

Mr. Jeffrey Crawford Rhode Island Department of Environmental Management Office of Waste Management 235 Promenade Street Providence, RI 02908-5767 ARCADIS U.S., Inc. 300 Metro Center Boulevard Suite 250 Warwick Rhode Island 02886 Tel 401.738.3887 Fax 401.732.1686

www.arcadis-us.com

SER-1

Subject:

June 2011 Quarterly Monitoring Report for Springfield Street School Complex

Dear Mr. Crawford:

ARCADIS Inc. (ARCADIS) conducted quarterly monitoring of soil gas, indoor air, the cap, and the sub-slab ventilation system between June 13, 2011 and June 17, 2011. The monitoring was performed in accordance with the *Long-Term Operation and Maintenance Plan and Site Contingency Plan* (O&M Plan) contained in the *Remedial Action Work Plan* prepared by ATC dated April 2, 1999, revised May 3, 1999 and May 9, 1999. The *Remedial Action Work Plan* (RAWP) was approved by the Rhode Island Department of Environmental Management (RIDEM) in a letter dated June 4, 1999.

This work is subject to the Limitations contained in Attachment A. Results of monitoring are provided in the following sections and in the attachments.

COVER MONITORING

ARCADIS conducted a visual survey of the site on June 16, 2011 for evidence of significant soil cover erosion, or for any areas where the orange snow fencing indicator barrier was visible. ARCADIS did not observe any areas where the orange indicator barrier was visible during this monitoring event. Some holes, apparently due to erosion from stormwater runoff and settling, were observed along the middle school building foundation in the courtyard adjacent to the cafeteria and along the back wall near the electrical transformer. These holes have been repaired by the School Department's contractor.

Date:

July 29, 2011

Contact:

Donna H. Pallister, PE

Phone:

401-738-3887

Email

Donna.pallister@arcadisus.com

Our ref:

WK012152.0007

SUB-SLAB VENTILATION SYSTEM

The sub-slab ventilation system was inspected by ARCADIS during the quarterly monitoring on June 16, 2011. The two elementary school blowers and the two middle school blowers were operating normally upon arrival.

Samples of influent and effluent (before and after the carbon canisters) air were collected at each blower and screened for methane, carbon dioxide, oxygen, carbon monoxide, hydrogen sulfide, and organic vapors using a Landtec GEM2000 plus and a MiniRae 2000. Results of screening are provided on Table 1. Methane, carbon monoxide, hydrogen sulfide and organic vapors were not detected in any of the samples. Carbon dioxide was detected at a concentration of 0.0 to 0.3% at each location; four of the sample concentrations were greater than the RAWP Action Level of 1000 ppm (0.1%).

INDOOR AIR MONITORING

Indoor air monitoring was conducted on June 16, 2011 using a QRAE plus multi-gas meter (methane, hydrogen sulfide, oxygen), a Mini Rae photoionization detector (organic vapors), and a Fluke 975 Airmeter (carbon dioxide, carbon monoxide). School was in session during the monitoring event. Results of monitoring are provided in the Table 2. Carbon dioxide measurements were made with a Fluke 975 Airmeter indoor air quality meter. The Fluke 975 has a range of 0 to 5,000 ppm, with a resolution of 1 ppm.

The outside temperature on June 16, 2011 was 86 °F. Carbon dioxide was measured outside in the school parking lot at 585 ppm.

All readings were below the RAWP Action Levels. Methane, carbon monoxide, hydrogen sulfide, and organic vapors were not detected, and carbon dioxide was within the expected range for an occupied building.

Concentrations of carbon dioxide inside occupied buildings are expected to be higher than the concentrations in outdoor air because the building occupants expel carbon dioxide. Therefore, in indoor air, the concentration of carbon dioxide is typically used as an indicator of the effectiveness of the heating, ventilating, and air conditioning (HVAC) system in circulating outdoor air into the building. The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) have prepared ASHRAE Standard 62.1-2007 titled *Ventilation for Acceptable Indoor Air Quality*.

The purpose of the Standard is to specify minimum ventilation rates and other measures to provide indoor air quality that is acceptable to human occupants and that minimize adverse health effects. A discussion regarding carbon dioxide concentrations in indoor air contained in Informative Appendix C of the Standard states: "... maintaining a steady-state CO₂ concentration in a space of no greater than about 700 ppm above outdoor air levels will indicate that a substantial majority of visitors entering a space will be satisfied with respect to human bioeffluents (body odor)." This is the basis for ASHRAE's recommendations for concentrations of carbon dioxide in indoor air. The average concentrations measured inside the site buildings were less than 700 ppm above the ambient outdoor concentrations.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) for carbon dioxide in the workplace is 5,000 ppm. All readings were below this concentration.

The control panels for the methane monitors at both schools were inspected on June June 16, 2011. The methane monitor control panels had stickers that indicated that the monitors were calibrated by Diamond Technical Services within the month prior to the inspection. Diamond Technical Services calibrates the sensors on a monthly basis.

On June 16, 2011, we observed that four sensors at the elementary school and two at the middle school were not working or the control panel had been removed. Diamond Calibration reported that they were in the process of replacing these units in the control panel, and the units were replaced later in the week.

Calibration Certificates from Diamond Calibration indicate that many of the sensors read above 0 when calibrated to the zero gas. This prevents the sensors from giving a fault alarm if the reading drops below zero due to a sudden temperature change, and still provides a conservative measure of protection because the alarm limit does not change.

GROUNDWATER MONITORING

Three new groundwater monitoring wells, MW-6, MW-7 and MW-8 were installed on April 25, 2011 by ARCADIS and New England GeoTech to replace monitoring wells ATC-2, ATC-3 and ATC-5 which were damaged and no longer usable. The three new wells were installed to a depth of 20 to 22 feet below ground surface. Copies of well logs for the three new wells are provided in Appendix B.

The new and existing groundwater monitoring wells were sampled by ARCADIS on June 16, 2011.

Prior to sampling, the depth to water was gauged, and a volume of water equivalent to approximately three well volumes was removed from the well. Groundwater samples were collected in laboratory prepared sample jars and delivered under chain-of-custody protocol to Contest Laboratory in East Longmeadow, Massachusetts for analysis for volatile organic compounds by EPA method 8260. The laboratory report is provided as Attachment C. Results of analysis of groundwater samples are summarized in Table 3.

Analysis of groundwater from the monitoring wells did not detect any target analytes in any of the groundwater samples.

SOIL GAS MONITORING

Soil gas monitoring was conducted at 27 locations on June 14, 2011. The sampling was conducted by placing an air sampling gripper cap on each well and attaching a piece of tubing. A volume of air equivalent to approximately 3 well volumes was removed from each well using a Sensidyne BDXII air sampling pump. Soil gas was then screened using a Landtec GEM 2000 Plus Landfill Gas Analyzer and a MiniRae Photoionization Detector (PID).

Air samples were also collected in Tedlar bags from wells WB-2 and MPL-6. The Tedlar bags were submitted to Con-test Analytical Laboratory for analysis for VOC via EPA method TO-14.

Soil Gas Field Monitoring Results

Soil gas samples were screened for methane, carbon monoxide, hydrogen sulfide, carbon dioxide, oxygen, and total VOCs. Soil gas survey results are provided in Table 4. Methane, carbon monoxide, hydrogen sulfide and organic vapors were not detected in any samples.

Carbon dioxide was detected in soil gas at concentrations ranging from 0.0% to 10.5% during the June monitoring event. The carbon dioxide Remedial Action Work Plan Action Level is 0.1% and 21 readings exceeded the action level. The maximum concentration detected during the February round was 6.5%, and the maximum concentration of carbon dioxide detected during June was 10.5%. This is consistent

with the pattern shown during previous rounds of declining carbon dioxide concentrations in the winter, and increasing concentrations in the summer. Graphs presenting carbon dioxide, oxygen, and methane concentrations over time for selected representative wells are presented in Attachment D.

The presence of carbon dioxide in soil gas is an indicator of subsurface bacterial activity and does not represent a threat to users of the property. The highest concentration of carbon dioxide was found in well MPL-7, located on the northern end of the property near Hartford Avenue. The monitoring locations on the northern end of the property adjacent to large expanses of paved parking lot, sidewalk, and streets have typically had the highest carbon dioxide concentrations.

Soil Gas Laboratory Results

Soil gas samples were collected from soil gas wells MPL-6 and WB-2 in Tedlar bags and submitted to Con-Test Analytical Laboratories for analysis by method TO-14. Results of the analysis are summarized in Table 5, and the laboratory report is provided in Attachment C. The results of analysis were generally consistent with the concentrations and compounds which have been detected in previous monitoring events.

The Occupational Safety and Health Administration (OSHA) Permissible Exposure Limits (PELs) are provided in Table 5 for comparison purposes even though they are not applicable to soil gas, because it does not represent exposure point concentrations. The PELs are the average concentrations that OSHA allows to be present in a workplace without any respiratory protection or exposure controls. The concentrations detected in soil gas were well below the OSHA PELs.

CONCLUSIONS

Methane, hydrogen sulfide, carbon monoxide and organic vapor concentrations did not exceed RAWP action levels in any soil gas or indoor air samples. Carbon dioxide concentrations exceeded the action level at soil gas locations and subslab system monitoring points. The detection of carbon dioxide in soil gas is typical of what has been detected during previous monitoring events and appears to be a result of naturally occurring bacterial activity in the subsurface.

If you have any questions or require any additional information, please contact the undersigned at 401-738-3887, extension 25.

Sincerely, ARCADIS U.S., Inc.

Donna H. Pallister, PE, LSP Senior Environmental Engineer

Copies:

C. Jones, Providence SchoolsA. Sepe, City of ProvidenceProvidence Public Building Authority

ARCADIS

Tables

Table 1 System Monitoring Notes Springfield Street School Complex Providence, Rhode Island June 16, 2011

Monitoring Location	Methane % by volume Landtec	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
Elementary School inlet 1	0.0	0.3	19.5	0	0	0.0
Elementary School inlet 2	0.0	0.2	19.6	0	0	0.0
Elementary School Outlet	0.0	0.3	19.9	0	0	0.0
Middle School front shed inlet	0.0	0.0	20.4	0	0	0.0
Middle School front shed after 2 nd carbon	0.0	0.0	20.3	0	0	0.0
Middle School back shed inlet	0.0	0.1	20.2	0	0	0.0
Middle School back shed after 2 nd carbon	0.0	0.2	20.2	0	0	0.0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Measurements made with: Land tec GEM2000, MiniRAE 2000, Q-RAE multigas meter

Sampling date: June 16, 2011

Measured by: D. Pallister

Table 2 Indoor Air Monitoring Results Springfield Street School Complex Providence, Rhode Island June 16, 2011

Monitoring Location	Methane as % LEL	Carbon Dioxide PPM	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
E.S. Front office	0	484	20.9	0/1	0	0.0
E.S. Elevator	0	444	20.9	0	0	0.0
E.S. Faculty Work Room	0	452	20.9	0	0	0.0
E.S. Gym	0	729	20.9	0	0	0.0
E.S. Stairway B	0	475	20.9	0	0	0.0
E.S. Room 105	0	530	20.9	0	0	0.0
E.S. Library	0	582	20.9	0	0	0.0
E.S. Room 111 Music/Art Room	0	564	20.9	0	0	0.0
E.S. Cafeteria	0	781	20.9	0	0	0.0
E.S. Mechanical Room	0	451	20.9	0	0	0.0
Stairway C	0	581	20.9	0	0	0.0

Table 2 Indoor Air Monitoring Notes Springfield Street School Complex June 16, 2011

Monitoring Location	Methane as % LEL	Carbon Dioxide PPM	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
M.S. Front Office	0	703	20.9	0	0	0.0
M.S. Gym	0	641	20.9	0	0	0.0
M.S. Stairway near Hartford Ave. GS-07	0	637	20.9	0	0	0.0
M.S. Near sensor #16 in hall outside cafeteria	0	743	20.9	0	0	0.0
M.S. Faculty Work Room	0	649	20.9	0	0	0.0
M.S. Music/Art Room	0	731	20.9	0	0	0.0
M.S. GS-03 Across from Boys Bathroom	0	660	20.9	0	0	0.0
M.S. Second Floor - Library	0	682	20.9	0	0	0.0
M.S. Cafeteria	0	791	20.9	0	0	0.0

Table 2 Indoor Air Monitoring Notes Springfield Street School Complex June 16, 2011

Monitoring Location	Methane as % LEL	Carbon Dioxide PPM	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
M.S. Front Hall near sensor #4	0	638	20.9	0	0	0.0
M.S. Hallway across from elevator near sensor #9	0	711	20.9	0	0	0.0
M.S. Near sensor GS 06 hallway right end	0	672	20.9	0	0	0.0
M.S. stairway near Elem. sensor GS-1	0	740	20.9	0	0	0.0
Remedial Action Work Plan Action Levels	0.5	1,000 ppm (0.1%)	NA	9 ppm	10 ppm	5 ppm

Notes:

E.S. indicates Elementary School, M.S. indicates Middle School

Measurements made with: MiniRAE 2000, Q-RAE Multigas Meter, Fluke 975 Airmeter

PPM = Parts per million

Outdoor conditions: carbon monoxide = 0 ppm, carbon dioxide = 585 ppm, temperature = 86.9 °F.

Table 3 Summary of Ground Water Sampling Results Springfield Street School Complex Springfield Street Providence, Rhode Island

												01	' Datas a	ad Danish	· · · · · · · · · · · · · · · · · · ·											_	1				1			_	_		_			DIDEM OD
												Sampi	ling Dates an	na Results	in μg/L		10/27&28/																-		-	_	-	_	-	RIDEM GB Groundwater
Well	Detected Compounds	2/28/2001	7/20/2001	*9- 12/200	8/1/2002	8/28/2002	12/19/2002	3/18/2003	7/17/2003	11/5/2003	1/22/2004	5/21/2004	8/17/2004	12/2/2004	4/6/2005	7/27/2005			4/27/2006	8/31/2006	11/15/2006	3/27/2007	5/21/2007	8/20/2007	11/13/2007	7 2/12/2008	5/21/2008	8/26/2008	11/18/2008	2/17/2009	5/7/2009	8/25/2009	11/18/2009	9 3/1/2010	5/20/2010	8/25/2010	11/19/201	0 2/24/2011	6/16/2011	Objective
ATC-1																																	1					1		
	Benzene	6.1	ND	18.9	0.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	140
	n-butylbenzene	1.7	ND	2.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
	sec-Butylbenzene	1.1	ND	4.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
	tert-Butylbenzene Ethylbenzene	ND 4.5	ND ND	ND 12.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1.2 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA 1600
	Isopropylbenzene	ND	ND	1.8	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	NA
	n-Propylbenzene	ND	ND	5.0	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	NA NA
	MTBE	12.4	7.0	28.6	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5000
	Trichloroethylene	ND	ND	ND	ND	ND	ND	ND	1.27	ND	ND	ND	ND	ND	1.10	ND	ND	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	540
	Toluene	2.5	ND	8.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1700
1	1,2,4-Trimethylbenzene	2.2	ND	8.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA NA
	1,3,5-Trimethylbenzene Xvlenes	3.4 14.6	ND ND	5.2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA
	1.1.2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND		ND ND	ND	ND	ND	ND	ND	ND ND	ND	1.2	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND ND		ND	ND ND	ND ND	ND	NA NA
	1,1,2 Themorecularic	IND	IND	IND	IND	ND	IND	IND	ND	IND	IND	IND	THE P	IND	ND	IND	IND	1.2	ND	IND	ND	IND	IID	IND	IND	IND	IND	ND	IND	NO	IND	NO	110	IND	110	THE STATE OF THE S	110	110	IND	10/
ATC-2													$\overline{}$																				1			1		1		1
	Chloroform	0.9	ND	ND	1.0	ND	ND	ND	ND	ND	NS	1.1	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	Closed	NA
																																				<u> </u>			4/2011	<u> </u>
MW-6	100.11												1																				4			 		+	ND	NA
Installed 4 ATC-3	/2011								1				++					-									-						+		+	+	+	+	+	+
ATC-3	Toluene	ND	ND	ND	ND	NS	ND	ND	ND	ND	3.03	ND	ND	ND	ND	ND	ND	3.0	ND	4.5	13.1	ND	2.3	1.3	ND	ND	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	Closed	1700
	Tolderic	140	140	110	110	110	I II	140	140	140	0.00	I I I	"	140	ND	110	140	0.0	ND	4.0	10.1	140	2.0	1.0	140	IND	110	140	140	110	140	110	110	140	140	110	140	140	4/2011	1700
MW-7																																					1	1	ND	NA
Installed 4	/2011																																							
ATC-4													<u> </u>																											
	Benzene	ND		2.5	0.6	ND.	ND	ND		ND	ND	ND	0.5	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		NS	140
-	Chlorobenzene 1.4-dichlorobenzene	2.6 4.2	ND ND	57.3 9.2	2.7 3.4	5.18 3.36	ND ND	ND ND		ND ND	ND ND	ND 0.80	ND 1.6	0.60 2.1	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.2	ND 1.1	ND ND	ND 1,2	1.80 2.1	1.90 2.1	ND ND	ND ND	1.2 2.1	ND 1.4	ND ND	ND 1.7	1.5	ND ND	ND ND		ND ND	ND 1.5		NS NS	70 NA
	MTRF	ND	ND	ND	ND	ND	ND	ND	1.19	9.55	1.06	2.90	0.6	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	NS	NS	5000
	1,2,4-Trimethylbenzene	ND	ND	1.7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NA.
	tert-Amyl Methyl Ether																																							
	(TAME)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.5	ND	NS	NS	NA
170 5			-	-			-	<u> </u>	-	-	1		+									ļ				+	-						 	+	+			+		+
ATC-5	MTRE	ND	ND	2.2	NS	ND	ND	ND	ND	NS	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NS	NS	NS	Closed	5000
-	Chloroform	ND ND		ND	ND ND	ND ND	ND ND	ND ND		NS NS	ND ND	ND ND	0.6	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		NS NS	NS NS		4/2011	5000 NA
	Oniolololli	IND	IND	IND	IND	IND	IND	IND	IND	INO	IND	IND	0.0	ND	IND	IND	IND	IND	ND	IND	שויו	IND	NU	IND	IND	IND	IND	שוו	IND	IND	IND	IND	T IND	IND	IND	140	140	110	4/2011	INO
MW-8																																						1	ND	NA
Sampled I	Bv:	ATC	ATC	ATC	ATC	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	LFR	ARCADIS	3 ARCADIS	ARCADIS	ARCADIS	S ARCADIS	ARCADIS	t
Jampiou	- /-	75	75	75	70				1																									, c, .bic				1		

*ATC Monitoring Report for September through December 2001 did not list date samples were collected. ND is not detected above method detection limit NS is not sampled NA= No applicable standard published MTBE is Methyl tert-Butyl Ether µg/L = micrograms per liter

Table 4
Soil Gas Survey Field Notes
Springfield Street School Complex
Providence, Rhode Island
June 14, 2011

Monitoring Well	Methane % by volume	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
WB-1	00.0	2.1	18.0	0	0	0.0
WB-2	00.0	0.3	20.6	0	0	0.0
WB-3	00.00	0.0	20.4	0	0	0.0
WB-4	00.00	0.0	20.9	0	0	0.0
WB-5			DEST	ROYED		
WB-6	00.00	0.0	20.9	0	0	0.0
WB-7			DEST	ROYED		
WB-8	00.00	0.0	20.9	0	0	0.0
WB-12	00.00	0.8	20.0	0	0	0.0
WB-13	00.00	0.1	20.5	0	0	0.0
WB-14	00.00	0.0	20.7	0	0	0.0
WB-15	00.0	1.0	19.4	0	0	0.0
EPL-1	00.00	0.5	20.1	0	0	0.0
EPL-2	00.0	0.8	19.4	0	0	0.0
EPL-3	00.00	2.4	17.3	0	0	0.0
EPL-4	00.00	2.3	17.9	0	0	0.0
EPL-5	00.00	0.8	19.6	0	0	0.0
ENE-1	00.0	0.2	20.5	0	0	0.0
			1	1	1	

Table 4
Soil Gas Survey Field Notes
Springfield Street School Complex
Providence, Rhode Island
June 14, 2011

Monitoring Well	Methane % by volume	Carbon Dioxide % by volume	Oxygen % by volume	Carbon Monoxide PPM	Hydrogen Sulfide PPM	Organic Vapors PPM
MG1	00.0	0.5	19.6	0	0	0.0
MG2	00.0	0.6	19.3	0	0	0.0
MG3	00.0	0.4	20.5	0	0	0.0
MG4	00.0	0.2	20.4	0	0	0.0
MG5	00.0	0.3	20.5	0	0	0.0
MPL2	00.0	2.1	16.8	0	0	0.0
MPL3	00.0	3.6	14.0	0	0	0.0
MPL5	00.0	3.7	14.9	0	0	0.0
MPL6	00.0	4.3	15.8	0	0	0.0
MPL7	00.0	10.5	6.3	0	0	0.0
MPL8	00.0	2.9	16.1	0	0	0.0
Remedial Action Work Plan Action Levels	0.5%	1,000 PPM	NA	9 PPM	10 PPM	5 PPM

Sampled by:

Sampling Equipment: Landtec GEM 2000+, MiniRae 2000 PID

Parameter	OSHA PELs (PPBv)																Resu	ılts of Analys	is in parts p	er billion by	volume (PPI	Bv)														
	(PPBV)									М	PL-6																	WB-	-2							
Date Collected:		2/20/2007	5/17/2007	8/22/2007	11/14/2007	2/12/2008	5/21/2008	8/26/2008	11/26/2008	2/10/2009		8/25/2009	11/19/2009	3/1/2010	5/21/2010	8/25/2010	11/19/2010	2/24/2011	6/14/2011	2/20/2007	5/17/2007	8/22/2007	11/14/2007	2/12/2008	5/21/2008	8/26/2008	11/26/2008		5/12/2009	8/25/2009	11/18/2009	3/1/2010	5/21/2010	8/25/2010	11/19/2010	2/24/2011 6/14/2
Benzene	1,000	ND	0.36	0.74	ND	ND	0.51	1.0	0.3	0.31	0.31	2.40	0.29	0.18	0.52	0.37	0.25	ND	0.38	ND	0.29	ND	ND	ND	0.21	0.46	0.23	0.24	ND	2.1	0.39	0.16	0.22	0.30	0.18	ND 0.4
Carbon Tetrachloride	10.000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.093	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	ND	0.062	ND	ND	ND	ND NE
Chlorobenzene	75,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.058	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.053	ND	0.073	ND	ND	ND	ND NE
Chloroethane	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE
Chloroform	50.000	ND	3.2	0.48	ND	ND	0.25	ND	0.10	ND	ND	0.15	0.12	0.12	0.13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.06	ND	ND	0.22	0.38	0.07	0.12	ND	0.15	ND NE
Chloromethane	100,000	ND	0.24	0.36	ND	ND	0.28	0.88	0.36	0.39	0.16	0.77	0.13	0.26	0.22	0.31	0.12	ND	0.50	ND	0.11	ND	ND	ND	0.2	0.56	0.23	0.54	ND	0.28	0.2	0.22	0.23	0.35	0.11	ND 0.3
Dichlorodifluoromethane (Freon 12)	1,000,000	ND	ND	0.28	ND	ND	0.53	0.78	0.31	0.44	0.44	0.43	0.28	0.61	0.48	0.45	0.34	0.51 B	0.68	ND	0.5	0.57	0.66	0.57	0.49	0.66	0.4	0.51	0.55	0.57	0.44	0.66	0.49	0.60	0.44	0.51 B 0.4
1,3-Dichlorobenzene	None	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.30	1.70	ND	0.14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.31	0.74	ND	0.20	ND	ND	ND NE
1.4-Dichlorobenzene	75,000	ND	ND	0.54	ND	ND	ND	0.65	ND	0.13	ND	0.27	0.44	0.051	0.27	0.13	ND	0.23	ND	ND	0.16	0.37	ND	ND	ND	ND	ND	0.15	ND	0.3	0.25	0.056	0.12	ND	ND	0.23 NE
1,1-Dichoroethane	100,000	ND	ND	0.28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE
1,1-Dichloroethylene	None	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE
Cis-1,2-Dichloroethylene	200,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE
1,2-Dichloro-1,1,2,2-tetrafluoroethane	1,000,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.36	ND	ND	ND	ND	ND	ND NE
(Freon 114)																																			.	
Ethylbenzene	100,000	ND	0.75	0.7	2.3	0.65	1.3	3.9	0.4	0.36	3.8	5.6	1.1	0.14	0.44	0.14	0.22	1.80	3.10	ND	0.55	0.46	3.2	0.78	0.41	1.3	0.33	0.42	2.0	4.6	0.6	0.16	0.37	0.10	0.23	1.8 2.5
Methylene Chloride	100,000	ND	ND	0.84	3.5	2	2.6	3.8	2.9	1.7	2.2	1.9	1.5	1.7	3.2	2.7	1.4	1.7	2.6	ND	0.53	0.5	4.9	2.5	3.4	3.0	2.3	1.1	2.0	1.8	1.8	1.9	3.2	5.1	1.5	1.7 2.5
Styrene	100,000	ND	1.6	1.5	1.4	ND	1.1	3.0	0.3	0.36	2.8	3.2	1.0	0.26	10	1.7	0.3	0.51	0.76	ND	1	1.1	0.69	ND	0.5	1.5	0.1	0.47	1.3	3.1	0.51	0.33	3.6	1.1	0.37	0.51 0.8
Tetrachloroethylene	100,000	ND	0.19	0.27	4.6	1.9	0.99	4.1	0.6	0.33	0.65	4.0	0.76	0.19	0.21	0.47	0.25	0.34	6.00	ND	0.16	0.81	3.2	2.7	0.64	1.6	0.8	0.32	16	3.2	0.43	0.13	0.37	0.44	0.18	0.34 4.7
Toluene	200,000	4.9	17	7.2	15	6.9	7.7	64	4	4.1	30	21	5	0.84	32	1.2	0.83	2.40	7.30	4.6	12	5.3	10	9.3	3	30	1.8	2.3	12	21	2.6	1.4	8.8	1.1	0.75	2.4 6.1
1,1,1-Trichloroethane	350,000	ND	ND	0.36	ND	ND	ND	0.27	ND	ND	ND	ND	ND	ND	0.19	0.24	ND	ND	ND	ND	ND	38	ND	1.3	ND	ND	ND	ND	ND	ND	0.052	ND	ND	0.14	ND	ND 0.3
Trichloroethylene	100,000	ND	ND	0.25	0.53	1	4.1	3.6	1.7	ND	0.26	0.098	0.91	0.067	0.24	3.0	0.63	ND	0.78	ND	ND	4.6	ND	ND	3	2.8	0.97	0.32	ND	0.095	0.26	ND	0.37	0.70	0.15	ND 0.5
Trichlorofluoromethane (Freon 11)	1,000,000	ND	ND	0.7	0.65	ND	0.27	1.3	0.5	0.28	0.72	0.96	0.60	0.44	6.0	0.82	0.44	0.31	0.94	ND	0.41	0.43	ND	ND	0.26	0.54	0.3	0.41	2.8	2	0.51	0.47	1.2	1.1	0.28	0.31 0.9
1,1,2-Trichloro-1,2,2,-Trifluoroethane	1,000,000	ND	ND	0.27	ND	ND	ND	ND	0.06	ND	ND	0.06	0.083	0.069	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07	ND	ND	0.06	0.11	0.076	ND	ND	ND	ND NE
(Freon 113)																																			,	
1,3,5-Trimethylbenzene	None	ND	0.12	ND	ND	ND	0.28	3.7	0.1	ND	8.1	0.5	0.31	0.057	ND	ND	ND	1.0	1.4	ND	ND	ND	0.57	ND	ND	0.67	0.2	0.13	1.4	0.41	0.18	0.071	ND	ND	ND	1.0 1.3
1,2,4-Trimethylbenzene	None	ND	ND	0.44	1.6	1.3	1.3	9.1	0.3	0.24	15	1.6	1.3	0.23	0.72	0.13	0.39	3.10	3.20	ND	1	0.26	1.7	1.1	0.66	1.6	0.66	0.52	3.2	1.2	0.9	0.28	0.62	0.10	0.38	3.1 3.3
Vinyl chloride	1,000	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.087	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND NE
M/p-Xylene	100,000	1.4	3.1	2.4	5.3	2.2	3.7	11	1	0.95	11	15	3	0.41	1.2	0.42	0.59	5.10	8.40	1.2	2.5	1.8	10	2.6	1.3	3.7	0.94	1.4	6.1	13	1.5	0.52	0.93	0.32	0.59	5.1 7.0
o-Xylene	100,000	ND	0.61	0.68	1.8	0.69	1.6	5.0	0.4	0.32	8.0	4.3	1.2	0.15	0.34	0.12	0.23	2.30	3.90	ND	0.56	0.48	3.5	0.8	0.64	1.5	0.43	0.45	2.3	3.3	0.6	0.18	0.26	ND	0.24	2.3 3.4

Notes: ND = Not detected Only detected compounds are listed, see laboratory report for complete list on analytes. B = compound also detected in blank

ARCADIS

Appendix A
Limitations & Service Constraints

LIMITATIONS AND SERVICE CONSTRAINTS

GENERAL REPORTS/DOCUMENT

The opinions and recommendations presented in this report are based upon the scope of services, information obtained through the performance of the services, and the schedule as agreed upon by ARCADIS and the party for whom this report was originally prepared. This report is an instrument of professional service and was prepared in accordance with the generally accepted standards and level of skill and care under similar conditions and circumstances established by the environmental consulting industry. No representation, warranty, or guarantee, express or implied, is intended or given. To the extent that ARCADIS relied upon any information prepared by other parties not under contract to ARCADIS, ARCADIS makes no representation as to the accuracy or completeness of such information. This report is expressly for the sole and exclusive use of the party for whom this report was originally prepared for a particular purpose. Only the party for whom this report was originally prepared and/or other specifically named parties have the right to make use of and rely upon this report. Reuse of this report or any portion thereof for other than its intended purpose, or if modified, or if used by third parties, shall be at the user's sole risk.

Results of any investigations or testing and any findings presented in this report apply solely to conditions existing at the time when ARCADIS's investigative work was performed. It must be recognized that any such investigative or testing activities are inherently limited and do not represent a conclusive or complete characterization. Conditions in other parts of the project site may vary from those at the locations where data were collected. ARCADIS's ability to interpret investigation results is related to the availability of the data and the extent of the investigation activities. As such, 100% confidence in environmental investigation conclusions cannot reasonably be achieved.

ARCADIS, therefore, does not provide any guarantees, certifications, or warranties regarding any conclusions regarding environmental contamination of any such property. Furthermore, nothing contained in this document shall relieve any other party of its responsibility to abide by contract documents and applicable laws, codes, regulations, or standards.

ARCADIS

Appendix B
Well Logs

6	ADC	ADIS				BORING LOG		
					Site: Sprinafi	ield Street Schools	Boring No.	MW-6
Intrastruc	cture, env	vironment, b	buildings		Provide		20,	
300 Met							Page:	
	k, RI, 02		face (401)	732-1686			File No	WK012152.0000
priorie (8-3887 : 4/25/11		/32-1000	Boring Equip	ment Description: Truck mounted Geoprobe		
Repo		: Chris Ja			_ Boiling Equip.	Tient Description. Truck mounted Geoprose		
Bor	ring Co:	: NE Geo	otech			npler Description: Macrocore		
		Hayes			Field Te	esting Equipment: None		
Depth	Others:		Sample	Information		Sample Description		
(ft)	\vdash		Pen./	Blows/	Field Test	Sample Description	F	Equipment Installed
\···,	No.	Depth	Rec.	6"	Data	Color, Texture, Density		
			16/60"			0-8" brown, f to med SAND & Silt		Annular
	<u> </u>			<u></u>		8-16" tan, f to med SAND some Silt (debris)	'	Seal
	 	+	 	 	+	-		Bentonite Seal
5'		+			_	1		
			50/60"			0-6" dark brown, f to med SAND & Silt (debris)		
		<u> </u>				6-40" orange/ brown, f to med SAND & Silt		
	<u> </u>	+		-		40-50" tan, f to med SAND some Silt		
10'	<u> </u>	+	\vdash		+	1		
'		+	50/60"		+	0-50" tan/ gray, med to coarse SAND some Silt		
								: <u> </u>
	<u> </u>	!				water at 13.5'		Filter Sand
15'	<u> </u>			-		-		
10	\vdash	+	\vdash		+	+		
<u> </u>		+ +				-		
]		
201	<u> </u>					15 to the second of the second		Sediment
20'		+	\vdash	 		Drive casing to 20'		Trap
		+				1		
	Ī	† <u> </u>			<u> </u>	1		
]		
25'	<u> </u>	 	$\overline{\qquad}$	 		<u> </u>		
	 	+	\vdash		-	-		
		+			+	1		
]		
30'	<u> </u>	Ţ!	$\overline{\square}$					
	<u> </u>		\vdash	 		4		
	<u> </u>	+	\vdash		-	-		
		+ +			+	1		
						<u> </u>		
		tion Data	a:		121	Notes:		
Screen Screen	Length	1:			10'	Water at 17.5' Well set at 20'		
Screen Riser L					0.1 13'	Finished with standpipe.		
Filter P	ack Ler				11'	Debris material included brick, paper, an	nd plastic	
Filter P	ack Sea	al materi	ial and le	ngth:	1' bent		•	
			and lengtl	h:	s to s	1		
	Depth of of well	Boring:			20' 20'			
		Roadbox	x:		guard	1		
	F-F				9	1		

9	ARC	ADIS				BORING LOG		
		ironment, L			Site: Springfi Provide	eld Street Schools	Boring No.	MW-7
300 Me	tro Cente	er Blvd			Flovide	nice, Ki	Page:	1 of 1
	k, RI, 028						File No	
phone (fax (401)	732-1686	Davina Faccino	mont Description. Truck may inted Coopeda		
Reno		4/25/11 Chris Ja			_ Boring Equipr	ment Description: Truck mounted Geoprobe		
Boi	ring Co:	NE Geo	otech		_ San	npler Description: Macrocore		
	oreman:				Field Te	esting Equipment: None		
	Others:		Comple	Information		Sample Description	1	
Depth (ft)	-	,	Pen./	Information Blows/	Field Test	Sample Description		Equipment Installed
(1.5)	No.	Depth	Rec.	6"		Color, Texture, Density		Equipment metanea
			48-60"			0-6" tan/ brown, f to med SAND & Silt		Annular
	<u> </u>					6-14" tan f to med SAND & Silt		Seal
		 			 	14-20" gray/ tan, f to med SAND some Silt 20-24" light brown, f to med SAND & Silt (debris)		Bentonite Seal
5'		-			<u> </u>	24-48" dark brown, f to med SAND & Silt (debris)		
Ĭ		 	24/60"			0-24" brown/ gray, f to med SAND & Silt (debris)		
		<u> </u>						
10'		-				Water at 10'		
10			30/60"			0-6" brown, f to med SAND & Silt		
			00,00			6-30" brown, Silt & vf to f Sand		Filter Sand
4.51						-		
15'		 						
		-				1		
						1		
								Sediment
20'						drive casing to 20'		Trap
					+	-		
					+			
25'								
		<u> </u>						
		-						
						1		
30'								
						-		
		-				1		
						1		
		tion Data	à:		,	Notes:	•	
	Length	:			10'	Water at 10'		
Screen Riser L					0.1 13'	Well set at 20' Finished with standpipe.		
	ack Ler	nath:			11'	Debris material included brick, paper, and	d plastic	
			al and ler	ngth:	1' bent	L Communication in control of the co	a p.aoo	
Annula	ar seal m	naterial a	and length	n:	s to s			
	Depth of				20'			
	of well	set at: Roadbox	٧٠		20' guard			
Juaiu	hihe (i	caubu)	` .		guaru			

		ADIS			Site: Springfi	BORING LOG eld Street Schools	Boring No.	MW-8
Infrastru	icture, env	rironment, l	buildings		Provide		Doning No.	10100-0
	tro Cente						Page:	1 of 1
	k, RI, 02 (401) 73		fax (401)	732-1686			File No	WK012152.0000
priorio		4/25/11		102 1000	Boring Equipr	ment Description: Truck mounted Geoprobe		
	orted by:	Chris Ja	amison		-	<u> </u>		
Во	ring Co:	NE Geo	otech			npler Description: Macrocore		
F-(oreman: Others:				_ Field Le	esting Equipment: None		
Depth			Sample	Information		Sample Description		
(ft)			Pen./	Blows/	Field Test		E	quipment Installed
	No.	Depth	Rec.	6"	Data	Color, Texture, Density 0-12" brown, f to med Sand & Silt		TI IIIA mandar
			48/60"		+	12-40" tan, f to med SAND some Silt		Annular Seal
						40-48" brown, f to med SAND & Silt (debris)		Bentonite
								Seal
5'	-		24/60"			0-16" brown, f to med SAND & Silt (debris)		
			24/00			16-24" tan, f to med SAND some Silt		
4.01						_		
10'			48/60"			0-12" tan, f to med SAND some Silt		
			40/00			12-20" black, f to med SAND & Silt		
						20-48" tan, f to med SAND some Silt		Filter Sand
451								
15'			50/60"		 	0-10" orange/ tan, f to med SAND some Silt	-	
			00/00			10-50" gray/ tan, f to med SAND some Silt		
						Water at 17.5'		
20'								
20					-			Sediment
						Drive casing to 22'		Trap
25'								
25								
30'								
30								
						-		
Well C	onstruc	tion Data	a:			Notes:		
	n Length	n:			10'	Water at 17.5'		
Screer	n Slot: _ength:				0.1 15'	Well set at 22' Finished with standpipe.		
	-engin: Pack Lei	nath:			15 12'	Debris material included brick, paper, and	d plastic	
Filter F	ack Se	al materi	ial and ler		1' bent	Dozno material morados znon, papor, and	- p.a.oo	
			and length	า:	s to s			
	Depth of n of well				22' 22'			
		Roadbox	x:		guard			
					9			

ARCADIS

Appendix C
Laboratory Results

June 22, 2011

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Springfield St. School

Client Job Number:

Project Number: WK012152.007.0000 Laboratory Work Order Number: 11F0565

Holy L. Tolson

Enclosed are results of analyses for samples received by the laboratory on June 15, 2011. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Holly L. Folsom Project Manager

Arcadis US, Inc. - Warwick, RI REPORT DATE: 6/22/2011

300 Metro Center Blvd., Suite 250 Warwick, RI 02886

ATTN: Donna Pallister

PURCHASE ORDER NUMBER: 5131

PROJECT NUMBER: WK012152.007.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 11F0565

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Springfield St. School

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
WB-2	11F0565-01	Air		EPA TO-14A	
MPL-6	11F0565-02	Air		EPA TO-14A	

CASE NARRATIVE SUMMARY

ΑI	I reported	i results ar	e within	defined	laboratory	quality	control	objectives	unless	listed	below	or othe	erwise	qualified	in this r	eport.

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Michael A. Erickson Laboratory Director Culu

ANALYTICAL RESULTS

Project Location: Springfield St. School

Date Received: 6/15/2011 Field Sample #: WB-2 Sample ID: 11F0565-01

Sample Matrix: Air Sampled: 6/15/2011 17:00 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 11F0565 Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type:

Flow Controller Calibration RPD Pre and Post-Sampling:

	ppbv		ug/m3]	Date/Time		
Analyte	Results	RL	Flag	Results	RL		Analyzed	Analyst
Benzene	0.38	0.10		1.2	0.32	2 6/	16/11 12:17	TPH
Bromomethane	ND	0.10		ND	0.39	2 6/	16/11 12:17	TPH
Carbon Tetrachloride	ND	0.10		ND	0.63	2 6/	16/11 12:17	TPH
Chlorobenzene	ND	0.10		ND	0.46	2 6/	16/11 12:17	TPH
Chloroethane	ND	0.10		ND	0.26	2 6/	16/11 12:17	TPH
Chloroform	ND	0.10		ND	0.49	2 6/	16/11 12:17	TPH
Chloromethane	0.50	0.10		1.0	0.21	2 6/	16/11 12:17	TPH
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2 6/	16/11 12:17	TPH
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2 6/	16/11 12:17	TPH
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2 6/	16/11 12:17	TPH
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2 6/	16/11 12:17	TPH
Dichlorodifluoromethane (Freon 12)	0.68	0.10		3.3	0.49	2 6/	16/11 12:17	TPH
1,1-Dichloroethane	ND	0.10		ND	0.40	2 6/	16/11 12:17	TPH
1,2-Dichloroethane	ND	0.10		ND	0.40	2 6/	16/11 12:17	TPH
1,1-Dichloroethylene	ND	0.10		ND	0.40	2 6/	16/11 12:17	TPH
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2 6/	16/11 12:17	TPH
1,2-Dichloropropane	ND	0.10		ND	0.46	2 6/	16/11 12:17	TPH
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2 6/	16/11 12:17	TPH
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2 6/	16/11 12:17	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2 6/	16/11 12:17	TPH
Ethylbenzene	3.1	0.10		14	0.43	2 6/	16/11 12:17	TPH
Hexachlorobutadiene	ND	0.10		ND	1.1	2 6/	16/11 12:17	TPH
Methylene Chloride	2.6	0.20		8.9	0.69	2 6/	16/11 12:17	TPH
Styrene	0.76	0.10		3.2	0.43	2 6/	16/11 12:17	TPH
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2 6/	16/11 12:17	TPH
Tetrachloroethylene	6.0	0.10		41	0.68	2 6/	16/11 12:17	TPH
Toluene	7.3	0.10		28	0.38	2 6/	16/11 12:17	TPH
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2 6/	16/11 12:17	TPH
1,1,1-Trichloroethane	ND	0.10		ND	0.55	2 6/	16/11 12:17	TPH
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2 6/	16/11 12:17	TPH
Trichloroethylene	0.78	0.10		4.2	0.54	2 6/	16/11 12:17	TPH
Trichlorofluoromethane (Freon 11)	0.94	0.10		5.3	0.56	2 6/	16/11 12:17	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2 6/	16/11 12:17	TPH
1,2,4-Trimethylbenzene	3.2	0.10		16	0.49	2 6/	16/11 12:17	TPH
1,3,5-Trimethylbenzene	1.4	0.10		6.8	0.49	2 6/	16/11 12:17	TPH
Vinyl Chloride	ND	0.10		ND	0.26		16/11 12:17	TPH
m&p-Xylene	8.4	0.20		36	0.87		16/11 12:17	TPH
o-Xylene	3.9	0.10		17	0.43		16/11 12:17	TPH
•								

ANALYTICAL RESULTS

Project Location: Springfield St. School

Date Received: 6/15/2011 Field Sample #: WB-2 Sample ID: 11F0565-01 Sample Matrix: Air Sampled: 6/15/2011 17:00 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 11F0565

Initial Vacuum(in Hg):
Final Vacuum(in Hg):
Receipt Vacuum(in Hg):
Flow Controller Type:
Flow Controller Calibration
RPD Pre and Post-Sampling:

EPA 10-14A								
		ppbv	ug/m3	Date/Time				
	Analyte	Results RL	Flag Results RL	Dilution Analyzed Analyst				
	Surrogates	% Recovery	% REC Limits					
	4-Bromofluorobenzene (1)	107	70-130	6/16/11 12:17				

ANALYTICAL RESULTS

Project Location: Springfield St. School

Date Received: 6/15/2011
Field Sample #: MPL-6
Sample ID: 11F0565-02

Sample Matrix: Air Sampled: 6/15/2011 14:30 Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 11F0565

Initial Vacuum(in Hg): Final Vacuum(in Hg): Receipt Vacuum(in Hg): Flow Controller Type: Flow Controller Calibration

RPD Pre and Post-Sampling:

	ppl	obv ug/m3		n3		Date/Time		
Analyte	Results	RL	Flag	Results	RL	Dilution	Analyzed	Analyst
Benzene	0.45	0.10		1.4	0.32	2	6/16/11 12:54	TPH
Bromomethane	ND	0.10		ND	0.39	2	6/16/11 12:54	TPH
Carbon Tetrachloride	ND	0.10		ND	0.63	2	6/16/11 12:54	TPH
Chlorobenzene	ND	0.10		ND	0.46	2	6/16/11 12:54	TPH
Chloroethane	ND	0.10		ND	0.26	2	6/16/11 12:54	TPH
Chloroform	ND	0.10		ND	0.49	2	6/16/11 12:54	TPH
Chloromethane	0.34	0.10		0.71	0.21	2	6/16/11 12:54	TPH
1,2-Dibromoethane (EDB)	ND	0.10		ND	0.77	2	6/16/11 12:54	TPH
1,2-Dichlorobenzene	ND	0.10		ND	0.60	2	6/16/11 12:54	TPH
1,3-Dichlorobenzene	ND	0.10		ND	0.60	2	6/16/11 12:54	TPH
1,4-Dichlorobenzene	ND	0.10		ND	0.60	2	6/16/11 12:54	TPH
Dichlorodifluoromethane (Freon 12)	0.48	0.10		2.4	0.49	2	6/16/11 12:54	TPH
1,1-Dichloroethane	ND	0.10		ND	0.40	2	6/16/11 12:54	TPH
1,2-Dichloroethane	ND	0.10		ND	0.40	2	6/16/11 12:54	TPH
1,1-Dichloroethylene	ND	0.10		ND	0.40	2	6/16/11 12:54	TPH
cis-1,2-Dichloroethylene	ND	0.10		ND	0.40	2	6/16/11 12:54	TPH
1,2-Dichloropropane	ND	0.10		ND	0.46	2	6/16/11 12:54	TPH
cis-1,3-Dichloropropene	ND	0.10		ND	0.45	2	6/16/11 12:54	TPH
trans-1,3-Dichloropropene	ND	0.10		ND	0.45	2	6/16/11 12:54	TPH
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.10		ND	0.70	2	6/16/11 12:54	TPH
Ethylbenzene	2.5	0.10		11	0.43	2	6/16/11 12:54	TPH
Hexachlorobutadiene	ND	0.10		ND	1.1	2	6/16/11 12:54	TPH
Methylene Chloride	2.5	0.20		8.5	0.69	2	6/16/11 12:54	TPH
Styrene	0.80	0.10		3.4	0.43	2	6/16/11 12:54	TPH
1,1,2,2-Tetrachloroethane	ND	0.10		ND	0.69	2	6/16/11 12:54	TPH
Tetrachloroethylene	4.7	0.10		32	0.68	2	6/16/11 12:54	TPH
Toluene	6.1	0.10		23	0.38	2	6/16/11 12:54	TPH
1,2,4-Trichlorobenzene	ND	0.10		ND	0.74	2	6/16/11 12:54	TPH
1,1,1-Trichloroethane	0.31	0.10		1.7	0.55	2	6/16/11 12:54	TPH
1,1,2-Trichloroethane	ND	0.10		ND	0.55	2	6/16/11 12:54	TPH
Trichloroethylene	0.59	0.10		3.2	0.54	2	6/16/11 12:54	TPH
Trichlorofluoromethane (Freon 11)	0.93	0.10		5.2	0.56	2	6/16/11 12:54	TPH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.10		ND	0.77	2	6/16/11 12:54	TPH
1,2,4-Trimethylbenzene	3.3	0.10		16	0.49	2	6/16/11 12:54	TPH
1,3,5-Trimethylbenzene	1.3	0.10		6.5	0.49	2	6/16/11 12:54	TPH
Vinyl Chloride	ND	0.10		ND	0.26	2	6/16/11 12:54	TPH
vinyi emoriae								
m&p-Xylene	7.0	0.20		30	0.87	2	6/16/11 12:54	TPH

ANALYTICAL RESULTS

Project Location: Springfield St. School

Date Received: 6/15/2011
Field Sample #: MPL-6
Sample ID: 11F0565-02
Sample Matrix: Air

Sampled: 6/15/2011 14:30

Sample Description/Location: Sub Description/Location:

Canister ID: Canister Size: Flow Controller ID: Sample Type: Work Order: 11F0565

Initial Vacuum(in Hg):
Final Vacuum(in Hg):
Receipt Vacuum(in Hg):
Flow Controller Type:
Flow Controller Calibration
RPD Pre and Post-Sampling:

EPA 10-14A								
	ppbv	ug/m3	Date/Time					
Analyte	Results RL	Flag Results RL	Dilution Analyzed Analyst					
Surrogates	% Recovery	% REC Limits						
4-Bromofluorobenzene (1)	106	70-130	6/16/11 12:54					

Sample Extraction Data

Prep Method: TO-15 Prep-EPA TO-14A Lab Number [Field ID]	Batch	Pressure Dilution	Pre Dilution	Pre-Dil Initial mL	Pre-Dil Final mL	Default Injection mL	Actual Injection mL	Date
11F0565-01 [WB-2]	B032275	1	1	N/A	1000	400	200	06/15/11
11F0565-02 [MPL-6]	B032275	1	1	N/A	1000	400	200	06/15/11

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppbv		ug/n	ug/m3		Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag

Batch B032275 - TO-15 Prep			
Blank (B032275-BLK1)			Prepared & Analyzed: 06/15/11
Benzene	ND	0.025	
Bromomethane	ND	0.025	
Carbon Tetrachloride	ND	0.025	
Chlorobenzene	ND	0.025	
Chloroethane	ND	0.025	
Chloroform	ND	0.025	
Chloromethane	ND	0.025	
1,2-Dibromoethane (EDB)	ND	0.025	
1,2-Dichlorobenzene	ND	0.025	
1,3-Dichlorobenzene	ND	0.025	
1,4-Dichlorobenzene	ND	0.025	
Dichlorodifluoromethane (Freon 12)	ND	0.025	
1,1-Dichloroethane	ND	0.025	
1,2-Dichloroethane	ND	0.025	
1,1-Dichloroethylene	ND	0.025	
cis-1,2-Dichloroethylene	ND	0.025	
1,2-Dichloropropane	ND	0.025	
cis-1,3-Dichloropropene	ND	0.025	
trans-1,3-Dichloropropene	ND	0.025	
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	ND	0.025	
Ethylbenzene	ND	0.025	
Hexachlorobutadiene	ND	0.025	
Methylene Chloride	ND	0.050	
Styrene	ND	0.025	
1,1,2,2-Tetrachloroethane	ND	0.025	
Tetrachloroethylene	ND	0.025	
Toluene	ND	0.025	
1,2,4-Trichlorobenzene	ND	0.025	
1,1,1-Trichloroethane	ND	0.025	
1,1,2-Trichloroethane	ND	0.025	
Trichloroethylene	ND	0.025	
Trichlorofluoromethane (Freon 11)	ND	0.025	
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.025	
1,2,4-Trimethylbenzene	ND	0.025	
1,3,5-Trimethylbenzene	ND	0.025	
Vinyl Chloride	ND	0.025	
m&p-Xylene	ND	0.050	
o-Xylene	ND	0.025	
Surrogate: 4-Bromofluorobenzene (1)	8.27		8.00 103 70-130

QUALITY CONTROL

Air Toxics by EPA Compendium Methods - Quality Control

	ppb	ov	ug/n	n3	Spike Level	Source		%REC		RPD	
Analyte	Results	RL	Results	RL	ppbv	Result	%REC	Limits	RPD	Limit	Flag

Batch B032275 - TO-15 Prep								
LCS (B032275-BS1)		Prepared & Analyzed: 06/15/11						
Benzene	4.64	5.00	92.9	70-130				
Bromomethane	5.53	5.00	111	70-130				
Carbon Tetrachloride	5.23	5.00	105	70-130				
Chlorobenzene	5.02	5.00	100	70-130				
Chloroethane	5.21	5.00	104	70-130				
Chloroform	5.53	5.00	111	70-130				
Chloromethane	4.94	5.00	98.8	70-130				
1,2-Dibromoethane (EDB)	5.10	5.00	102	70-130				
1,2-Dichlorobenzene	5.52	5.00	110	70-130				
1,3-Dichlorobenzene	5.52	5.00	110	70-130				
1,4-Dichlorobenzene	5.45	5.00	109	70-130				
Dichlorodifluoromethane (Freon 12)	5.88	5.00	118	70-130				
1,1-Dichloroethane	5.10	5.00	102	70-130				
1,2-Dichloroethane	5.44	5.00	109	70-130				
1,1-Dichloroethylene	5.15	5.00	103	70-130				
cis-1,2-Dichloroethylene	5.17	5.00	103	70-130				
,2-Dichloropropane	4.65	5.00	93.1	70-130				
eis-1,3-Dichloropropene	5.18	5.00	104	70-130				
rans-1,3-Dichloropropene	4.61	5.00	92.2	70-130				
1,2-Dichloro-1,1,2,2-tetrafluoroethane Freon 114)	5.35	5.00	107	70-130				
Ethylbenzene	4.84	5.00	96.8	70-130				
Hexachlorobutadiene	5.66	5.00	113	70-130				
Methylene Chloride	4.61	5.00	92.2	70-130				
Styrene	4.84	5.00	96.9	70-130				
,1,2,2-Tetrachloroethane	5.33	5.00	107	70-130				
Γetrachloroethylene	5.03	5.00	101	70-130				
Γoluene	4.76	5.00	95.1	70-130				
1,2,4-Trichlorobenzene	6.19	5.00	124	70-130				
1,1,1-Trichloroethane	5.19	5.00	104	70-130				
1,1,2-Trichloroethane	5.05	5.00	101	70-130				
Trichloroethylene	4.99	5.00	99.8	70-130				
Γrichlorofluoromethane (Freon 11)	5.66	5.00	113	70-130				
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	5.31	5.00	106	70-130				
1,2,4-Trimethylbenzene	5.13	5.00	103	70-130				
1,3,5-Trimethylbenzene	5.05	5.00	101	70-130				
Vinyl Chloride	5.23	5.00	105	70-130				
m&p-Xylene	10.2	10.0	102	70-130				
o-Xylene	5.00	5.00	100	70-130				
Surrogate: 4-Bromofluorobenzene (1)	8.51	8.00	106	70-130				

FLAG/QUALIFIER SUMMARY

- QC result is outside of established limits.
- † Wide recovery limits established for difficult compound.
- ‡ Wide RPD limits established for difficult compound.
- # Data exceeded client recommended or regulatory level

Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
EPA TO-14A in Air	
Benzene	AIHA,FL,NY
Bromomethane	AIHA,FL,NY
Carbon Tetrachloride	AIHA,FL,NY
Chlorobenzene	AIHA,FL,NY
Chloroethane	AIHA,FL,NY
Chloroform	AIHA,FL,NY
Chloromethane	AIHA,FL,NY
1,2-Dichlorobenzene	AIHA,FL,NY
1,3-Dichlorobenzene	AIHA,FL,NY
1,4-Dichlorobenzene	AIHA,FL,NY
Dichlorodifluoromethane (Freon 12)	AIHA,FL,NY
1,1-Dichloroethane	AIHA,FL,NY
1,2-Dichloroethane	AIHA,FL,NY
1,1-Dichloroethylene	AIHA,FL,NY
cis-1,2-Dichloroethylene	AIHA,FL,NY
1,2-Dichloropropane	AIHA,FL,NY
cis-1,3-Dichloropropene	AIHA,FL,NY
1,2-Dichloro-1,1,2,2-tetrafluoroethane (Freon 114)	AIHA,FL,NY
Ethylbenzene	AIHA,FL,NY
Hexachlorobutadiene	AIHA,FL,NY
Methylene Chloride	AIHA,FL,NY
Styrene	AIHA,FL,NY
1,1,2,2-Tetrachloroethane	AIHA,FL,NY
Tetrachloroethylene	AIHA,FL,NY
Toluene	AIHA,FL,NY
1,2,4-Trichlorobenzene	AIHA,FL,NY
1,1,1-Trichloroethane	AIHA,FL,NY
1,1,2-Trichloroethane	AIHA,FL,NY
Trichloroethylene	AIHA,FL,NY
Trichlorofluoromethane (Freon 11)	AIHA,FL,NY
1,2,4-Trimethylbenzene	AIHA,FL,NY
1,3,5-Trimethylbenzene	AIHA,FL,NY
Vinyl Chloride	AIHA,FL,NY
m&p-Xylene	AIHA,FL,NY
o-Xylene	AIHA,FL,NY

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	American Industrial Hygiene Association	100033	01/1/2012
MA	Massachusetts DEP	M-MA100	06/30/2011
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2011
NY	New York State Department of Health	10899 NELAP	04/1/2012
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2012
RI	Rhode Island Department of Health	LAO00112	12/30/2011
NC	North Carolina Div. of Water Quality	652	12/31/2011
NJ	New Jersey DEP	MA007 NELAP	06/30/2012
FL	Florida Department of Health	E871027 NELAP	06/30/2011
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2011
WA	State of Washington Department of Ecology	C2065	02/23/2012
ME	State of Maine	2011028	06/9/2013

ANALYTICAL LABORATORY	con-test*

Company Name: ARCADIS

Address:

300 METRO CENTER

RED

WARWICK RI

02886

Proposal Provided? (For Billing purposes)

State Form Required?

☐ yes

proposal date

□ yes

on D

Field ID Sample Description

Lab #

JB-7

MPI -6

Laboratory Comments;

Sampled By: (/HRTS JAMESON) Project Location: SPETNEFIELD Attention:

LONNA

PALL ISTER

4

Email: info@contestlabs.cc Fax: 413-525-6405 Phone: 413-525-2332

www.contestlabs.com

CHAIN OF CUSTODY RECORD

EAST	39 31
. LONG	os ornoce oi,
MEAD	OI, ZIVE
OW, M	בייים דריים
IA 010	Š
)28	

CHAIN OF CUSTODY RECORD	ODY REC	ORD	39 SPRUC	39 SPRUCE ST, 2ND FLOOR	FLOOR	Page_	្ម f 15
11F0565			EAST LOP	NGMEADOW	EAST LONGMEADOW, MA 01028		14 o
the .	I	2				#	# of contage
Telephone:(#//) 738 - 3887	37	1	<u> </u>	_		*	**Preserv D
Project # WILCHTZISZ 007, occo	Desco Desco	 				~	~Cont.Code
Client PO #			ANALYS	ANALYSIS REQUESTED	ESTED	214	-Cont. Code:
DATA DELIVERY (check one):	CHENT					ှာ ရှာ	G=glass P=plastic
		•				S	ST=sterile
Email:		//				<u> </u>	V= vial
Format: Q-EXCEL Q-PDF	GIS KEY	14				ဏ္ဍ	S=summa can
O OTHER						Ħ	T=tedlar bag
ate S		<u></u>				Ģ	0 =Other
Start Stop Comp- Date/Time Date/Time osite Grab	*Matrix Conc. Code Code	70					
6/15/11 17:06 X	A -	X				IO	Client Comments:
6/15/11 M:30 x	46	~					
	Please use the be high in con	Please use the following codes to let Con-Test know if a specific sample may be high in concentration in Matrix/Conc. Code Box:	to let Con-To	est know if a de Box:	specific sam	ole may	
	H - High; M - N	H - High; M - Medium; L - Low;	C - Clean; U - Unknown	U - Unknowr			
Turnaround ** Detection	Detection Limit Requirements	<u>irements</u>	*Matrix Code:	ide:	**Preservation Codes:	on Codes:	
☐ 7-Day Regulations?	H H		GW= groundwater		l = lced	X = Na	X ≃ Na hydroxide
10-Day			WW= wastewater	ewater	H = HCL	T = Na	T = Na thiosulfate
Other (201) Data Enhanc	Data Enhancement Project/RCP? 🛛 Y	CP? DY SAN	DW = drinking water A = air		M = Methanol	<u> </u>	
‡	Special Requirements or DL's:		S = soil/solid		S = Sulfuric Acid	cid	
□ *72-Hr □ *4-Day			SL = sludge	Ф	B = Sodium bisulfate	bisulfate	
* Require lab approval			O = other_		O = Other		ŀ

INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED BY OUR CLIENT. TURNAROUND TIME STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT COMPLETELY OR IS gonnodi. AIHA, NELAC & WBE/DBE Certified

(signature)

Date/Time:

Date/Time: 1915

Date/Time:

1001

Date/Time

AIR Only Receipt Checklist

39 Spruce St. East Longmeadow, MA. 01028

P: 413-525-2332 F: 413-525-6405

CLI	ENT NAME:	Arcadis		RECEIV	ED BY: <u>PB</u>		DATE: (0.15.1)
1) Wa	s the chain(s) of custody relinquish	ed and signed	?	Nes	No	
	es the chain a	agree with the samples explain:				No	
3) Are		les in good condition? explain:			(e)	No	
4) Are	there any sa	mples "On Hold"?			Yes		Stored where:
5) Are	there any RL	JSH or SHORT HOLDIN	IG TIME samp	es?	Yes	W	الم من الم المساور الم المساور
Who	was notified		Date		Time		
6) Loc	ation where :	samples are stored:	air La	Ь		ts only)	ntract samples? Yes No if not already approved
		Air Med	ia receiv	ed a	at Con-T	est	
					# of Containers	3	Types (Size, Duration)
ing		Summa Cans					
Air Sampling Media		Tedlar Bags					
Q.		Tubes					
Flow Controllers		Regulators					
Ç		Restrictors					
Extras	0.00	Tubing					
ω		Other					
Unuse	d Summas:			Unus	ed Regulators:		
2) Wer	e all returne	used & unused chec ed summa cans, Res d Excel Spreadshee	strictors, & Re			ed as	returned in the Air Lab
	tory Comme		<u></u>			*	

June 24, 2011

Donna Pallister Arcadis US, Inc. - Warwick, RI 300 Metro Center Blvd., Suite 250 Warwick, RI 02886

Project Location: Springfield St. Providance

Client Job Number:

Project Number: WK012152.0000

Laboratory Work Order Number: 11F0638

Holy L. Tolson

Enclosed are results of analyses for samples received by the laboratory on June 17, 2011. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Holly L. Folsom Project Manager

Arcadis US, Inc. - Warwick, RI REPORT DATE: 6/24/2011

300 Metro Center Blvd., Suite 250 Warwick, RI 02886

ATTN: Donna Pallister

PURCHASE ORDER NUMBER: 5131

PROJECT NUMBER: WK012152.0000

ANALYTICAL SUMMARY

WORK ORDER NUMBER: 11F0638

The results of analyses performed on the following samples submitted to the CON-TEST Analytical Laboratory are found in this report.

PROJECT LOCATION: Springfield St. Providance

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
TB	11F0638-01	Trip Blank Water		SW-846 8260C	
ATC-1	11F0638-02	Ground Water		SW-846 8260C	
MW-7	11F0638-03	Ground Water		SW-846 8260C	
MW-6	11F0638-04	Ground Water		SW-846 8260C	
MW-8	11F0638-05	Ground Water		SW-846 8260C	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SW-846 8260C

Qualifications:

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

1,4-Dioxane, Acetone, Carbon Tetrachloride

B032330-BSD1

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result for this compound.

Analyte & Samples(s) Qualified:

Tetrahydrofuran

B032330-BSD1

Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.

Analyte & Samples(s) Qualified:

2-Butanone (MEK), Bromomethane, tert-Butyl Alcohol (TBA), Tetrahydrofuran

11F0638-01[TB], 11F0638-02[ATC-1], 11F0638-03[MW-7], 11F0638-04[MW-6], 11F0638-05[MW-8], B032330-BLK1, B032330-BS1, B032330-BSD1, B03230-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1,

Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.

Analyte & Samples(s) Qualified:

Bromomethane, Chloromethane

11F0638-01[TB], 11F0638-02[ATC-1], 11F0638-03[MW-7], 11F0638-04[MW-6], 11F0638-05[MW-8], B032330-BLK1, B032330-BS1, B032330-BSD1

Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.

Analyte & Samples(s) Qualified:

Acetone

11F0638-01[TB], B032330-BS1, B032330-BSD1

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy are associated with reported result.

Analyte & Samples(s) Qualified:

1,4-Dioxane, tert-Butyl Alcohol (TBA)

11F0638-01[TB], 11F0638-02[ATC-1], 11F0638-03[MW-7], 11F0638-04[MW-6], 11F0638-05[MW-8], B032330-BLK1, B032330-BS1, B032330-BSD1, B03230-BSD1, B032230-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1, B032250-BSD1, B032250-B

The results of analyses reported only relate to samples submitted to the Con-Test Analytical Laboratory for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Daren J. Damboragian Laboratory Manager

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011

Field Sample #: TB Sampled: 6/16/2011 00:00

Sample ID: 11F0638-01

Sample Matrix: Trip Blank Water

Analyte Acetone Acrylonitrile tert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)	Results 150 ND ND ND ND ND ND ND ND ND N	8L 50 5.0 0.50 1.0 1.0 1.0 0.50 5.0 2.0 20	Units µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L µg/L	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V-06	Method SW-846 8260C SW-846 8260C SW-846 8260C SW-846 8260C SW-846 8260C SW-846 8260C SW-846 8260C	6/20/11 6/20/11 6/20/11 6/20/11 6/20/11 6/20/11	Analyzed 6/21/11 0:25 6/21/11 0:25 6/21/11 0:25 6/21/11 0:25 6/21/11 0:25 6/21/11 0:25	MFF MFF MFF MFF
Acrylonitrile tert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)	ND N	5.0 0.50 1.0 1.0 1.0 0.50 5.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1 1	V-06	SW-846 8260C SW-846 8260C SW-846 8260C SW-846 8260C SW-846 8260C	6/20/11 6/20/11 6/20/11 6/20/11	6/21/11 0:25 6/21/11 0:25 6/21/11 0:25 6/21/11 0:25	MFF MFF MFF
tert-Amyl Methyl Ether (TAME) Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)	ND N	0.50 1.0 1.0 1.0 0.50 5.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1 1		SW-846 8260C SW-846 8260C SW-846 8260C SW-846 8260C	6/20/11 6/20/11 6/20/11 6/20/11	6/21/11 0:25 6/21/11 0:25 6/21/11 0:25	MFF MFF
Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)	ND	1.0 1.0 1.0 0.50 5.0 2.0	μg/L μg/L μg/L μg/L μg/L μg/L	1 1 1		SW-846 8260C SW-846 8260C SW-846 8260C	6/20/11 6/20/11 6/20/11	6/21/11 0:25 6/21/11 0:25	MFF MFF
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)	ND ND ND ND ND ND ND	1.0 1.0 0.50 5.0 2.0 20	μg/L μg/L μg/L μg/L μg/L	1 1 1		SW-846 8260C SW-846 8260C	6/20/11 6/20/11	6/21/11 0:25	MFF
Bromochloromethane Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)	ND ND ND ND ND	1.0 0.50 5.0 2.0 20	μg/L μg/L μg/L μg/L	1		SW-846 8260C	6/20/11		
Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)	ND ND ND ND	0.50 5.0 2.0 20	μg/L μg/L μg/L	1				6/21/11 0:25	,
Bromoform Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)	ND ND ND ND	5.0 2.0 20	μg/L μg/L			SW-846 8260C			MFF
Bromomethane 2-Butanone (MEK) tert-Butyl Alcohol (TBA)	ND ND ND	2.0 20	μg/L	1			6/20/11	6/21/11 0:25	MFF
2-Butanone (MEK) tert-Butyl Alcohol (TBA)	ND ND	20				SW-846 8260C	6/20/11	6/21/11 0:25	MFF
tert-Butyl Alcohol (TBA)	ND			1	R-05, V-05	SW-846 8260C	6/20/11	6/21/11 0:25	MFF
		20	μg/L	1	R-05	SW-846 8260C	6/20/11	6/21/11 0:25	MFF
n Dutulhangana	ND	20	$\mu g/L$	1	R-05, V-16	SW-846 8260C	6/20/11	6/21/11 0:25	MFF
n-Butylbenzene		2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Carbon Disulfide	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Chloromethane	ND	2.0	μg/L	1	V-05	SW-846 8260C	6/20/11	6/21/11 0:25	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,3-Dichloropropane	ND	0.50	μg/L μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
2,2-Dichloropropane	ND	1.0	μg/L μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,1-Dichloropropene	ND	2.0	μg/L μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
trans-1,3-Dichloropropene	ND ND	0.50	μg/L μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011

Field Sample #: TB Sampled: 6/16/2011 00:00

Sample ID: 11F0638-01
Sample Matrix: Trip Blank Water

		Vo	latile Organic Comp	oounds by GO	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Hexachlorobutadiene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Tetrahydrofuran	ND	10	$\mu g/L$	1	R-05	SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Toluene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,2,3-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,2,4-Trichlorobenzene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,3,5-Trichlorobenzene	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,1,1-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,1,2-Trichloroethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Trichloroethylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,2,3-Trichloropropane	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Vinyl Chloride	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:25	MFF
Surrogates		% Recovery	Recovery Limits		Flag	-			
1,2-Dichloroethane-d4		116	70-130					6/21/11 0:25	
Toluene-d8		105	70-130					6/21/11 0:25	
4-Bromofluorobenzene		110	70-130					6/21/11 0:25	

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011

Field Sample #: ATC-1

Sampled: 6/16/2011 07:30

Sample ID: 11F0638-02

Sample Matrix: Ground Water

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Bromomethane	ND	2.0	μg/L	1	R-05, V-05	SW-846 8260C	6/20/11	6/21/11 0:55	MFF
2-Butanone (MEK)	ND	20	μg/L	1	R-05	SW-846 8260C	6/20/11	6/21/11 0:55	MFF
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1	R-05, V-16	SW-846 8260C	6/20/11	6/21/11 0:55	MFF
n-Butylbenzene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Carbon Disulfide	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Chloromethane	ND	2.0	μg/L	1	V-05	SW-846 8260C	6/20/11	6/21/11 0:55	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011 Field Sample #: ATC-1

Sampled: 6/16/2011 07:30

Sample ID: 11F0638-02 Sample Matrix: Ground Water

		VO	nathe Organic Com	pounds by GC	JIVIS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Hexachlorobutadiene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Tetrahydrofuran	ND	10	μg/L	1	R-05	SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,3,5-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
o-Xylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 0:55	MFF
Surrogates		% Recovery	Recovery Limits	s	Flag				
1,2-Dichloroethane-d4		108	70-130					6/21/11 0:55	
Toluene-d8		107	70-130					6/21/11 0:55	
1 Bromofluorobenzene		106	70.130					6/21/11 0:55	

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011 Field Sample #: MW-7

Sampled: 6/16/2011 08:15

Sample ID: 11F0638-03

Sample Matrix: Ground Water

			Volatile Organic Co	mpounds by G	GC/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Bromoform	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Bromomethane	ND	2.0	$\mu g/L$	1	R-05, V-05	SW-846 8260C	6/20/11	6/21/11 1:25	MFF
2-Butanone (MEK)	ND	20	$\mu g/L$	1	R-05	SW-846 8260C	6/20/11	6/21/11 1:25	MFF
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$	1	R-05, V-16	SW-846 8260C	6/20/11	6/21/11 1:25	MFF
n-Butylbenzene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Carbon Disulfide	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Chloroform	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Chloromethane	ND	2.0	μg/L	1	V-05	SW-846 8260C	6/20/11	6/21/11 1:25	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
trans-1,3-Dichloropropene	ND	0.50		1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
auto 1,5-Diemoropropene	ND	0.30	$\mu g/L$	1		3 W -040 8200C	0/20/11	0/21/11 1.23	IVITT

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011 Field Sample #: MW-7

Sampled: 6/16/2011 08:15

Sample ID: 11F0638-03 Sample Matrix: Ground Water

A I	Results	DI	¥124-	Dilution	Ela -	Method	Date	Date/Time	A w =1=- 4
Analyte Diethyl Ether		RL	Units	1	Flag		Prepared	Analyzed	Analyst
Diisopropyl Ether (DIPE)	ND	2.0	μg/L			SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,4-Dioxane	ND	0.50	μg/L	1	V 16	SW-846 8260C	6/20/11	6/21/11 1:25	MFF
	ND	50	μg/L	1	V-16	SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Hexachlorobutadiene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Naphthalene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
n-Propylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Tetrahydrofuran	ND	10	μg/L	1	R-05	SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,3,5-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
(Freon 113)	5	1.0	r6/2	•		511 010 02000	0/20/11	0/21/11 1.20	
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:25	MFF
Surrogates		% Recovery	Recovery Limits	s	Flag				
1,2-Dichloroethane-d4		124	70-130		<u> </u>			6/21/11 1:25	
Toluene-d8		104	70-130					6/21/11 1:25	

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011

Field Sample #: MW-6

Sampled: 6/16/2011 09:15

Sample ID: 11F0638-04
Sample Matrix: Ground Water

Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Acrylonitrile	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Benzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Bromobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Bromochloromethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Bromodichloromethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Bromoform	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Bromomethane	ND	2.0	μg/L	1	R-05, V-05	SW-846 8260C	6/20/11	6/21/11 1:56	MFF
2-Butanone (MEK)	ND	20	μg/L	1	R-05	SW-846 8260C	6/20/11	6/21/11 1:56	MFF
tert-Butyl Alcohol (TBA)	ND	20	μg/L	1	R-05, V-16	SW-846 8260C	6/20/11	6/21/11 1:56	MFF
n-Butylbenzene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
sec-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
tert-Butylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Carbon Disulfide	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Carbon Tetrachloride	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Chlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Chlorodibromomethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Chloroethane	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Chloromethane	ND	2.0	μg/L	1	V-05	SW-846 8260C	6/20/11	6/21/11 1:56	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,3-Dichloropropane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
2,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,1-Dichloropropene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
cis-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011 Field Sample #: MW-6

Sampled: 6/16/2011 09:15

Sample ID: 11F0638-04 Sample Matrix: Ground Water

		Vo	latile Organic Com	pounds by GO	C/MS				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Hexachlorobutadiene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Tetrahydrofuran	ND	10	μg/L	1	R-05	SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,3,5-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
m+p Xylene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 1:56	MFF
Surrogates		% Recovery	Recovery Limits	5	Flag				
1,2-Dichloroethane-d4		112	70-130					6/21/11 1:56	
Toluene-d8		107	70-130					6/21/11 1:56	

Surrogates	% Recovery	Recovery Limits	Flag	
1,2-Dichloroethane-d4	112	70-130		6/21/11 1:56
Toluene-d8	107	70-130		6/21/11 1:56
4-Bromofluorobenzene	106	70-130		6/21/11 1:56

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011

Field Sample #: MW-8

Sampled: 6/16/2011 10:15

Sample ID: 11F0638-05
Sample Matrix: Ground Water

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag	Method	Prepared	Analyzed	Analyst
Acetone	ND	50	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Acrylonitrile	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Benzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Bromobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Bromochloromethane	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Bromodichloromethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Bromoform	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Bromomethane	ND	2.0	$\mu g/L$	1	R-05, V-05	SW-846 8260C	6/20/11	6/21/11 2:26	MFF
2-Butanone (MEK)	ND	20	$\mu g/L$	1	R-05	SW-846 8260C	6/20/11	6/21/11 2:26	MFF
tert-Butyl Alcohol (TBA)	ND	20	$\mu g/L$	1	R-05, V-16	SW-846 8260C	6/20/11	6/21/11 2:26	MFF
n-Butylbenzene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
sec-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
tert-Butylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Carbon Disulfide	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Carbon Tetrachloride	ND	5.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Chlorobenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Chlorodibromomethane	ND	0.50	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Chloroethane	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Chloroform	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Chloromethane	ND	2.0	μg/L	1	V-05	SW-846 8260C	6/20/11	6/21/11 2:26	MFF
2-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
4-Chlorotoluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,2-Dibromoethane (EDB)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Dibromomethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,2-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,3-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,4-Dichlorobenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
trans-1,4-Dichloro-2-butene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Dichlorodifluoromethane (Freon 12)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,1-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,2-Dichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,1-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
cis-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
trans-1,2-Dichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,2-Dichloropropane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,3-Dichloropropane	ND	0.50	μg/L μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
2,2-Dichloropropane	ND	1.0	μg/L μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,1-Dichloropropene	ND ND	2.0	μg/L μg/L	1		SW-846 8260C SW-846 8260C	6/20/11	6/21/11 2:26	MFF
cis-1,3-Dichloropropene	ND ND	0.50		1		SW-846 8260C SW-846 8260C	6/20/11	6/21/11 2:26	MFF
			μg/L						
trans-1,3-Dichloropropene	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF

Project Location: Springfield St. Providance Sample Description: Work Order: 11F0638

Date Received: 6/17/2011 Field Sample #: MW-8

Sampled: 6/16/2011 10:15

Sample ID: 11F0638-05 Sample Matrix: Ground Water

		VU	lattie Organic Com	pounds by GC	J/1V165				
Analyte	Results	RL	Units	Dilution	Flag	Method	Date Prepared	Date/Time Analyzed	Analyst
Diethyl Ether	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,4-Dioxane	ND	50	μg/L	1	V-16	SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Ethylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Hexachlorobutadiene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
2-Hexanone (MBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Isopropylbenzene (Cumene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
p-Isopropyltoluene (p-Cymene)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Methylene Chloride	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
4-Methyl-2-pentanone (MIBK)	ND	10	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Naphthalene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
n-Propylbenzene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Styrene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,1,1,2-Tetrachloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,1,2,2-Tetrachloroethane	ND	0.50	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Tetrachloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Tetrahydrofuran	ND	10	μg/L	1	R-05	SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Toluene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,2,3-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,2,4-Trichlorobenzene	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,3,5-Trichlorobenzene	ND	5.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,1,1-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,1,2-Trichloroethane	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Trichloroethylene	ND	1.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Trichlorofluoromethane (Freon 11)	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,2,3-Trichloropropane	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,2,4-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
1,3,5-Trimethylbenzene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Vinyl Chloride	ND	2.0	μg/L	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
m+p Xylene	ND	2.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
o-Xylene	ND	1.0	$\mu g/L$	1		SW-846 8260C	6/20/11	6/21/11 2:26	MFF
Surrogates		% Recovery	Recovery Limits	s	Flag				
1,2-Dichloroethane-d4		118	70-130					6/21/11 2:26	
Toluene-d8 4 Bromoflyorobenzene		108	70-130 70-130					6/21/11 2:26	

Sample Extraction Data

Prep Method: SW-846 5030B-SW-846 8260C

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
11F0638-01 [TB]	B032330	5	5.00	06/20/11
11F0638-02 [ATC-1]	B032330	5	5.00	06/20/11
11F0638-03 [MW-7]	B032330	5	5.00	06/20/11
11F0638-04 [MW-6]	B032330	5	5.00	06/20/11
11F0638-05 [MW-8]	B032330	5	5.00	06/20/11

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B032330 - SW-846 5030B										
Blank (B032330-BLK1)				Prepared &	Analyzed: 06	5/20/11				
Acetone	ND	50	μg/L							
Acrylonitrile	ND	5.0	$\mu g/L$							
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$							
Benzene	ND	1.0	$\mu g/L$							
Bromobenzene	ND	1.0	$\mu g/L$							
Bromochloromethane	ND	1.0	$\mu g/L$							
Bromodichloromethane	ND	0.50	$\mu \text{g/L}$							
Bromoform	ND	5.0	μg/L							
Bromomethane	ND	2.0	μg/L							R-05, V-05
2-Butanone (MEK)	ND	20	μg/L							R-05
tert-Butyl Alcohol (TBA)	ND	20	μg/L							R-05, V-16
n-Butylbenzene	ND	2.0	μg/L							
sec-Butylbenzene	ND	1.0	μg/L							
tert-Butylbenzene	ND	1.0	μg/L							
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L							
Carbon Disulfide	ND	2.0	μg/L							
Carbon Tetrachloride	ND	5.0	μg/L							
Chlorobenzene	ND	1.0	μg/L							
Chlorodibromomethane	ND	0.50	μg/L							
Chlorothane	ND	2.0	μg/L							
Chloromothoro	ND	2.0	μg/L							17.05
Chloromethane	ND	2.0	μg/L							V-05
2-Chlorotoluene 4-Chlorotoluene	ND	1.0	μg/L μα/Ι							
	ND	1.0 5.0	μg/L μα/Ι							
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	ND	0.50	μg/L μg/L							
Dibromomethane	ND	1.0	μg/L μg/L							
1,2-Dichlorobenzene	ND ND	1.0	μg/L μg/L							
1,3-Dichlorobenzene	ND ND	1.0	μg/L μg/L							
1,4-Dichlorobenzene	ND ND	1.0	μg/L μg/L							
trans-1,4-Dichloro-2-butene	ND ND	2.0	μg/L μg/L							
Dichlorodifluoromethane (Freon 12)	ND ND	2.0	μg/L μg/L							
1,1-Dichloroethane	ND ND	1.0	μg/L							
1,2-Dichloroethane	ND ND	1.0	μg/L μg/L							
1,1-Dichloroethylene	ND ND	1.0	μg/L							
cis-1,2-Dichloroethylene	ND ND	1.0	μg/L μg/L							
trans-1,2-Dichloroethylene	ND	1.0	μg/L							
1,2-Dichloropropane	ND	1.0	μg/L							
1,3-Dichloropropane	ND	0.50	μg/L							
2,2-Dichloropropane	ND	1.0	μg/L							
1,1-Dichloropropene	ND	2.0	μg/L							
cis-1,3-Dichloropropene	ND	0.50	μg/L							
trans-1,3-Dichloropropene	ND	0.50	μg/L							
Diethyl Ether	ND	2.0	$\mu g/L$							
Diisopropyl Ether (DIPE)	ND	0.50	$\mu g/L$							
1,4-Dioxane	ND	50	$\mu g/L$							V-16
Ethylbenzene	ND	1.0	$\mu g/L$							
Hexachlorobutadiene	ND	5.0	$\mu g/L$							
2-Hexanone (MBK)	ND	10	$\mu g/L$							
Isopropylbenzene (Cumene)	ND	1.0	$\mu g/L$							
p-Isopropyltoluene (p-Cymene)	ND	1.0	$\mu g/L$							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	$\mu g/L$							

QUALITY CONTROL

Spike

Source

RPD

%REC

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
satch B032330 - SW-846 5030B										
Blank (B032330-BLK1)				Prepared &	Analyzed: 06	/20/11				
1ethylene Chloride	ND	5.0	μg/L							
-Methyl-2-pentanone (MIBK)	ND	10	μg/L							
aphthalene	ND	2.0	μg/L							
-Propylbenzene	ND	1.0	μg/L							
tyrene	ND	1.0	μg/L							
1,1,2-Tetrachloroethane	ND	1.0	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	1.0	μg/L							
etrahydrofuran	ND	10	μg/L							R-05
oluene	ND	1.0	μg/L							
2,3-Trichlorobenzene	ND	5.0	μg/L							
2,4-Trichlorobenzene	ND	2.0	μg/L							
3,5-Trichlorobenzene	ND	5.0	μg/L							
1,1-Trichloroethane	ND	1.0	μg/L							
1,2-Trichloroethane	ND	1.0	μg/L							
richloroethylene	ND	1.0	μg/L							
richlorofluoromethane (Freon 11)	ND	2.0	μg/L							
2,3-Trichloropropane	ND	2.0	μg/L							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	1.0	μg/L							
2,4-Trimethylbenzene	ND	1.0	μg/L							
3,5-Trimethylbenzene	ND	1.0	μg/L							
inyl Chloride	ND	2.0	μg/L							
+p Xylene	ND	2.0	μg/L							
-Xylene	ND	1.0	μg/L							
urrogate: 1,2-Dichloroethane-d4	27.4			25.0		109	70-130			
arrogate: Toluene-d8	26.3		μg/L	25.0		105	70-130			
urrogate: 4-Bromofluorobenzene	24.9		μg/L μg/L	25.0		99.5	70-130			
CS (B032330-BS1)					Analyzed: 06					
cetone	1.42	50	μg/L	100		143	70-160			V-06
crylonitrile	143	5.0	μg/L μg/L	10.0		101	70-130			V-00
rt-Amyl Methyl Ether (TAME)	10.1 9.80	0.50	μg/L μg/L	10.0		98.0	70-130			
enzene		1.0								
romobenzene	9.99	1.0	μg/L μg/I	10.0		99.9	70-130			
romochloromethane	8.28	1.0	μg/L	10.0		82.8	70-130			
romocniorometnane romodichloromethane	9.88		μg/L	10.0		98.8	70-130			
romodicinorometnane	10.3	0.50	μg/L	10.0		103	70-130			
romotorm	8.45	5.0 2.0	μg/L	10.0		84.5	70-130			D 05 37 05
	4.65		μg/L	10.0		46.5	40-160			R-05, V-05
Butanone (MEK)	111	20	μg/L	100		111	40-160			R-05
rt-Butyl Alcohol (TBA)	115	20	μg/L	100		115	40-160			R-05, V-16
-Butylbenzene	7.70	2.0	μg/L	10.0		77.0	70-130			
ec-Butylbenzene	7.92	1.0	μg/L	10.0		79.2	70-130			
rt-Butylbenzene	7.95	1.0	μg/L	10.0		79.5	70-130			
rt-Butyl Ethyl Ether (TBEE)		0.50	μg/L	10.0		83.9	70-130			
arbon Disulfide	8.39			10.0		114	70-130			
	11.4	2.0	μg/L							
	11.4 11.8	5.0	$\mu g/L$	10.0		118	70-130			
hlorobenzene	11.4	5.0 1.0	μg/L μg/L	10.0 10.0		84.8	70-130			
hlorobenzene	11.4 11.8	5.0	$\mu g/L$	10.0						
arbon Tetrachloride hlorobenzene hlorodibromomethane hloroethane	11.4 11.8 8.48	5.0 1.0	μg/L μg/L	10.0 10.0		84.8	70-130			
hlorobenzene hlorodibromomethane	11.4 11.8 8.48 10.9	5.0 1.0 0.50	μg/L μg/L μg/L	10.0 10.0 10.0		84.8 109	70-130 70-130			
'hlorobenzene 'hlorodibromomethane 'hloroethane	11.4 11.8 8.48 10.9 8.59	5.0 1.0 0.50 2.0	μg/L μg/L μg/L μg/L	10.0 10.0 10.0 10.0		84.8 109 85.9	70-130 70-130 70-130			V-05

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B032330 - SW-846 5030B										
.CS (B032330-BS1)				Prepared &	Analyzed: 06/20/	11				
-Chlorotoluene	8.64	1.0	μg/L	10.0	8	86.4	70-130			
,2-Dibromo-3-chloropropane (DBCP)	8.70	5.0	$\mu g/L$	10.0	8	87.0	70-130			
,2-Dibromoethane (EDB)	12.0	0.50	$\mu g/L$	10.0		120	70-130			
Dibromomethane	11.1	1.0	$\mu g/L$	10.0		111	70-130			
,2-Dichlorobenzene	7.74	1.0	$\mu g/L$	10.0	7	77.4	70-130			
,3-Dichlorobenzene	7.82	1.0	$\mu g/L$	10.0	7	78.2	70-130			
,4-Dichlorobenzene	7.70	1.0	$\mu g/L$	10.0	7	77.0	70-130			
rans-1,4-Dichloro-2-butene	8.21	2.0	$\mu g/L$	10.0	8	82.1	70-130			
richlorodifluoromethane (Freon 12)	9.28	2.0	$\mu g/L$	10.0	ģ	92.8	40-160			
1-Dichloroethane	9.80	1.0	$\mu g/L$	10.0	Ģ	98.0	70-130			
2-Dichloroethane	11.2	1.0	$\mu g/L$	10.0		112	70-130			
1-Dichloroethylene	10.2	1.0	$\mu g/L$	10.0		102	70-130			
s-1,2-Dichloroethylene	10.2	1.0	$\mu g/L$	10.0		102	70-130			
ans-1,2-Dichloroethylene	10.6	1.0	$\mu g \! / \! L$	10.0		106	70-130			
,2-Dichloropropane	9.30	1.0	$\mu g/L$	10.0	ģ	93.0	70-130			
3-Dichloropropane	10.4	0.50	$\mu g/L$	10.0		104	70-130			
2-Dichloropropane	9.45	1.0	μg/L	10.0	9	94.5	40-130			
1-Dichloropropene	10.1	2.0	μg/L	10.0		101	70-130			
s-1,3-Dichloropropene	9.30	0.50	μg/L	10.0	9	93.0	70-130			
ans-1,3-Dichloropropene	10.0	0.50	μg/L	10.0		100	70-130			
iethyl Ether	10.5	2.0	μg/L	10.0		105	70-130			
iisopropyl Ether (DIPE)	8.65	0.50	μg/L	10.0	8	86.5	70-130			
4-Dioxane	110	50	μg/L	100		110	40-130			V-16
thylbenzene	8.25	1.0	μg/L	10.0	5	82.5	70-130			
exachlorobutadiene	7.83	5.0	μg/L	10.0		78.3	70-130			
·Hexanone (MBK)	122	10	μg/L	100		122	70-160			
opropylbenzene (Cumene)	10.2	1.0	μg/L	10.0		102	70-130			
-Isopropyltoluene (p-Cymene)	8.14	1.0	μg/L	10.0		81.4	70-130			
fethyl tert-Butyl Ether (MTBE)	10.1	1.0	μg/L	10.0		101	70-130			
lethylene Chloride	9.32	5.0	μg/L	10.0		93.2	70-130			
-Methyl-2-pentanone (MIBK)	110	10	μg/L	100		110	70-160			
aphthalene	8.82	2.0	μg/L	10.0		88.2	40-130			
Propylbenzene	8.39	1.0	μg/L	10.0		83.9	70-130			
tyrene	8.02	1.0	μg/L	10.0		80.2	70-130			
1,1,2-Tetrachloroethane		1.0	μg/L μg/L	10.0		85.2	70-130			
1,2,2-Tetrachloroethane	8.52 8.82	0.50	μg/L μg/L	10.0		88.2	70-130			
etrachloroethylene	8.82 10.7	1.0	μg/L μg/L	10.0		107	70-130			
etrahydrofuran	9.94	1.0	μg/L μg/L	10.0		99.4	70-130			R-05
oluene		1.0	μg/L μg/L	10.0		99.4	70-130			K-03
,2,3-Trichlorobenzene	9.90	5.0	μg/L μg/L	10.0		99.0 88.0	70-130			
2,4-Trichlorobenzene	8.80	2.0	μg/L μg/L	10.0		92.8	70-130			
3,5-Trichlorobenzene	9.28	5.0								
1,1-Trichloroethane	7.04		μg/L	10.0		70.4	70-130			
1,1-1 richloroethane 1,2-Trichloroethane	10.9	1.0 1.0	μg/L	10.0		109	70-130			
	10.2		μg/L	10.0		102	70-130			
richloroethylene	10.5	1.0	μg/L	10.0		105	70-130			
richlorofluoromethane (Freon 11)	10.3	2.0	μg/L	10.0		103	70-130			
2,3-Trichloropropane 1,2-Trichloro-1,2,2-trifluoroethane (Freon	7.97 10.0	2.0 1.0	μg/L μg/L	10.0 10.0		79.7 100	70-130 70-130			
13)	10.0		r.o =							
2,4-Trimethylbenzene	7.75	1.0	$\mu g/L$	10.0	7	77.5	70-130			
,3,5-Trimethylbenzene	8.38	1.0	$\mu g/L$	10.0	8	83.8	70-130			
/inyl Chloride	8.63	2.0	μg/L	10.0	8	86.3	40-160			

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B032330 - SW-846 5030B		-			<u> </u>				<u> </u>		_
LCS (B032330-BS1)				Prepared &	Analyzed: 06/	20/11					_
m+p Xylene	17.0	2.0	μg/L	20.0		84.8	70-130				_
o-Xylene	8.27	1.0	μg/L	10.0		82.7	70-130				
	26.0										
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8	26.0 27.1		μg/L	25.0 25.0		104 109	70-130 70-130				
Surrogate: 4-Bromofluorobenzene	26.7		μg/L μg/L	25.0		109	70-130				
	20.7		μБ/Е		A 1 4. O.C./		70 150				
LCS Dup (B032330-BSD1)		50	/T		Analyzed: 06/		70.160	10.6	25	I 07 II 06	
Acetone	174	50 5.0	μg/L	100		174 *	70-160	19.6	25	L-07, V-06	†
Acrylonitrile	11.9	0.50	μg/L ug/I	10.0		119	70-130	15.9	25		
tert-Amyl Methyl Ether (TAME) Benzene	11.6		μg/L ug/I	10.0		116	70-130	17.1	25 25		
Bromobenzene	10.8	1.0 1.0	μg/L ug/I	10.0		108	70-130	8.07	25 25		
Bromochloromethane	8.81	1.0	μg/L ug/I	10.0		88.1	70-130	6.20	25		
Bromodichloromethane	11.8	0.50	μg/L	10.0		118	70-130	17.4	25 25		
Bromoform	10.1	5.0	μg/L ug/I	10.0		101	70-130	1.47	25		
Bromomethane	9.50		μg/L	10.0		95.0	70-130	11.7	25	D 05 W 05	
	6.08	2.0	μg/L	10.0		60.8	40-160	26.7	* 25 * 25	R-05, V-05	†
2-Butanone (MEK)	144	20	μg/L	100		144	40-160	25.8	23	R-05	†
tert-Butyl Alcohol (TBA) n-Butylbenzene	157	20	μg/L ug/I	100		157	40-160	30.6		R-05, V-16	†
•	7.67	2.0	μg/L	10.0		76.7	70-130	0.390	25		
sec-Butylbenzene	7.83	1.0	μg/L	10.0		78.3	70-130	1.14	25		
tert-Butylbenzene	8.09	1.0	μg/L	10.0		80.9	70-130	1.75	25		
tert-Butyl Ethyl Ether (TBEE)	10.0	0.50	μg/L	10.0		100	70-130	17.5	25		
Carbon Disulfide	12.0	2.0	μg/L	10.0		120	70-130	4.62	25	T 0=	
Carbon Tetrachloride	13.2	5.0	μg/L	10.0		132 *	70-130	11.3	25	L-07	
Chlorobenzene	8.87	1.0	μg/L	10.0		88.7	70-130	4.50	25		
Chlorodibromomethane	11.1	0.50	μg/L	10.0		111	70-130	2.00	25		
Chloroethane	9.23	2.0	μg/L	10.0		92.3	70-130	7.18	25		
Chloroform	11.6	2.0	μg/L	10.0		116	70-130	16.4	25		
Chloromethane	6.92	2.0	μg/L	10.0		69.2	40-160	12.6	25	V-05	†
2-Chlorotoluene	9.11	1.0	μg/L	10.0		91.1	70-130	6.93	25		
4-Chlorotoluene	9.17	1.0	μg/L	10.0		91.7	70-130	5.95	25		
1,2-Dibromo-3-chloropropane (DBCP)	10.0	5.0	μg/L	10.0		100	70-130	14.4	25		
1,2-Dibromoethane (EDB)	12.7	0.50	μg/L	10.0		127	70-130	5.18	25		
Dibromomethane	11.2	1.0	μg/L	10.0		112	70-130	1.26	25		
1,2-Dichlorobenzene	8.21	1.0	μg/L	10.0		82.1	70-130	5.89	25		
1,3-Dichlorobenzene	8.10	1.0	μg/L	10.0		81.0	70-130	3.52	25		
1,4-Dichlorobenzene	8.20	1.0	μg/L	10.0		82.0	70-130	6.29	25		
trans-1,4-Dichloro-2-butene	9.57	2.0	μg/L	10.0		95.7	70-130	15.3	25		
Dichlorodifluoromethane (Freon 12)	9.68	2.0	μg/L	10.0		96.8	40-160	4.22	25		Ť
1,1-Dichloroethane	10.6	1.0	μg/L	10.0		106	70-130	7.56	25		
1,2-Dichloroethane	12.6	1.0	μg/L	10.0		126	70-130	11.5	25		
1,1-Dichloroethylene	11.1	1.0	μg/L	10.0		111	70-130	7.78	25		
cis-1,2-Dichloroethylene	10.7	1.0	μg/L	10.0		107	70-130	4.90	25		
trans-1,2-Dichloroethylene	11.7	1.0	μg/L	10.0		117	70-130	10.0	25		
1,2-Dichloropropane	9.30	1.0	μg/L	10.0		93.0	70-130	0.00	25		
1,3-Dichloropropane	11.2	0.50	μg/L	10.0		112	70-130	7.30	25		
2,2-Dichloropropane	9.99	1.0	μg/L	10.0		99.9	40-130	5.56	25		†
1,1-Dichloropropene	11.9	2.0	μg/L	10.0		119	70-130	16.6	25		
cis-1,3-Dichloropropene	10.2	0.50	$\mu g/L$	10.0		102	70-130	9.13	25		
trans-1,3-Dichloropropene	11.0	0.50	μg/L	10.0		110	70-130	9.04	25		
Diethyl Ether	11.9	2.0	μg/L	10.0		119	70-130	12.1	25		
Diisopropyl Ether (DIPE)	10.1	0.50	$\mu g/L$	10.0		101	70-130	15.2	25		

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B032330 - SW-846 5030B											
LCS Dup (B032330-BSD1)				Prepared &	Analyzed: 06	5/20/11					
1,4-Dioxane	147	50	μg/L	100		147 *	40-130	29.1	50	L-07, V-16	_ † ‡
Ethylbenzene	8.45	1.0	$\mu \text{g/L}$	10.0		84.5	70-130	2.40	25		
Hexachlorobutadiene	8.41	5.0	$\mu \text{g/L}$	10.0		84.1	70-130	7.14	25		
2-Hexanone (MBK)	144	10	$\mu \text{g/L}$	100		144	70-160	16.6	25		†
Isopropylbenzene (Cumene)	10.6	1.0	$\mu \text{g/L}$	10.0		106	70-130	3.66	25		
p-Isopropyltoluene (p-Cymene)	7.76	1.0	$\mu g/L$	10.0		77.6	70-130	4.78	25		
Methyl tert-Butyl Ether (MTBE)	12.3	1.0	$\mu \text{g/L}$	10.0		123	70-130	19.7	25		
Methylene Chloride	10.6	5.0	$\mu \text{g/L}$	10.0		106	70-130	12.8	25		
4-Methyl-2-pentanone (MIBK)	127	10	$\mu g/L$	100		127	70-160	14.6	25		†
Naphthalene	10.2	2.0	$\mu g/L$	10.0		102	40-130	14.5	25		†
n-Propylbenzene	8.91	1.0	$\mu g/L$	10.0		89.1	70-130	6.01	25		
Styrene	8.64	1.0	$\mu \text{g/L}$	10.0		86.4	70-130	7.44	25		
1,1,1,2-Tetrachloroethane	9.05	1.0	$\mu \text{g/L}$	10.0		90.5	70-130	6.03	25		
1,1,2,2-Tetrachloroethane	10.1	0.50	$\mu \text{g/L}$	10.0		101	70-130	13.4	25		
Tetrachloroethylene	10.7	1.0	$\mu \text{g/L}$	10.0		107	70-130	0.374	25		
Tetrahydrofuran	6.98	10	$\mu \text{g/L}$	10.0		69.8 *	70-130	35.0	* 25	L-07A, R-05	
Toluene	10.2	1.0	$\mu \text{g/L}$	10.0		102	70-130	3.47	25		
1,2,3-Trichlorobenzene	10.1	5.0	$\mu \text{g/L}$	10.0		101	70-130	13.4	25		
1,2,4-Trichlorobenzene	9.58	2.0	$\mu g/L$	10.0		95.8	70-130	3.18	25		
1,3,5-Trichlorobenzene	7.43	5.0	μg/L	10.0		74.3	70-130	5.39	25		
1,1,1-Trichloroethane	12.8	1.0	μg/L	10.0		128	70-130	15.9	25		
1,1,2-Trichloroethane	11.2	1.0	μg/L	10.0		112	70-130	9.79	25		
Trichloroethylene	10.6	1.0	μg/L	10.0		106	70-130	0.851	25		
Trichlorofluoromethane (Freon 11)	11.4	2.0	μg/L	10.0		114	70-130	10.2	25		
1,2,3-Trichloropropane	9.17	2.0	μg/L	10.0		91.7	70-130	14.0	25		
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	11.3	1.0	μg/L	10.0		113	70-130	11.4	25		
1,2,4-Trimethylbenzene	7.85	1.0	$\mu \text{g/L}$	10.0		78.5	70-130	1.28	25		
1,3,5-Trimethylbenzene	9.17	1.0	$\mu g/L$	10.0		91.7	70-130	9.00	25		
Vinyl Chloride	9.18	2.0	$\mu g/L$	10.0		91.8	40-160	6.18	25		†
m+p Xylene	17.9	2.0	$\mu \text{g}/L$	20.0		89.4	70-130	5.22	25		
o-Xylene	8.76	1.0	$\mu g/L$	10.0		87.6	70-130	5.75	25		
Surrogate: 1,2-Dichloroethane-d4	28.9		μg/L	25.0		115	70-130				_
Surrogate: Toluene-d8	25.6		μg/L	25.0		103	70-130				
Surrogate: 4-Bromofluorobenzene	26.8		μg/L	25.0		107	70-130				

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
L-07A	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD outside of control limits. Reduced precision anticipated for any reported result this compound.
R-05	Laboratory fortified blank duplicate RPD is outside of control limits. Reduced precision is anticipated for any reported value for this compound.
V-05	Continuing calibration did not meet method specifications and was biased on the low side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the low side.
V-06	Continuing calibration did not meet method specifications and was biased on the high side for this compound. Increased uncertainty is associated with the reported value which is likely to be biased on the high side.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy are associated with reported result

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260C in Water		
Acetone	CT,NH,NY,NC	
Acrylonitrile	CT,NY,NC,RI	
tert-Amyl Methyl Ether (TAME)	NH,NY,NC	
Benzene	CT,NH,NY,NC,RI	
Bromobenzene	NC	
Bromochloromethane	NH,NY,NC	
Bromodichloromethane	CT,NH,NY,NC,RI	
Bromoform	CT,NH,NY,NC,RI	
Bromomethane	CT,NH,NY,NC,RI	
2-Butanone (MEK)	CT,NH,NY,NC	
tert-Butyl Alcohol (TBA)	NH,NY,NC	
n-Butylbenzene	NY,NC	
sec-Butylbenzene	NY,NC	
tert-Butylbenzene	NY,NC	
tert-Butyl Ethyl Ether (TBEE)	NH,NY,NC	
Carbon Disulfide	CT,NH,NY,NC	
Carbon Tetrachloride	CT,NH,NY,NC,RI	
Chlorobenzene	CT,NH,NY,NC,RI	
Chlorodibromomethane	CT,NH,NY,NC,RI	
Chloroethane	CT,NH,NY,NC,RI	
Chloroform	CT,NH,NY,NC,RI	
Chloromethane	CT,NH,NY,NC,RI	
2-Chlorotoluene	NY,NC	
4-Chlorotoluene	NY,NC	
1,2-Dibromo-3-chloropropane (DBCP)	NC	
1,2-Dibromoethane (EDB)	NC	
Dibromomethane	NH,NY,NC	
1,2-Dichlorobenzene	CT,NY,NC,RI	
1,3-Dichlorobenzene	CT,NH,NY,NC,RI	
1,4-Dichlorobenzene	CT,NH,NY,NC,RI	
trans-1,4-Dichloro-2-butene	NH,NY,NC	
Dichlorodifluoromethane (Freon 12)	NH,NY,NC,RI	
1,1-Dichloroethane	CT,NH,NY,NC,RI	
1,2-Dichloroethane	CT,NH,NY,NC,RI	
1,1-Dichloroethylene	CT,NH,NY,NC,RI	
cis-1,2-Dichloroethylene	NC	
trans-1,2-Dichloroethylene	CT,NH,NY,NC,RI	
1,2-Dichloropropane	CT,NH,NY,NC,RI	
1,3-Dichloropropane	NY,NC	
2,2-Dichloropropane	NH,NY,NC	
1,1-Dichloropropene	NH,NY,NC	
cis-1,3-Dichloropropene	CT,NH,NY,NC,RI	
trans-1,3-Dichloropropene	CT,NH,NY,NC,RI	
Diethyl Ether	NC	
Diisopropyl Ether (DIPE)	NH,NY,NC	
1,4-Dioxane	NC	
Ethylbenzene	CT,NH,NY,NC,RI	
Etnylbenzene	CI,NH,NY,NC,KI	_

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C in Water	
Hexachlorobutadiene	CT,NH,NY,NC
2-Hexanone (MBK)	CT,NH,NY,NC
Isopropylbenzene (Cumene)	NY,NC
p-Isopropyltoluene (p-Cymene)	CT,NH,NY,NC
Methyl tert-Butyl Ether (MTBE)	CT,NH,NY,NC
Methylene Chloride	CT,NH,NY,NC,RI
4-Methyl-2-pentanone (MIBK)	CT,NH,NY,NC
Naphthalene	NH,NY,NC
n-Propylbenzene	CT,NH,NY,NC
Styrene	CT,NH,NY,NC
1,1,1,2-Tetrachloroethane	CT,NH,NY,NC
1,1,2,2-Tetrachloroethane	CT,NH,NY,NC,RI
Tetrachloroethylene	CT,NH,NY,NC,RI
Tetrahydrofuran	NC
Toluene	CT,NH,NY,NC,RI
1,2,3-Trichlorobenzene	NH,NY,NC
1,2,4-Trichlorobenzene	CT,NH,NY,NC
1,3,5-Trichlorobenzene	NC
1,1,1-Trichloroethane	CT,NH,NY,NC,RI
1,1,2-Trichloroethane	CT,NH,NY,NC,RI
Trichloroethylene	CT,NH,NY,NC,RI
Trichlorofluoromethane (Freon 11)	CT,NH,NY,NC,RI
1,2,3-Trichloropropane	NH,NY,NC
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	NC
1,2,4-Trimethylbenzene	NY,NC
1,3,5-Trimethylbenzene	NY,NC
Vinyl Chloride	CT,NH,NY,NC,RI
m+p Xylene	CT,NH,NY,NC,RI
o-Xylene	CT,NH,NY,NC,RI
The CON TEST Environmental Laboratory energies up	adon the following contifications and appredictions:

The CON-TEST Environmental Laboratory operates under the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	American Industrial Hygiene Association	100033	01/1/2012
MA	Massachusetts DEP	M-MA100	06/30/2011
CT	Connecticut Department of Publilc Health	PH-0567	09/30/2011
NY	New York State Department of Health	10899 NELAP	04/1/2012
NH	New Hampshire Environmental Lab	2516 NELAP	02/5/2012
RI	Rhode Island Department of Health	LAO00112	12/30/2011
NC	North Carolina Div. of Water Quality	652	12/31/2011
NJ	New Jersey DEP	MA007 NELAP	06/30/2012
FL	Florida Department of Health	E871027 NELAP	06/30/2011
VT	Vermont Department of Health Lead Laboratory	LL015036	07/30/2011
WA	State of Washington Department of Ecology	C2065	02/23/2012
ME	State of Maine	2011028	06/9/2013

Cxeck(reg) (signal land) L Date/Time: 1616 TRequire lab appro	Refugalished by: (segnature) Date/Time: RUSH 6//7// D:/D □ *24-Hr □ *48-Hr	(5-15-11/1130) SI	Dotte Time:	Relinquistred by: (signature) Date/Time: Signature) Turna	Str Walls 6.17.11 1	15-11.	Lare collected on as hall						1015 8-mm	-4 MW-6 0915	13 MW-H UXIS	1	-7 ATC-1 0730	TB	(laboratory use only) Client Sample ID / Description Date/Time	Beginn]	Project Proposal Provided? (for billing purposes)	Sampled By: IVII GUEL CALCOLO	MANAGE CONTRACTOR	Sorran Frold St Prayidams	Attention: Down Pollicitor	WAIWICK, RIT	Address: 300 wetro Center Blud	Company Name: ARCADIS	ANALYTICAL LABORATORY www.contestlabs.com	•	Phone: 413-525-2332	
TRequire lab approval Other: Require lab approval	☐ [†] 48-Hr Connecticut:	Other S	10 Day	_imit Rec	CAR SITE OF STATES	1	Please use the follow						7 CW C X	× 6w / ×	7 GW L		x 6w c 7	6-16-11	Date/Time Composite Grab Code Cont Code	Il Ending C "Enhanced Data Packa	O OTHER	XXCEL OGIS	Email: Johne Latistel College 12.00	1		ELIVERY (chec	Client PO#	Project # W NO12/52	Telephone: 401-738.387 V	· · · · · · · · · · · · · · · · · · ·	com (/F)658 [3]	CHAIN OF CUSTODY RECORD	
nel C WBE/DBE Certified WBE/DBE Certified	MA State DW Form Required PWSID#	RCP Analysis Certification Form Required	MOD Analytical Contification Form Require	ĈP?	H - High; M - Medium; L - Low; C - Clean; U - Unknown	ᆜ	Please use the following codes to let Con-Test know if a specific sample	₩ G				× 0	S.:	2.3			**	Ç		S:	V=	ST		A	* *	0	0	ANALYSIS REQUESTED D	***	**	#c	39 Spruce Street East longmeadow, MA 01028	
HA Certified Certified		C	2	0 - other	SL = sludge	A = air S = soil/solid	DW = drinking water	WW = groundwater WW = wastewater	*Matrix Code:	O - Other	T = Na thiosulfate	X = Na hydroxide	S = Sulfuric Acid	M = Methanol	H = HCL	Icad	**Preservation	Cule	T=tedlar bag	S=summa can	V= vial	P =plastic ST =sterile	G =glass	A=amber glass	***Cont. Code:	O Lab to Filter	Field Filtered	Dissolved Metals	***Container Code	** Preservation	# of Containers	Page of 25	ש -

Page 24 of 25

COMPLETELY OR IS INCORRECT, TURNAROUND TIME WILL NOT START UNTIL ALL QUESTIONS ARE ANSWERED.

URNAROUND TIME (Business days) STARTS AT 9:00 A.M. THE DAY AFTER SAMPLE RECEIPT UNLESS THERE ARE QUESTIONS ON YOUR CHAIN. IF THIS FORM IS NOT FILLED OUT

PLEASE BE CAREFUL NOT TO CONTAMINATE THIS DOCUMENT

39 Spruce St. East Longmeadow, MA. 01028 P: 413-525-2332 F: 413-525-6405 www.contestlabs.com

Do all samples have the proper Base pH: Yes No

Rev. 1 May 2011

Sample Receipt Checklist

CLIENT NAME: (+) (CAC	116	_RECEIV	ED BY:	DATE: <i>U</i> ,	(14/1)	
1) Was the chain(s) of custody re	elinguished and sign	ned?	Vac	No No CoC Inc	dudad	
P) Does the chain agree with the If not, explain:		iiou i		No No Coc inc	ruueu	
Are all the samples in good co	ndition?		Yes	No		
) How were the samples receive	ed:			,		
r -1-/	ampling	Ambient	☐ Iŋ Cooler	(8) 1		
Vere the samples received in Te				No N/A		
emperature °C by Temp blank			ature °C by Temp gu	un <u>5.4°C</u>	·	
) Are there Dissolved samples f	or the lab to filter?		Yes (No		
Who was notified		Tim	`			
i) Are there any RUSH or SHORT				No		
Who was notified						
Location where samples are stored:			Permission to subcontract samples? Yes No (Walk-in clients only) if not already approved Client Signature:			
C	ontainers rec	ceived	at Con-Tes	t	a and a second	
	# of containers			# 0	f containers	
1 Liter Amber		1	8 oz amber/clea		1 dontainers	
500 mL Amber			4 oz amber/clea			
250 mL Amber (8oz amber)	<u></u>		2 oz amber/clear jar			
1 Liter Plastic			Air Cassette			
500 mL Plastic			Hg/Hopcalite Tube			
250 mL plastic	0		Plastic Bag / Zi	oloc		
40 mL Vial - type listed below	い ろ		PM 2.5 / PM 10			
Colisure / bacteria bottle		-	PUF Cartridg	е		
Dissolved Oxygen bottle			SOC Kit			
Encore Flashpoint bottle			TO-17 Tubes			
Perchlorate Kit			Non-ConTest Container		-	
Other			Other glass jar Other			
aboratory Comments:		<u>kanamanal</u>	Otriei			
0 mL vials: # HCI \3	# Methanol	# Methanol			Time and Date Frozen:	
# Bisulfate	# DI Water					
# Thiosulfate	Unpreserved					
o all samples have the proper A		(A)/(A)				
o all samples have the proper B	-	N/A		Doc# 2	277 Page 25	

ARCADIS

Appendix D
Soil Gas Parameter Graphs

Soil Gas Well EPL1 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

--- Carbon Dioxide

--- Methane

— Oxygen

Soil Gas Well EPL4
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas Well MG2 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

Soil Gas Well MPL5 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

Soil Gas Well WB1
Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time
Springfield Street School Complex
Providence, Rhode Island

Soil Gas Well WB15 Fluctuation in Methane, Oxygen, and Carbon Dioxide Percentages over Time Springfield Street School Complex Providence, Rhode Island

Soil Gas Well MPL-7 Fluctuations in Methane, Oxygen and Carbon Dioxide

