7 127.3	16		105		0.34		1	:	1	32.4	4.0	33	
15.5 6.6				.2 119.0		•			0.34		i	÷	ŧ	30.5	2.5	12	
Maximum 23 18.0 6.9				.0 149.0		2.68		18.000	0.34	0.97	0.22	8.14	14.0	34.4	7.3	4	
WET WEATHER (Day 3) (1 sample)			ļ					ļ									
ND = Not Detected NM= Not Measured NS	NS= No Sample	Ф	NA=	NA = Not Analyzed	yzed			(*) Geometric mean for Fecal Coliform and E. Coli	etric me	an for F	ecal Co	liform a	ind E. C	 	-	1	

Wet Weather Events Rainfall Characteristics

- all Storms -

Gage Name	Location	Maintained	Type	Rai	Rainfall in inches	shes
		By		Storm 1	Storm 2	Storm 3
RIN	Worcester Airport, MA	NWS		0.44	86.0	1.30
R2U	Westborough WWTF, MA	URU	_	NA	0.83	0.85
R3U	Millbury WWTF, MA	URU	-	NA	0.77	NA
R4M	Millbury WWTF, MA	WWTF	2	99.0	0.62	NA
R5N	Buffumville, MA	NWS	2	0.63	0.99	1.15
RGN	Northbridge, MA	NWS	2	0.54	0.94	69.0
R.7N	West Hill Dam, MA	NWS	2	0.53	68.0	0.90
R8N	Putnam, CT	NWS	2	0.63	0.84	1.15
R9U	Burriville WWTF, RI	URI		NA	0.85	NA
RIOM	Burriville WWTF, RI	WWTF	2	0.74	NA	0.48
RIIN	Woonsocket, RI	SMN	2	95.0	98.0	0.61
R12U	Woonsocket WWTF, RI	URI	1	0.46	0.78	NA
R13M	Bucklin Pt. WWTF, RI	WWTF	2	0.49	NA	NA
R14S	Providence, RI	RIDEM	2	0.51	NA	NA
R15U	Fields Point WWTF, RI	URI	1	0.62	92.0	NA
R16N	TF Green Airport, RI	NWS	-	0.62	08.0	0.27

S = State; and M = Municipal; RIDEM = RI Department of Environmental Management; Type 1 = Continuous Recorder; Type 2 = Daily Total; NA = Not Available. RIN: R = Rainfall; 1 = Station ID; N = National Weather Service (NWS); U = URL;

R11N

MASSACHUSETTS_ RHODE ISLAND

R7N

RSN

R12U

¶88 N8N

Average Rainfall Characteristics Table A15-6-2

R15U R14N

Rainfall Monitoring Stations

Legend

Storm 3	0.81	8.5	8.0	0.52 (R1N)	0.10
Storm 2	0.88	16.0	8.0	0.23 (R1N)	90:0
Storm 1	0.56	6.0	11.0	0.20 (R12U)	60.0
Characteristic	TR (inch)	D (hrs)	ADP (days)	PI (in/hr)	AI (in/hr)

Figure A15-6-1 Raingage Locations for the Blackstone River Wet Weather Studies

D = Rainfall Duration; ADP = Anticedent Dry Period; PI = Peak Intensity (R1N = Station ID); AI = Average Intensity TR = Total Rainfall Based on Thiessen Method;

Figure A15-6-3 Rainfall Watersheds Distribution - Storm 1

Page A15-119

Page A15-120

Table A15-6-3 Summary Table of Rainfall for Individual Subwatersheds

Summary Table of Rainfall for Cumulative Subwatersheds

Table A15-6-4

Storm 3 1.300 1.129 0.944 0.713 0.900 0.513 0.610 0.610 0.610 1.253 0.864 0.690 0.827 0.820 0.8810.827 0.665 0.603 0.594 Rainfall (inch) Storm 2 0.955 0.857 0.784 0.792 0.857 0.848 0.940 0.907 0.928 0.899 0.890 0.850 0.883 0.860 0.860 0.861 0.860 0.860 0.844 Storm 1 0.440 0.473 0.494 0.461 0.534 0.540 0.540 0.533 0.5600.535 0.530 0.723 0.617 0.510 0.510 0.510 0.525 0.495 0.502 (square mile) Area 60.5 15.5 16.7 34.2 16.5 68.5 23.0 37.4 11.6 20.0 13.6 93.1 13.4 12.2 23.3 6.2 6.0 6.1 2.3 BWW06 BWW02 BWW07 BWW08 BWW10 BWW14 BWW00 BWW01 BWW04 BWW05 BWW13 **BWW15** BWW16 BWW17 BWW20 BWW09 BWW11 Station BWW18 BWW21

Storm 3 0.978 0.819 1.253 1.263 1.253 1.187 1.079 1.064 1.055 0.852 0.832 0.826 0.809 Rainfall (inch) Storm 2 0.935 0.888 0.955 0.923 0.900 0.886 0.884 0.885 0.887 0.883 0.881 0.901 0.883 Storm 1 0.494 0.483 0.490 0.492 0.493 0.495 0.517 0.572 0.558 0.481 0.565 0.563 0.561 (square mile) 161.6 149.5 155.5 269.8 430.9 480.0 Area 8.86 376.3 456.7 60.5 75.9 443.1 82.1 BWW18 BWW00 BWW02 BWW04 BWW06 BWW07 BWW08 BWW13 BWW20 **BWW11** BWW17 BWW21 BWW01 Station

Wet Weather Events Flow Characteristics

- all Storms -

Table A15-7-1 Hydrograph Characteristics - Storm 1

Table A15-7-2 Hydrograph Characteristics - Storm 2

Table A15-7-3 Hydrograph Characteristics - Storm 3

Station	Wet Volume	Total Volume	7	Station		-					
	30.5	_	-	IIODE O	Wet Volume	Total Volume	z	Station	Wet Volume	Total Volume	z
	(10° cf)	(10° cf)	(hrs)		(10° cf)	(10° cf)	(hrs)		(106 00)	9017	;
BWW00	3.63	5.77	36.2	BWW00	8.09	22.6	36.2	0000000	(10 CI)	(10°CI)	(hrs)
BWW01	3.63	5.82	36.0	BWW01	8 66	23.0	3.60	00 w w q	21.5	30.2	36.2
BWW02	4.07	15.5	37.3	BWW02	11.7	24.4	20.0	Bww01	22.7	32.5	36.0
BWW04	5.31	16.9	38.0	BWW04	15.0	30.4	37.3	BWW02	29.6	41.9	37.3
BWW05	0.43	1.03	34.2	BWW05	1 30	25.4	38.0	BWW04	30.4	53.6	38.0
BWW06	9.39	20.7	39.6	BWW05	61	2	34.2	BWW05	2.24	4.58	34.2
BWW07	5.36	27.0	39.8	DOW W. C.	17.4	44.3	39.6	BWW06	27.0	47.5	39.6
BWW08	4.20	34.7	30.0	DW WO.	19.0	46.4	39.8	BWW07	25.2	55.6	39.8
BWW09	010	5 1	25.5	80 W W 08	79.1	62.1	39.9	BWW08	23.7	65.2	39.9
BW/W10	57.0		20.0	BWW09	7.45	17.4	36.6	BWW09	1.63	5.39	36.6
DW W TO	0.0/	1.34	34.5	BWW10			34.5	RWW10	200	-	
BWW11	1.37	24.4	42.0	BWW11	35.5	88.7	42.0		0.27	1.91	34.5
BWW13	2.91	31.1	43.4	BWW13	43.1	116	43.4	BWWII	30.2	73.6	42.0
BWW14	1.46	6.45	37.8	BWW14	11.2	313	45.4	BWW13	31.2	90.7	43.4
BWW15	1.24	2.54	32.8	BWW15	2.7.5	55.5	27.0	BWW14	1.18	8.40	37.8
BWW16	0.44	0.80	30.7	BWW16	131	75.0	32.8	BWW15	0.26	0.63	32.8
BWW17	5.60	35.4	44.0	BWW17	10.1	145	20.7	BWW16	0.25	0.53	30.7
BWW18	3.43	191	44.1	Duraine	49.7	145	44.0	BWW17	39.0	91.6	44.0
BWW20	532	48.3	44.3	DW WIS	68.3	155	44.1	BWW18	27.7	73.1	44.1
RWW21	6.41	1 73	14.5	DW W 20	/5.3	172	44.3	BWW20	28.3	107	44.3
17	11.0	20.1	£.5	BWW21	85.1	179	44.5	BWW21	34.4	113	44.5

44.5 113 BWW21

Figure A15-7-1 Hydrograph Comparison - Storm 1

Figure A15-7-2 Hydrograph Comparison - Storm 2

Figure A15-7-3 Hydrograph Comparison - Storm 3

Figure A15-7-4 Hydrograph Comparison - Headwaters

Figure A15-7-5 . Hydrograph Comparison - State Line

Figure A15-7-6 Hydrograph Comparison - Mouth of River

Figure A15-7-9 Contour Plot of Flow for Storm 1, September 22-24, 1992

Figure A15-7-8 Contour Plot of Flow for Storm 2, November 2-5, 1992

Figure A15-7-7 Contour Plot of Flow for Storm 3, October 12-16, 1993

Dry Weather Data

- Loading of Ammonia, Nitrate, Orthophosphate, Copper, Lead -

Ammonia

- Concentration and mass loading profiles
- Point source vs. upstream and downstream river stations
- Dry weather ranking system
- Comparison of two major point sources vs. other sources

Nitrate

- Concentration and mass loading profiles
- Point source vs. upstream and downstream river stations
- Dry weather ranking system
- Comparison of two major point sources vs. other sources

Orthophosphate

- Concentration and mass loading profiles
- Point source vs. upstream and downstream river stations
- Dry weather ranking system
- Comparison of two major point sources vs. other sources

Copper

- Concentration and mass loading profiles
- Point source vs. upstream and downstream river stations
- Dry weather ranking system
- Comparison of two major point sources vs. other sources

Lead

- Concentration and mass loading profiles
- Point source vs. upstream and downstream river stations
- Dry weather ranking system
- Comparison of two major point sources vs. other sources

Ammonia Concentration and Mass Loading Profiles

Figure A15-8-1

Page A15-136

Table A15-8-1 Ammonia Dry Weather System Ranking

Rank	Su	rvey 1		Sı	ırvey 2		Sı	rvey 3	
	Source	Load	%	Source	Load	%	Source	Load	%
1	Woon	1258	88.9	Woon	812	67.4	Woon	838	52.8
2	UBWPAD	91.1	6.4	BLK01-02	92.2	7.7	BLK01-02	266	16.8
3	BLK03-04	39.4	2.8	BLK20-21	85.5	7.1	BLK03-04	112	7.1
4	BLK14	12.2	0.9	UBWPAD	60.1	5.0	BLK18-19	108	6.8
5 .	BLK09	3.6	0.3	BLK14	45.8	3.8	UBWPAD	59.3	3.7
6	BLK05	3.4	0.2	BLK03-04	44.2	3.7	BLK20-21	44.5	2.8
7	BLK16	3.3	0.2	BLK09	16.9	1.4	BLK11-12	45.0	2.8
8	BLK10	1.6	0.1	BLK02-03	15.1	1.3	BLK04-06	43.6	2.7
9	BLK12-13	1.5	0.1	BLK05	12.8	1.1	BLK14	25.3	1.6
. 10	BLK15	1.3	0.1	BLK15	6.5	0.5	BLK12-13	13.6	0.9
11				BLK10	6.3	0.5	BLK15	13.1	0.8
12		-		BLK08-11	4.5	0.4	BLK09	7.7	0.5
13				BLK16	2.4	0.2	BLK16	5.2	0.3
14						-	BLK05	3.5	0.2
15							BLK10	3.0	0.2
Total		1415			1204			1588	

Woon = Woonsocket WWTF; Load in lbs/day

Figure A15-8-3 Comparison of the Two Major Point Sources Versus the Other Sources for Ammonia

Figure A15-8-4 Nitrates as N Concentration and Mass Loading Profiles

Rank	Su	rvey 1		Su	rvey 2		Sı	ırvey 3	
	Source	Load	%	Source	Load	%	Source	Load	%
1	UBWPAD	1341	41.3	UBWPAD	4986	64.8	UBWPAD	4070	40.7
2	BLK02-03	462.2	14.2	Woon	1401	18.2	BLK20-21	2148	21.5
3	BLK06-07	330.5	10.2	BLK18-19	310.9	4.0	BLK11-12	845.8	8.5
4	BLK19-20	240.2	7.4	BLK19-20	299.8	3.9	BLK17-18	631.5	6.3
5	BLK03-04	194.4	6.0	BLK11-12	198.3	2.6	BLK12-13	490.0	4.9
6	BLK18-19	148.2	4.6	BLK02-03	156.5	2.0	BLK01	452.5	4.5
7	BLK20-21	133.9	4.1	BLK06-07	66.8	0.9	BLK08-11	415.4	4.2
8	BLK12-13	133.4	4.1	BLK09	64.4	0.8	Woon	212.3	2.1
9	BLK11-12	62.1	1.9	BLK01	57.3	0.7	BLK04-06	159.8	1.6
10	BLK01	48.3	1.5	BLK14	44.2	0.6	BLK14	109.6	1.1
11	Woon	42.1	1.3	BLK03-04	41.1	0.5	BLK02-03	105.7	1.1
12	BLK17-18	39.7	1.2	BLK07-08	38.0	0.5	BLK06-07	95.4	1.0
13	BLK14	35.0	1.1	BLK16	9.3	0.1	BLK07-08	88.9	0.9
14	BLK09	10.6	0.3	BLK05	7.1	0.1	BLK09	54.4	0.5
15	BLK16	9.5	0.3	BLK15	5.8	0.1	BLK15	49.9	0.5
16	BLK15	7.7	0.2	BLK10	4.1	0.1	BLK16	49.3	0.5
17	BLK05	6.7	0.2				BLK05	18.5	0.2
18	BLK10	4.1	0.1				BLK10	8.67	0.1
19									
Total		3250			7691	1		10006	

Woon = Woonsocket WWTF; Load in lbs/day

Figure A15-8-6 Comparison of the Two Major Point Sources Versus the Other Sources for Nitrate

Figure A15-8-7 Orthophosphate as P Concentration and Mass Loading Profiles

Table A15-8-3 Orthophosphate Dry Weather System Ranking

Rank	Su	rvey l		Su	rvey 2		Su	rvey 3	
	Source	Load	%	Source	Load	%	Source	Load	%
1	UBWPAD	476	59.8	UBWPAD	567	63.6	UBWPAD	1057	64.6
2	Woon	151	19.0	Woon	208	23.3	Woon	289	17.7
3	BLK02-03	54.7	6.9	BLK13-17	55.4	6.2	BLK08-11	60.4	3.7
4	BLK12-13	40.2	5.0	BLK11-12	35.2	4.0	BLK12-13	59.3	3.6
5	BLK06-07	28.5	3.6	BLK19-20	15.2	1.7	BLK01	44.9	2.7
6	BLK11-12	12.7	1.6	BLK14	7.03	0.8	BLK11-12	40.1	2.5
7	BLK09	11.2	1.4	BLK09	0.78	0.1	BLK20-21	28.1	1.7
8	BLK20-21	8.98	1.1	BLK01	0.77	0.1	BLK02-03	26.7	1.6
9	BLK14	7.39	0.9	BLK10	0.63	0.1	BLK09	7.81	0.5
10	BLK05	3.20	0.4	BLK05	0.56	0.1	BLK05	5.78	0.4
11	BLK15	0.99	0.1	BLK15	0.39	0.04	BLK14	5.75	0.4
12	BLK01	0.74	0.1	BLK16	0.35	0.04	BLK07-08	4.91	0.3
13	BLK10	0.52	0.1				BLK10	3.04	0.2
14	BLK16	0.26	0.03				BLK16	1.96	0.1
15							BLK15	1.87	0.1
Total	· .	796			891			1637	

Woon = Woonsocket WWTF; Load in lbs/day

Figure A15-8-9 Comparison of the Two Major Point Sources Versus the Other Sources for Orthophosphate

Figure A15-8-10 Dissolved Copper Concentration and Mass Loading Profiles

Table A15-8-4 Copper Dry Weather System Ranking

Rank	Su	rvey l		Su	rvey 2		Su	rvey 3	
	Source	Load	%	Source	Load	%	Source	Load	%
1	UBWPAD	10.54	47.2	UBWPAD	7.52	36.5	BLK08-11	13.60	23.2
2	BLK07-08	5.05	22.6	BLK07-08	4.31	20.9	UBWPAD	10.29	17.5
3	Woon	1.83	8.2	Woon	2.41	11.7	BLK04-06	5.07	8.6
4	BLK14	1.01	4.5	BLK04-06	1.57	7.6	BLK20-21	4.66	7.9
5	BLK10	0.76	3.4	BLK17-18	1.11	5.4	BLK07-08	4.44	7.6
6	BLK01	0.69	3.1	BLK20-21	0.77	3.7	BLK01	3.45	5.9
7	BLK06-07	0.59	2.6	BLK01	0.75	3.7	BLK17-18	3.33	5.7
8	BLK09	0.53	2.4	BLK02-03	0.66	3.2	BLK14	2.34	4.0
9	BLK20-21	0.46	2.1	BLK14	0.55	2.7	BLK06-07	2.22	3.8
10	BLK03-04	0.26	1.2	BLK19-20	0.42	2.0	BLK12-13	2.20	3.8
11	BLK16	0.21	0.9	BLK09	0.15	0.7	BLK09	2.15	3.7
12	BLK12-13	0.20	0.9	BLK05	0.14	0.7	BLK02-03	2.10	3.6
13	BLK05	0.12	0.5	BLK10	0.11	0.5	Woon	0.88	1.5
14	BLK15	0.09	0.4	BLK15	0.10	0.5	BLK05	0.60	1.0
15	-			BLK16	0.04	0.2	BLK10	0.57	1.0
16							BLK15	0.46	0.8
17							BLK16	0.29	0.5
Total		22.3		·	20.6			58.7	

Woon = Woonsocket WWTF; Load in lbs/day

Figure A15-8-12 Comparison of the Two Major Point Sources Versus the Other Sources for Total Copper

Figure A15-8-14 Dissolved Lead Concentration and Mass Loading Profiles

Page A15-144

Figure A15-8-15 Point Source Versus Upstream and Downstream River Stations for Total Lead

Table A15-8-5 Lead Dry Weather System Ranking

Rank	Su	rvey l		Su	rvey 2		Su	rvey 3	
	Source	Load	%	Source	Load	%	Source	Load	%
1	BLK06-07	21.1	38.0	BLK07-08	4.58	28.2	BLK12-13	6.77	19.4
2	BLK04-06	16.3	29.2	BLK04-06	3.03	18.7	BLK04-06	6.09	17.4
3	BLK12-13	7.07	12.7	BLK01	1.62	10.0	BLK08-11	5.05	14.5
4	BLK08-11	6.07	10.9	UBWPAD	1.19	7.3	BLK07-08	3.20	9.2
5	BLK20-21	1.70	3.1	BLK06-07	1.19	7.3	BLK09	2.33	6.7
6	UBWPAD	1.29	2.3	BLK11-12	0.98	6.0	BLK01	1.97	5.6
7	BLK03-04	0.65	1.2	Woon	0.88	5.4	BLK13-17	1.86	5.3
8	BLK01	0.33	0.6	BLK03-04	0.71	4.4	BLK02-03	1.54	4.4
9	BLK09	0.28	0.5	BLK20-21	0.51	3.1	BLK06-07	1.40	4.0
10	BLK14	0.22	0.4	BLK14	0.43	2.6	BLK10	1.00	2.9
11	Woon	0.21	0.4	BLK05	0.28	1.7	BLK14	0.88	2.5
12	BLK10	0.12	0.2	BLK09	0.26	1.6	UBWPAD	0.73	2.1
13	BLK02-03	0.11	0.2	BLK18-19	0.24	1.5	BLK19-20	0.49	1.4
14	BLK16	0.11	0.2	BLK10	0.17	1.1	BLK05	0.47	1.4
15	BLK05	0.09	0.2	BLK15	0.06	0.4	BLK15	0.37	1.1
16	BLK15	0.04	0.1	BLK16	0.06	0.3	Woon	0.31	0.9
17	· · · · · · · · · · · · · · · · · · ·			BLK02-03	0.04	0.3	BLK16	0.29	0.8
18				BLK17-18	0.01	0.1	BLK01-02	0.16	0.4
Total		55.7			16.2			34.9	

Woon = Woonsocket WWTF; Load in lbs/day

Figure A15-8-16 Comparison of the Two Major Point Sources Versus the Other Sources for Total Lead

QUAL2E Model Data

- Ammonia, Nitrate, Orthophosphate, Copper, Lead -

Ammonia

- Concentrations of point sources and tributaries
- Simulations for July 10-11, 1991
- Simulations for August14-15, 1991
- Simulations for October 2-3, 1991

• Nitrate

- Simulations for July 10-11, 1991
- Simulations for August14-15, 1991
- Simulations for October 2-3, 1991

Orthophosphate

- Simulations for July 10-11, 1991
- Simulations for August14-15, 1991
- Simulations for October 2-3, 1991

Copper

- Profiles for July 10-11, 1991
- Profiles for August14-15, 1991
- Profiles for October 2-3, 1991

Lead

- Profiles for July 10-11, 1991
- Profiles for August14-15, 1991
- Profiles for October 2-3, 1991

Figure A15-9-1 Dissolved Ammonia Simulations for July 10 - 11, 1991

Figure A15-9-2 Dissolved Ammonia Simulations for August 14-15, 1991

Figure A15-9-3 Dissolved Ammonia Simulations for October 2-3, 1991

Figure A15-9-4 Dissolved Nitrate Simulations for July 10 - 11, 1991

Figure A15-9-5 Dissolved Nitrate Simulations for August 14-15, 1991

Figure A15-9-6 Dissolved Nitrate Simulations for October 2-3, 1991

Figure A15-9-7 Dissolved Orthophosphate Simulations for July 10 - 11, 1991

Figure A15-9-8 Dissolved Orthophosphate Simulations for August 14-15, 1991

Figure A15-9-9 Dissolved Orthophosphate Simulations for October 2-3, 1991

Figure A15-9-10 Copper Profiles for July 10-11, 1991

Figure A15-9-11 Copper Profiles for August 14-15, 1991

Figure A15-9-12 Copper Profiles for October 2-3, 1991

Figure A15-9-13 Lead Profiles for July 10-11, 1991

Figure A15-9-14 Lead Profiles for August 14-15, 1991

Figure A15-9-15 Lead Profiles for October 2-3, 1991

Section A15-10

Wet Weather Data

- Event Mean Concentrations -

- Event Mean Concentrations for Storm 1
- Event Mean Concentrations for Storm 2
- Event Mean Concentrations for Storm 3
- Event Mean Concentration Plots for Ammonia and Nitrate
- Event Mean Concentration Plots for Orthophosphate, Fecal Coliform, and E.coli
- Event Mean Concentration Plots for TSS, VSS, and Lead
- Event Mean Concentration Plots for Cadmium, Chromium, and Copper
- Event Mean Concentration Plots for Nickel, Zinc, BOD

Table A15-10-1 Event Mean Concentration (EMC) For Storm 1

Event Mean Concentration (EMC) For Storm 2

Table A15-10-2

CFU/100mL 2690 3850 0.55 88.5 41.5 EC 49.1 173 182 105 139 40.2 958 319 µg/L 33.5 46.4 38.5 41.3 26.8 17.5 35.0 55.4 30.3 22.8 25.8 64.1 25.1 Zn µg/L 19.7 14.2 13.2 9.83 8.28 12.4 7.12 6.36 4.82 3.87 4.34 6.76 10.1 Pb μg/L 3.10 3.89 10.4 21.4 18.3 16.4 191 11.3 8.28 7.61 5.85 4.80 4.62 ī hg/L 9.36 14.3 31.8 24.5 28.4 11.0 10.5 6.45 38.3 10.4 11.8 10.4 17.1 \vec{c} µg/L 2.47 4.08 10.8 8.99 7.15 8.40 2.16 5.11 4.89 2.86 2.98 1.69 2.05 Ü $\mu g/\Gamma$ 1.10 1.26 1.00 0.45 0.61 0.35 0.90 0.81 0.71 0.39 0.43 0.33 Ş BWW00 BWW02 BWW08 BWW13 BWW20 BWW21 BWW01 BWW06 BWWII BWW17 BWW04 BWW07 Station BWW18

Station	BOD5	NH3-N	NO3-N	PO ₄ -P	TSS	VSS	단
	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	CFU/100mL
BWW00	4.16	0.17	0.32	0.02	6.41	2.76	6190
BWW01	5.42	0.22	0.43	0.02	13.1	5.10	11400
BWW02	5.99	1.54	1.14	0.73	7.55	4.50	340
BWW04	5.25	1.04	2.14	08.0	16.0	6.88	735
BWW06	4.33	0.49	3.25	0.74	7.40	3.42	209
BWW07	2.48	0.81	3.00	9.65	7.28	2.93	784
BWW08	2.85	0.83	2.54	0.64	9.80	3.30	681
BWW11	2.24	0.31	1.77	0.37	5.47	2.61	228
BWW13	1.75	0.05	1.29	0.28	3.67	2.07	594
BWW17	1.67	0.04	1.37	0.24	5.04	2.39	2230
BWW18	1.73	2.42	1.33	0.41	4.70	2.94	394
BWW20	1.67	0.55	1.99	0.26	2.74	1.86	117
BWW21	1.34	0.37	1.73	0.17	2.75	1.78	2290

CFU/100mL 3570 2780 8160 4840 3500 1580 1250 88.8 215 350 328 402 919 µg/L 27.6 46.9 56.3 41.6 45.0 21.8 21.3 24.6 26.4 45.3 43.7 19.3 41.1 Zn $\mu g/\Gamma$ 11.4 11.9 11.7 15.9 13.2 7.36 11.4 10.6 6.31 4.28 4.79 5.97 5.21 Pb 11.8 hg/L 2.23 4.60 12.3 13.9 10.5 9.72 7.68 5.00 5.39 4.72 6.05 4.97 ź $\mu g/L$ 7.80 10.6 15.9 23.0 17.5 14.1 18.6 17.2 89.8 9.87 8.73 8.21 Ö µg/L 1.45 7.02 3.27 9.07 5.62 3.93 69.9 3.52 2.49 2.33 1:85 1.68 6.91 Ċ $\mu g/L$ 0.05 0.09 1.85 1.20 1.72 0.54 1.12 1.41 0.51 0.51 0.48 0.54 1.23 ਲ BWW06 BWW00 BWW01 BWW02 BWW04 BWW08 BWW13 BWW17 BWW18 BWW20 BWW11 BWW21 Station BWW07

Station	BOD ₅	NH3-N	NO ₃ -N	PO4-P	TSS	ASS	FC
	mg/L	mg/L	mg/L	7/8w	mg/L	mg/L	CFU/100mL
BWW00	6.30	0.07	0.12	0.04	11.8	6.51	4900
BWW01	7.19	0.17	0.24	0.03	13.6	6.32	2800
BWW02	7.80	3.87	0.28	0.41	9.61	13.9	22200
BWW04	9.13	3.21	0.43	0.47	17.8	11.8	26100
BWW06	7.54	3.27	0.74	0.42	10.7	5.51	17400
BWW07	5.37	2.75	0.94	0.43	6.05	3.09	8350
BWW08	4.89	2.49	1.07	0.45	8.83	3.83	7240
BWW11	4.51	1.17	1.23	0.27	11.4	4.24	3030
BWW13	2.62	62.0	1.50	0.18	4.10	2.07	764
BWW17	2.48	0.44	1.63	0.19	4.11	1.76	836
BWW18	3.31	1.20	1.45	0.28	6.83	3.93	895
BWW20	3.76	0.79	1.44	0.26	7.04	4.05	409
BWW21	4	62'0	1.69	0.23	4.81	2.33	2110

Table A15-10-3 Event Mean Concentration (EMC) For Storm 3

							_							
EC	CFU/100mL	9120	5590	781	2040	1510	315	486	239	120	722	282	291	1090
Zn	µg/L	35.8	91.6	52.7	22.6	36.2	32.6	51.0	41.7	16.5	17.2	17.9	16.7	15.0
Pb	µg/L	41.1	33.5	30.6	10.4	16.4	11.7	19.1	16.8	6.17	8.17	5.74	6.41	5.68
ž	ng/L	3.94	5:35	11.6	. 8.32	61.6	9.01	11.4	9.74	8.24	7.84	7.18	19.9	5.34
Cu	hg/L	19.2	19.1	29.0	14.9	19.4	19.3	25.6	20.0	10.6	10.4	10.7	11.9	9.81
ť	1/8rl	7.28	6.12	7.60	4.41	3.89	4.06	8.83	5.93	2.77	2.34	1.85	1.74	1.77
ಶ	hg/L	0.36	0.40	0.79	0.50	0.53	0.46	0.54	0.57	0.36	0.25	0.25	0.21	0.24
Station		BWW00	BWW01	BWW02	BWW04	BWW06	BWW07	BWW08	BWW11	BWW13	BWW17	BWW18	BWW20	BWW21

103-F	NH3-N NO3-N mg/L mg/L 0.05 0.22
0.34	0.06 0.34
1.35	0.35 1.35
1.34	0.29 1.34
1.61	0.18 1.61
1.72	0.18 1.72
1.64	0.17 1.64
69.0	0.11 0.69
1.81	0.06
1.87	0.03 1.87
2.44	0.21 2.44
2.31	0.26 2.31
2.27	0.11 2.2

Figure A15-10-2 EMC plots for PO₄-P, FC, and EC for Storm 1, Storm 2, and Storm 3

Figure A15-10-1 EMC plots for NO₃-N and NH₃-N for Storm 1, Storm 2, and Storm 3

Page A15-164

Page A15-165

Figure A15-10-4 EMC plots for Cd, Cr, and Cu for Storm 1, Storm 2, and Storm 3

Figure A15-10-5 EMC plots for Ni, Zn, and BOD₅ for Storm 1, Storm 2, and Storm 3

Section A15-11

Wet Weather Data

- Load Calculations -

- Average of all storms for wet loads as percent of total
- Average of all stations for wet loads as percent of total
- Wet load comparison between two major point sources and other sources along the river (in %)
- Total load comparison between two major point sources and other sources along the river (in %)
- Comparison between wet and total load for two major point sources and other sources along the river (in %)

Table A15-11-1 Average of all Storms for Wet Loads as Percent of Total Load

Station	Cd	Cr	Cu	Ni	Pb	Zn	BOD ₅	EC	FC	NH ₃ -N	NO ₃ -N	PO ₄ -P	TSS	VSS
				<u> </u>	l	l ,	·		l					L
Blacksto	ne Rive	r Station	S											
BWW00	81.3	93.1	90.8	84.6	87.5	85.9	85.9	96.9	87.9	86.9	77.9	83.0	91.6	91.7
BWW01	84.9	74.3	84.3	69.7	88.1	80.4	86.9	96.4	81.0	64.9	56.3	81.2	93.6	81.8
BWW02	85.8	75.2	82.3	62.1	84.6	72.1	69.3	75.9	90.0	73.4	51.9	77.7	76.0	74.9
BWW04	73.1	81.2	75.2	48.8	88.9	69.9	80.8	90.2	84.9	80.6	43.7	62.8	94.3	91.4
BWW06	56.4	66.9	58.6	42.8	73.2	64.2	67.6	94.2	94.7	67.4	53.9	44.3	79.0	71.2
BWW07	38.6	59.1	50.1	37.2	63.3	54.9	58.2	88.4	87.7	67.4	34.5	47.2	69.3	65.5
BWW08	51.2	61.9	56.4	40.6	63.3	49.4	63.2	84.9	75.7	70.0	32.2	43.4	67.1	66.0
BWW11	54.0	60.2	56.8	43.2	67.0	59.1	58.4	88.1	82.1	81.6	45.9	39.2	66.9	72.7
BWW13	64.8	52.5	44.0	31.8	62.0	55.8	49.3	82.5	79.5	85.2	54.2	36.4	54.0	65.6
BWW17	52.6	51.5	52.3	40.9	56.2	54.2	60.0	95.9	85.9	82.1	40.5	42.1	72.7	74.4
BWW18	53.8	55.7	48.8	34.8	51.0	47.6	59.1	90.4	83.6	69.3	32.1	40.3	55.6	69.9
BWW20	49.0	61.4	51.0	50.4	55.2	55.5	59.4	93.0	77.3	62.4	38.0	52.7	71.4	72.9
BWW21	52.2	53.1	46.1	47.9	62.0	60.3	69.3	95.3	95.8	70.9	42.2	48.3	64.6	72.2
		•												
Tributar	ies													
BWW05	71.1	82.7	69.3	72.4	72.7	56.4					36.4	65.6	58.4	73.9
BWW09	72.1	61.2	74.5	43.9	68.3	43.2	60.9	68.9	72.0	55.9	55.4	45.4	64.3	77.3
BWW10	44.3	71.7	54.9	48.0	57.9	34.3					47.4	50.2	69.0	83.9
BWW14	53.8	57.1	51.2	59.2	50.2	36.8	66.0	81.5	75.4	81.3	40.7	22.9	63.3	62.6
BWW15	63.4	60.9	57.1	44.0	58.3	35.1					47.9	50.0	73.3	77.3
BWW16	71.0	63.8	64.2	68.6	70.2	81.5	67.9	83.9	90.9	71.4	49.3	62.4	77.2	66.2

Table A15-11-2 Average of all Stations for each Storm for Wet Loads as Percent of Total Load

Storm	Cd	Cr	Cu	Ni	Pb	Zn	EC
Storm 1	51.9	48.0	41.9	35.1	53.4	45.5	86.8
Storm 2	65.9	68.8	65.1	49.3	73.4	63.6	90.5
Storm 3	66.3	78.5	76.8	62.1	81.5	77.6	93.2
Average	61.4	65.1	61.3	48.8	69.4	62.2	90.2
Storm	BOD ₅	NH3-N	NO3-N	PO ₄ -P	TSS	VSS	FC
Storm 1	48.3	75.1	37.2	41.9	56.5	68.7	76.6
Storm 2	78.2	69.5	49.0	64.6	81.7	68.8	85.9
Storm 3	73.7	77.4	53.1	54.7	82.5	86.4	92.7
Average	66.7	74.0	46.4	53.7	73.5	74.6	85.1

Table A15-11-3 Wet Load Comparison Between the Two Major Point Sources and the Other Sources along the River

Storm	Cd		Cr		Cu		Pb	
	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources
1	32.7	67.3	55.8	44.2	53.9	46.2	13.2	86.8
2	15.0	85.0	15.1	84.9	16.2	83.8	4.38	95.6
3	20.9	79.1	9.53	90.5	28.0	72.0	4.38	95.6

Storm	Ni		Zn		TSS		FC	
	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources
1	69.6	30.4	48.3	51.7	23.3	76.7	2.72	97.3
2	28.9	71.1	15.0	85.0	28.4	71.6	68.2	31.8
3	35.6	64.5	14.3	85.7	7.42	92.6	0.26	99.7

Storm	NH3-	N	NO ₃ -	N	PO ₄ -	P	BOD)5
	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources
1	58.6	41.4	41.3	58.7	72.3	27.7	36.2	63.8
2	68.0	32.0	1.89	98.1	77.2	22.8	26.2	73.9
3	31.1	68.9	54.5	45.5	39.3	60.7	39.6	60.4

Two Major Point Sources = UBWPAD + Woonsocket WWTF; Other Sources = Tributaries + Small Point Sources + Nonpoint Sources (for instance, runoff, resuspension and groundwater).

Table A15-11-4 Total Load Comparison Between the Two Major Point Sources and the Other Sources along the River

Storm	Cd		Cr		Cu		Pb	
	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources
1	18.8	81.2	40.2	59.8	35.7	64.3	6.11	93.9
2	15.3	84.7	12.8	87.2	11.6	88.4	4.87	95.1
3	15.3	84.7	6.29	93.7	18.8	81.2	1.97	98.0

Storm	Ni		Zn		TSS		FC	
	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources
1	41.7	58.3	24.9	75.1	16.9	83.1	1.85	98.2
2	29.7	70.4	13.9	86.1	19.2	80.8	66.2	33.8
3	30.3	69.8	8.66	91.3	2.42	97.6	0.07	99.9

Storm	NH ₃ -	N	NO ₃ -	N	PO ₄ -	P	BOD	5
	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources
1	49.2	50.8	27.2	72.8	81.1	18.9	39.4	60.6
2	82.6	17.4	1.57	98.4	59.4	40.6	35.8	64.2
3	20.1	80.0	31.5	68.5	35.9	64.1	25.9	74.1

Two Major Point Sources = UBWPAD + Woonsocket WWTF; Other Sources = Tributaries + Small Point Sources + Nonpoint Sources (for instance, runoff, resuspension and groundwater).

Table A15-11-5 A Comparison Between Wet and Total Load for the Two Major Point Sources and the Other Sources along the River in Percent

	Cd		Cr		Cu		Pb	
Survey Load	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources
Wet	22.9	77.1	26.8	73.2	32.7	67.3	7.33	92.7
Total	16.5	83.5	19.8	80.2	22.1	78.0	4.32	95.7

	Ni		Zn		TSS		FC	
Survey Load	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources
Wet	44.7	55.3	25.9	74.1	19.7	80.3	23.7	76.3
Total	33.9	66.1	15.8	84.2	12.8	87.2	22.7	77.3

	NH3-N		NO ₃ -N		PO ₄ -P		BOD ₅	
Survey Load	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources	Two Major Point Sources	Other Sources
Wet	52.6	47.4	32.6	67.5	62.9	37.1	34.0	66.0
Total	50.6	49.4	20.1	79.9	58.8	41.2	33.7	66.3

Two Major Point Sources = UBWPAD + Woonsocket WWTF; Other Sources = Tributaries + Small Point Sources + Nonpoint Sources (for instance, runoff, resuspension and groundwater).

Section A15-12

Metals in Sediments

- Copper in Blackstone River sediments
- Lead in Blackstone River sediments
- Total Copper in sediment pore water and C. dubia and Fathead Minnow Mortality
- Total Lead in sediment pore water and C. dubia and Fathead Minnow Mortality

Figure A15-12-1 Copper in Blackstone River Sediments

Figure A15-12-2 Lead in Blackstone River Sediments

091 Total Copper in Sediment Pore Water and C. dubia and Fathead Minnow Mortality 0†I Hardness (mg/L) Cu (µg/L) 260 µg/L

Total Copper in Sediment Pore Water and C. dubia and Fathead Minnow Mortality Figure A15-12-3

Lexington Slater's Mill Gilboa Pond Grey's Pond Lexington 25 115 001 $210\,\mu g/L$ and Fathead Minnow Mortality 17 9 🎹 C. dubia % Mortality Fathead % Mortality WQC - A (µg/L) WQC-C (µg/L) Hardness (mg/L) Manville 01 Station Tupperware 0 Rice City Sutton St Singing Dam Fisherville 140 120 100 8 2 8 64 Pb (µg/L) Hardness (mg/L) Mortality (%)

Total Lead in Sediment Pore Water and C. dubia

Total Lead in Sediment Pore Water and C. dubia and Fathead Minnow Mortality Figure A15-12-4

Blackstone River Initiative:

Water Quality Analysis of the Blackstone River Under Wet and Dry Weather Conditions

May 2001

by

Raymond M. Wright¹ Ph.D., P.E., Peter M. Nolan², David Pincumbe³, Elaine Hartman⁴, and Oran J. Viator¹

¹ Civil and Environmental Engineering, University of Rhode Island, Kingston, RI; ² Office of Environmental Measurement and Evaluation, EPA New England Regional Laboratory, Lexington, MA; ³ Office of Ecosystem Protection, EPA Region I, Boston, MA; ⁴ Massachusetts Department of Environmental Protection, Worcester, MA

Executive Summary

Rivers have long been important to the growth of a region. In the northeast United States early in the 19th century, industry quickly grew relying on the rivers for storage, diversion and hydro power. However, the downside to the industrial growth was the system of impoundments, which were created by the construction of dams. These effectively eliminated movement of fish along the river and provided ideal locations for settlement of contaminants, thereby establishing a series of layered landfills behind the dams. With the loss of most of this industry, there is a real concern about the dams and impoundments that have been left behind, and their current and potential impact on water quality.

Although in the last 20 years there have been major successes with regards to the reduction of municipal and industrial wastewater loadings into our rivers, present conditions still create a challenging system for restoration, with many of the major influences associated with rainfall including direct stormwater runoff, combined sewerage overflows, failed septic systems, hydraulically inadequate wastewater treatment facilities, and resuspension and movement of contaminated river sediments. It was the goal of this study to address these issues and specifically answer the following questions:

- 1. What is the water quality of a river for dry weather, steady state conditions?
- 2. Where and how does wet weather impact the water quality of a river?
- 3. What are the major sources of wet and dry weather pollution in a watershed?
- 4. What is the relative importance between point and nonpoint sources of pollution in a watershed, for both dry and wet weather conditions?
- 5. How do the water quality issues differ between wet and dry weather?
- 6. How can the information generated in this study be used to forecast annual pollutant loading rates?

In order to accomplish the goals of this study the United States Environmental Protection Agency (EPA) established the Blackstone River Initiative (BRI) as a multi-phased, interagency, interstate project to conduct the sampling, assessment, and modeling work necessary for restoration of the river system.

The objectives of the study were as follows:

- Describe the steady state, dry weather water quality conditions in a watershed, including the river, major tributaries, and major wastewater discharges;
- Measure sediment oxygen demand;
- Determine the toxicity of ambient water, sediments, and wastewater discharges;
- Calibrate and validate a dissolved oxygen and trace metal model for the river;
- Utilize the models and the field data to estimate the relative contribution of dry weather point and nonpoint pollutant sources;
- Utilize the models to predict annual dry weather loadings of selected constituents to Narragansett Bay;
- Describe the wet weather water quality conditions in a watershed to include the river, major tributaries, and major wastewater discharges;
- Identify and rank the major wet weather pollutant "hot spots" in the watershed;
- Determine the toxicity of ambient water under wet weather conditions and compare the results with criteria based toxicity;
- Determine the relative importance between wet weather nonpoint and point source pollutant loadings;
- Determine the wet weather loading rate of pollutants, especially nitrogen, to Narragansett Bay; and
- Forecast annual wet weather loading rates.

The report includes: (1) a general description of a watershed wide wet and dry weather water quality study that will serve as a guideline for similar studies; (2) a detailed evaluation of the Blackstone Rivers watershed hydrology and river hydraulics; (3) the dry weather data interpretation; (4) dissolved oxygen and trace metal models including their calibration and validation; (5) the wet weather data interpretation involving the evaluation of nonpoint and point pollutant flows, system pollutant rankings and the development of annual loading rates; and (6) the special extension to the BRI involving the detailed study of Rice City Pond. This report also includes an appendix that is contained on a computer readable CD that includes; all data from the dry and wet weather surveys and input and output files, the executable code, and a users manual for the dissolved oxygen and trace metal models.

For the dry weather surveys there were 15 stations along the Blackstone River and 6 on major tributaries. Dry weather stations are coded with the prefix BLK and wet weather stations

are coded with the prefix BWW.

In addition to the river stations, two point source dischargers were sampled during the dry weather surveys: the Upper Blackstone Water Pollution Abatement District (UBWPAD) and Woonsocket Wastewater Treatment Facility (WWTF). For the wet weather study five point source discharges were sampled. These included, from upstream to downstream, three direct discharges to the Blackstone River including the CSO facility in Worcester, UBWPAD, and Woonsocket WWTF, and two direct discharges to the Seekonk River below the mouth of the Blackstone River including Bucklin Point Narragansett Bay Commission Facility (BP NBC) and the BP NBC by-pass.

The dry weather program consisted of three 48 hour surveys in 1991 on July 10-11, August 14-15, and October 2-3. Analyses included five-day biochemical oxygen demand (CBOD), total suspended solids (TSS), volatile suspended solids (VSS), chloride, dissolved ammonia-nitrogen (NH₃-N), dissolved nitrate-nitrogen (NO₃-N), dissolved orthophosphorous (PO₄-P), total and dissolved metals (cadmium, chromium, copper, lead, and nickel), hardness (calcium and magnesium), fecal coliform, chlorophyll a, and toxicity. Field measurements included dissolved oxygen, temperature, pH, and conductivity.

Effluent analyses were conducted on 24-hour composite samples collected daily for five days prior to the water quality surveys. Wastewater samples were handled and analyzed for the same parameters as the river samples.

Effluent samples were also collected from the two largest dischargers as well as from 10 other dischargers in the Blackstone River Basin as part of the toxicity testing at these facilities. The two additional facilities tested in RI were Okonite Industries and GTE. In MA, the eight additional facilities tested were: Uxbridge WWTF, Northbridge WWTF, Millbury WWTF, Guilford Industries in Douglas, Douglas WWTF, Grafton WWTF, New England Plating in Worcester, and Worcester Spinning and Finishing in Leicester. Samples were not collected concurrently with the river surveys conducted during this study. Instead, the facilities were sampled once each during the summer of 1991, either during June or August, except for the two largest facilities, which were sampled in both July and August. As part of this testing, the samples were analyzed by a separate laboratory under contract to the EPA for aluminum, cadmium, calcium, chromium, copper, lead, magnesium, nickel, zinc, ammonia, total solids, TSS, total organic carbon, and alkalinity.

The wet weather program consisted of three storms. A total of 16 samples were taken at each station for each storm. Field measurements included temperature, pH, conductivity and DO. Laboratory chemical analysis included TSS, VSS, CBOD, chloride, sodium, dissolved NH₃-N, dissolved NO₃-N, dissolved PO₄-P, total trace metals (cadmium, chromium, copper, lead, nickel and zinc), hardness (calcium and magnesium), fecal coliform and *E. coli*. Toxicity testing was performed on samples representing first flush and peak flow for each station and discharge. Samples at the five point source dischargers were collected at the same frequency as the river samples and analyzed for the same set of constituents given above.

Results of the Dry Weather Surveys

The interpretation of the ambient chemistry included a system ranking, where the major point sources, tributaries and headwater loads were separated from individual reach gains. An accounting of the two major point versus the other sources of pollutants was made by constituent by survey. The following observations may be made from the data.

The loadings from the headwaters, as defined by BLK01, are small relative to other sources along the Blackstone River with the exception of chromium and fecal coliform.

The flow in the river at the point of the UBWPAD discharge was very low, offering little dilution. Therefore, the characteristics of the effluent often determined the characteristics of the river at this point. The ratio of the UBWPAD flow to stream flow was 3:1 during the July/August low flow surveys and about 1:1 in October. The UBWPAD is the single largest dry weather source of nitrate, phosphorus, cadmium, nickel and copper to the Blackstone River. Based on a comparison of mass loadings between the UBWPAD and BLK01, the UBWPAD clearly dominates the Blackstone River at its point of discharge, especially with regards to all three nutrients and three of the trace metals (cadmium, nickel, and copper).

High dilution at the point of Woonsocket's discharge makes it difficult to determine the relative importance of this discharge based solely on concentration profiles. The ratio of the Woonsocket WWTF flow to stream flow was 1:16 during the July/August surveys and 1:50 in October. It is clear that the Woonsocket WWTF is the single largest dry weather source of ammonia to the Blackstone River.

Chlorinated wastewater and instream residual chlorine from the UBWPAD has reduced bacteria levels in the river at the next downstream station (BLK02) to near zero. There were also elevated counts in the headwaters and at several locations along the mainstem.

The summer profile includes large daily swings in DO that are evident in the impoundments. A comparison of the 1991 data for the UBWPAD with data from 1973 (before secondary treatment) and 1980 (before nitrification) shows a substantial reduction in instream CBOD and ammonia at the facility with a resulting improvement in DO in the reaches below its discharge. Even with large daily swings of oxygen, few exceedences for DO outside of water quality standards were evident in either the mainstem or the tributaries. Nitrification is evident below the Woonsocket WWTF with a sharp decrease in ammonia, a comparable increase in nitrate, and a loss of oxygen.

Three distinct profiles emerge from the evaluation of the five trace metals. The dominant source is either (a) UBWPAD, (b) resuspending sediments; or (c) a combination of both. The majority of the Blackstone River impoundments act as settling basins for solids and metals from point and nonpoint sources at low flows. These impoundments then become significant sources of these constituents with resuspension of deposited material during higher flows. It is not clear, based on the dry weather data, what phenomena is causing the rapid dissolved metal losses for

several of the trace metals including cadmium, copper and nickel in the reaches below UBWPAD.

Violations of acute and chronic criteria in water column samples for cadmium, copper and lead could be seen throughout the mainstem Blackstone River and along several tributaries. During the low flow study, although the water quality criteria were exceeded for a number of metals, only one toxic endpoint occurred along the mainstem. These results have prompted site specific criteria studies for the Blackstone River in Massachusetts. It has also underscored the importance of toxicity testing to be performed in conjunction with metals testing for determination of water quality impacts and issuance of permits to municipalities and industry. With regards to sediment toxicity testing, toxicity was only evidenced by the *Hyallela azteca* in the Rice City Pond sample. *Chironomus tentans* survived fairly well in this sediment (64 and 82% survival in July and August). In July, when metal concentrations were measured, survival of *Hyallela* and *Chironomus* were 70 and 72% in the Fisherville Dam sediment sample. Higher mortality of one or both species occurred in the samples from Singing Dam, Manville Dam, and Slater's Mill, and Gilboa and Grey's Pond, the background samples.

The study included the monitoring of the two largest point sources in the watershed, defined as the "major point sources" in the analyses. All other sources, including the small point discharges, tributaries, and reach nonpoint sources, were included in the term "other sources". The Woonsocket WWTF was the major source of ammonia and the UBWPAD was the major source of phosphorus. The single largest source of nitrate to the river was the UBWPAD in both low and high flow conditions. The major sources of TSS, chromium and lead to the river were from other sources, regardless of the flow condition. Under low flow, the stretch of river that was most significant included Fisherville Pond and Rice City Pond (BLK06-08). This reflected the resuspension of sediments within the impoundments. For high flow, the highest loading came from the reaches just below Rice City Pond (BLK08-13). In part, this reflected the resuspension and transport of sediments from Rice City Pond. The major sources for cadmium and copper for the low flow surveys were from the point sources (primarily UBWPAD). For high flow, the nonpoint sources contributed more mass, with the highest loading from Rice City Pond and the reach immediately below it (BLK07-11). The major sources of nickel for the low flow surveys were from the point sources (primarily UBWPAD). For high flow, the nonpoint sources contributed more mass, with the highest loading in the last reach in the river (BLK20-21).

QUAL2E has been used to model dissolved oxygen in the Blackstone River from Worcester, MA to its discharge into the Seekonk River in Pawtucket, RI. The major tributaries and point sources have been included in the model. The model has been used to address daily variations of dissolved oxygen. The major sources and sinks contributing to the DO balances have been accounted for in the model including CBOD and Nitrogenous BOD (NBOD) consumption, Sediment Oxygen Demand (SOD); reaeration; and algal productivity and respiration. The following conclusions were determined from this analysis:

The model has been calibrated using the data collected in July and October 1991. The

model was also successfully validated using the data collected in August 1991 and two independent data sets: one collected in Massachusetts in 1980 and one in Rhode Island in 1987.

High levels of primary productivity in the Blackstone River result in impaired water quality associated with significant daily swings of dissolved oxygen. The river reaches most dramatically impaired are just above and below the MA/RI state line. High primary productivity is a result of phosphorus additions from the municipal wastewater facilities on the river. The major sources of phosphorus are from the UBWPAD and Woonsocket WWTF. The impoundments along the river reduce velocities and increase the time of travel in the river reaches directly behind the dams. These conditions compound the problems presented by high levels of phosphorus by providing the appropriate hydraulic conditions for the growth of algae.

The river reaches with the highest nitrification rates are directly below the Woonsocket WWTF. Instream nitrification governs the oxygen profiles in these reaches and causes a DO sag below Woonsocket's discharge that often extends to the mouth of the river in Pawtucket, RI.

The 19 impoundments along the river are sediment traps. The sediments behind these impoundments may be the single largest sink of oxygen in that reach. This is especially true in the upstream reaches where productivity and instream nitrification are relatively small compared with the lower reaches.

Based on a comparison of data from the early 1980s and this study and the model application, it was clear that the advanced wastewater treatment implemented in the mid-1980s at UBWPAD made a significant improvement to the DO concentration in the river. The improvements are directly associated with a reduction in the facility's discharge of CBOD and ammonia.

A one-dimensional, steady state model, called Pawtoxic, has been used to describe the fate and transport of trace metals in the Blackstone River. The major tributaries and point sources have been included in the model. The model has the option to simulate a maximum of three conservative elements, total suspended solids, and five nonconservative elements. The model adopts a simple approach to describe the fate and transport of metals in a river. The model is based on two simplified equations involving net sediment transport and metal partitioning.

Empirical relationships between average stream velocities and net sediment transport coefficients were developed for most river reaches. Where relationships are significant, these equations provide the modeler with the ability to establish the net sediment transport coefficient at other stream velocities, and therefore, at other flows such as the waste load allocation flow.

Empirical relationships between metal partition coefficients and suspended solids were expanded from equations from the literature to include the TSS range from 0-10 mg/L. The equations provide the modeler with the ability to establish new partition coefficients as suspended solids concentrations change in the river.

The model has been calibrated to the flows observed in the three dry weather surveys of 1991. The model was validated with flow measurements from 6 independent measurements conducted by USGS and the successful simulation of a conservative constituent.

The model was calibrated for suspended solids using the data collected in July and October 1991. The model was also successfully validated using the data from August 1991 and other independent surveys from 1980, 1985, 1988, 1991 and 1992. The model adequately describes TSS concentrations over the range of environmental conditions encountered (0-10 mg/L TSS). This is not to say that the model simulates the natural system on a micro scale. Rather, the model's description of the external attributes of the environment agrees well with the description obtained by making field measurements of the natural system.

Rapid decreases in dissolved metal concentrations for Cd, Cu, and Ni occurred in the reaches below the UBWPAD through BLK06 in July and August. Model calibration for these metals required adjustments to the net sediment transport and metal partitioning coefficients in these reaches.

Two hypotheses were discussed to explain this rapid loss. Both focused on the uniqueness of the high effluent-to-river ratios for flow and trace metal mass loadings in the low flow surveys of 1991. Data suggests phenomena other than settling may be occurring in these reaches. Lead had the highest variability of any metal in the reaches between BLK06 and BLK11, especially in Rice City Pond. The highest Pb concentrations observed in these reaches could not be simulated with the steady state model. The model successfully simulated the trace metal profiles for Cd, Cr, Cu and Ni below BLK06 to the end of the river and for Pb from BLK11 to the end of the river in the low flow surveys. The model successfully simulated all metals for the October high flow survey.

Results of the Wet Weather Surveys

During the course of the wet weather data interpretation, one fact became very clear. The location of Worcester in the headwaters of the Blackstone River had a strong influence on the river's water quantity and quality during and after a storm. The magnitude and extent of the impact were directly associated with the rainfall characteristics and the pre-storm flows.

Three storm events were monitored. Storm 1 (September 22-24, 1992) was a short, relatively light, well distributed rainfall. Storm 2 (November 2-5, 1992) was a long, moderate, well-distributed rainfall. Storm 3 (October 12-14, 1993) was a short, intense rainfall with several localized thunderstorms. Storm 3 was not well distributed and had the heaviest rainfalls in the northern part of the watershed.

Storm 1 - The runoff from Worcester resulted in a hydrograph that ranged from a base flow of 15 cubic feet per second (cfs) to 185 cfs. This hydrograph was eventually attenuated in Fisherville Pond. In general, all flows returned to pre-storm conditions within a 40-hour period.

The peak flow at BWW21 was 302 cfs.

Storm 2 - The flows from the headwaters, including the UBWPAD, were highest between the 6-12 hour runs. This peak arrived at Rice City Pond at 20-24 hours and at the mouth of the river between 36 and 48 hours. The peak flow at BWW21 was 890 cfs.

Storm 3 - The flows from the headwaters reflect the intense thunderstorms that resulted in over an inch of rainfall in less than 5 hours. The headwater flows reached BWW08 between 16-20 hours and BWW21 at 28-36 hours. The peak flow at BWW21 was 646 cfs.

UBWPAD's ability to provide nitrification is inhibited under high storm flows. The facility discharges significant levels of ammonia during these conditions. UBWPAD exceeded their permit conditions in two out of three storms. These violations coincided with the maximum runoff and river flows. Compared to the other metals, lead's (Pb) major source appears to be in the headwaters (above BWW00). In fact, the headwater EMCs are typically the highest concentration along the entire river. A consistent increase of lead does appear between BWW07 and BWW08 in Rice City Pond and is probably due to sediment resuspension. The other 5 metals (Cd, Cr, Cu, Ni and Zn) have similar EMC profiles in that there appears to be two distinct peaks. The first occurs in the reaches below UBWPAD and is associated with the wastewater facilities discharge and possibly other nonpoint sources of metals. A secondary peak consistently occurs around BWW08; again the probable cause is sediment resuspension within Rice City Pond. The fecal coliform concentrations and loads at the headwaters are the highest in the entire watershed. The maximum concentrations coincide with peak runoff flows. In relatively moderate flows, the residual chlorine from UBWPAD provides instream disinfection and prevents the passage of the headwater concentrations. This is not the case at high peak flows, where dilution in the facility and in the river reduces the chlorine residual, and instream disinfection does not occur.

Higher storm flows resulted in lower hardness concentrations. Lower hardness values resulted in stricter acute and chronic criteria. At the same time, higher flows typically caused higher metal concentrations. The result was a short-term violation of acute criteria. High flows moving through Rice City Pond cause violations in the reaches at and below the dam due to resuspension. Cu is continually violated both with respect to chronic and acute criteria in dry and wet weather, starting at station BWW02. Pb chronic violations occur for both dry and wet weather. Cd violations are more limited, but also begin in and around BWW02. Ni and Cr had no acute or chronic violations for either dry or wet weather. More stations had violations under wet weather than dry weather, and the number of violations increased with larger storms.

Toxicity was observed in 35 out of 118 occasions during wet weather testing. Toxicity in the first flush of the storm accounted for 14 toxic endpoints. The remaining 21 toxic end-points occurred in the samples collected during the peak of the storm. Toxicity occurred at the same stations for the most part during first flush and peak of the storm. Six stations had recurrent toxicity in the peak storm conditions, thus the larger number of toxic endpoints observed during peak rain. Only two stations were toxic for first flush and non-toxic during peak. Forty percent

of all toxic endpoints occurred in the first two miles of the river in the Greater Worcester area. Toxicity occurred in all of the dechlorinated WWTF effluents at least once and in the combined sewer outfalls. The effluent of the Woonsocket WWTF was toxic during all three wet weather events (three times during peak flow and once during first flush). The effluent of the Narragansett Bay Commission Bucklin Point WWTF was also toxic during all three storm events. All peak samples were toxic, and two of three first flush samples were toxic. This may indicate bypassing during rain events. The chlorine concentrations in the effluents were extremely high, and if left in the test solutions, would have caused acute toxicity. River stations BWW01, 02, 05, and 11 on the Blackstone River and 09 on the Mumford River (a tributary receiving municipal and industrial wastewater) experienced significant toxicity on more than one occasion. By comparison to wet weather toxicity, testing conducted during low flow conditions (near the 7Q10) indicate that there is no significant toxicity in the water column of the Blackstone River. Only one toxic endpoint occurred in the mainstem during dry weather testing. Compared with other tributaries, the Mumford River had the most toxic endpoints; Two were observed in dry weather and two during wet weather. Little difference was observed between toxicity occurring in first flush and peak storm samples. Toxicity was much more prevalent during wet weather conditions. Acute toxicity, the more significant measure of toxicity, was the predominant endpoint during wet weather toxicity testing.

The area under the mass loading curve defined the total pollutant load at a station. The wet load was separated from the dry load (base load) for each constituent at each station for each storm. The relative importance of the wet load was defined as a percentage of wet to total load. All constituents had more than 50% of the total load as wet load, except for Ni and dissolved NO₃-N. The trend of higher wet load as the storm intensity increases is true for all constituents, except dissolved NH₃-N. The headwaters had the highest percent wet load for most of the constituents. The percent of wet load at each station generally decreases as one moves downstream.

Similar to the dry weather analysis, the point sources were defined as the two "major point sources" and the "other sources" included the small point sources, tributaries, runoff and reach contributions. The result is the ability to compare the relative importance of the two major point sources and the other sources in the watershed. The system ranking includes a comparison by individual reach.

It is obvious, based on the analysis of the concentration data, that wet weather loadings may dominate the river for days after the event, depending on the size of the storm and the constituent. Specifically, wet weather can result in violations in effluents (ammonia/UBWPAD) and in river reaches (fecal coliform criteria and acute and chronic criteria for trace metals). In all cases, violations under wet weather were greater in magnitude, frequency and location.

Often times, more than one factor magnified the impact of wet weather. For instance, during the height of the storm, instream hardness decreases due to dilution, thereby lowering the acute criteria concentrations. The more stringent criteria typically coincided with maximum instream concentrations due to peak flows. The results were instream violations.

In general, the major nonpoint sources of wet weather pollutants appear to be runoff related (new materials) although for several reaches sediment resuspension (old materials) was significant. The headwaters did prove to be significant for several constituents. Pollutants associated with wet weather may come from either new sources (runoff induced) or old sources (river sediments). The water quality data coupled with stream flows allowed for the calculation of mass loading curves. Each mass loading curve was integrated to obtain the total load for each station for each storm. The total mass was divided by the time of the event to obtain the total loading for that constituent for each station. Baseline loading rates were estimated for each pollutograph from the initial (pre-storm) sample and the final (post-storm) samples. These rates were multiplied by the time of the event to obtain the total dry load for that station. The wet load per station per constituent was determined by subtracting the dry load from the total load. The data indicate clearly that with only minor exceptions, more wet load entered the river during these periods than dry load.

Based on the loading estimates, an estimate of pollutant gain or loss by reach was made. Net pollutant changes in a reach help to identify locations of major pollutant sources. A comparison of point and nonpoint pollutant sources was made. The results of this evaluation also provided insight into the relative importance of each reach through a system ranking. A system ranking was made using the net gains for each reach and loads from the point sources, headwaters and tributaries. The result was a determination of reach hot spots.

The information collected during the wet weather sampling program provided insights into the behavior of the sources during varying storm conditions. A relationship was developed between rainfall and wet loadings using the data collected during the three storms and previous wet weather data available for the state line (BWW13) and end of river (BWW21). These equations were used to estimate the annual wet loading rates for the Blackstone River.

Similarly, dry weather predictions were estimated based on empirical relationships developed for flow and concentration. The dry weather data was first used to calibrate and validate models to describe trace metal and dissolved oxygen fate and transport. The dry weather models were used to estimate baseline mass loadings under steady state flows. The relationships developed were then used to estimate the annual dry weather contributions at MA/RI state line (BWW13) and end of the river (BWW21).

Annual loading rates to the Providence River were developed for several constituents. Of the five major tributaries to the Providence River, the Blackstone River is the major source of most pollutants.